Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Contents of All Volumes</td>
<td>ix</td>
</tr>
<tr>
<td>Cumulative Author Index</td>
<td>1</td>
</tr>
<tr>
<td>Cumulative Subject Index</td>
<td>401</td>
</tr>
</tbody>
</table>
The emergence of organic chemistry as a scientific discipline heralded a new era in human development. Applications of organic chemistry contributed significantly to satisfying the basic needs for food, clothing and shelter. While expanding our ability to cope with our basic needs remained an important goal, we could, for the first time, worry about the quality of life. Indeed, there appears to be an excellent correlation between investment in research and applications of organic chemistry and the standard of living. Such advances arise from the creation of compounds and materials. Continuation of these contributions requires a vigorous effort in research and development, for which information such as that provided by the Comprehensive series of Pergamon Press is a valuable resource.

Since the publication in 1979 of Comprehensive Organic Chemistry, it has become an important first source of information. However, considering the pace of advancements and the ever-shrinking timeframe in which initial discoveries are rapidly assimilated into the basic fabric of the science, it is clear that a new treatment is needed. It was tempting simply to update a series that had been so successful. However, this new series took a totally different approach. In deciding to embark upon Comprehensive Organic Synthesis, the Editors and Publisher recognized that synthesis stands at the heart of organic chemistry.

The construction of molecules and molecular systems transcends many fields of science. Needs in electronics, agriculture, medicine and textiles, to name but a few, provide a powerful driving force for more effective ways to make known materials and for routes to new materials. Physical and theoretical studies, extrapolations from current knowledge, and serendipity all help to identify the direction in which research should be moving. All of these forces help the synthetic chemist in translating vague notions to specific structures, in executing complex multistep sequences, and in seeking new knowledge to develop new reactions and reagents. The increasing degree of sophistication of the types of problems that need to be addressed require increasingly complex molecular architecture to target better the function of the resulting substances. The ability to make such substances available depends upon the sharpening of our sculptors' tools: the reactions and reagents of synthesis.

The Volume Editors have spent great time and effort in considering the format of the work. The intention is to focus on transformations in the way that synthetic chemists think about their problems. In terms of organic molecules, the work divides into the formation of carbon–carbon bonds, the introduction of heteroatoms, and heteroatom interconversions. Thus, Volumes 1–5 focus mainly on carbon–carbon bond formation, but also include many aspects of the introduction of heteroatoms. Volumes 6–8 focus on interconversion of heteroatoms, but also deal with exchange of carbon–carbon bonds for carbon–heteroatom bonds.

The Editors recognize that the assignment of subjects to any particular volume may be arbitrary in part. For example, reactions of enolates can be considered to be additions to C–C π-bonds. However, the vastness of the field leads it to be subdivided into components based upon the nature of the bond-forming process. Some subjects will undoubtedly appear in more than one place.

In attacking a synthetic target, the critical question about the suitability of any method involves selectivity: chemo-, regio-, diastereo- and enantio-selectivity. Both from an educational point-of-view for the reader who wants to learn about a new field, and an experimental viewpoint for the practitioner who seeks a reference source for practical information, an organization of the chapters along the theme of selectivity becomes most informative.

The Editors believe this organization will help emphasize the common threads that underlie many seemingly disparate areas of organic chemistry. The relationships among various transformations becomes clearer and the applicability of transformations across a large number of compound classes becomes apparent. Thus, it is intended that an integration of many specialized areas such as terpenoid, heterocyclic, carbohydrate, nucleic acid chemistry, etc. within the more general transformation class will provide an impetus to the consideration of methods to solve problems outside the traditional ones for any specialist.

In general, presentation of topics concentrates on work of the last decade. Reference to earlier work, as necessary and relevant, is made by citing key reviews. All topics in organic synthesis cannot be treated with equal depth within the constraints of any single series. Decisions as to which aspects of a
topic require greater depth are guided by the topics covered in other recent *Comprehensive* series. This new treatise focuses on being comprehensive in the context of synthetically useful concepts.

The Editors and Publisher believe that *Comprehensive Organic Synthesis* will serve all those who must face the problem of preparing organic compounds. We intend it to be an essential reference work for the experienced practitioner who seeks information to solve a particular problem. At the same time, we must also serve the chemist whose major interest lies outside organic synthesis and therefore is only an occasional practitioner. In addition, the series has an educational role. We hope to instruct experienced investigators who want to learn the essential facts and concepts of an area new to them. We also hope to teach the novice student by providing an authoritative account of an area and by conveying the excitement of the field.

The need for this series was evident from the enthusiastic response from the scientific community in the most meaningful way — their willingness to devote their time to the task. I am deeply indebted to an exceptional board of editors, beginning with my deputy editor-in-chief Ian Fleming, and extending to the entire board — Clayton H. Heathcock, Ryoji Noyori, Steven V. Ley, Leo A. Paquette, Gerald Pattenden, Martin F. Semmelhack, Stuart L. Schreiber and Ekkehard Winterfeldt.

The substance of the work was created by over 250 authors from 15 countries, illustrating the truly international nature of the effort. I thank each and every one for the magnificent effort put forth. Finally, such a work is impossible without a publisher. The continuing commitment of Pergamon Press to serve the scientific community by providing this *Comprehensive* series is commendable. Specific credit goes to Colin Drayton for the critical role he played in allowing us to realize this work and also to Helen McPherson for guiding it through the publishing maze.

A work of this kind, which obviously summarizes accomplishments, may engender in some the feeling that there is little more to achieve. Quite the opposite is the case. In looking back and seeing how far we have come, it becomes only more obvious how very much more we have yet to achieve. The vastness of the problems and opportunities ensures that research in organic synthesis will be vibrant for a very long time to come.

BARRY M. TROST
Palo Alto, California
Contents of All Volumes

Volume 1 Additions to C—X π-Bonds, Part 1

Nonstabilized Carbanion Equivalents

1.1 Carbanions of Alkali and Alkaline Earth Cations: (i) Synthesis and Structural Characterization
1.2 Carbanions of Alkali and Alkaline Earth Cations: (ii) Selectivity of Carbonyl Addition Reactions
1.3 Organoaluminum Reagents
1.4 Organocopper Reagents
1.5 Organotitanium and Organozirconium Reagents
1.6 Organochromium Reagents
1.7 Organozinc, Organocadmium and Organomercury Reagents
1.8 Organocerium Reagents
1.9 Samarium and Ytterbium Reagents
1.10 Lewis Acid Carbonyl Complexation
1.11 Lewis Acid Promoted Addition Reactions of Organometallic Compounds
1.12 Nucleophilic Addition to Imines and Imine Derivatives
1.13 Nucleophilic Addition to Carboxylic Acid Derivatives

Heteroatom-stabilized Carbanion Equivalents

2.1 Nitrogen Stabilization
2.2 Boron Stabilization
2.3 Sulfur Stabilization
2.4 The Benzoin and Related Acyl Anion Equivalent Reactions
2.5 Silicon Stabilization
2.6 Selenium Stabilization

Transformation of the Carbonyl Group into Nonhydroxylic Groups

3.1 Alkene Synthesis
3.2 Epoxidation and Related Processes
3.3 Skeletal Reorganizations: Chain Extension and Ring Expansion

Author Index

Subject Index

Volume 2 Additions to C—X π-Bonds, Part 2

Uncatalyzed Additions of Nucleophilic Alkenes to C—X

1.1 Allyl Organometallics
1.2 Heteroatom-stabilized Alkyl Anions
1.3 Propargyl and Allenyl Organometallics
1.4 Formation of Enolates
1.5 The Aldol Reaction: Acid and General Base Catalysis
1.6 The Aldol Reaction: Group I and Group II Enolates
1.7 The Aldol Reaction: Group III Enolates
1.8 Zinc Enolates: the Reformatsky and Blaise Reactions
1.9 The Aldol Reaction: Transition Metal Enolates
1.10 The Henry (Nitroaldol) Reaction
1.11 The Knoevenagel Reaction
1.12 The Perkin Reaction
1.13 Darzens Glycidic Ester Condensation
1.14 Metal Homoenolates
1.15 Use of Enzymatic Aldol Reactions in Synthesis
1.16 Metalloenamines
Contents of All Volumes

1.17 Hydrazine Anions

Catalyzed Additions of Nucleophilic Alkenes to C=X

2.1 The Prins and Carbonyl Ene Reactions
2.2 Allylsilanes, Allylstannanes and Related Systems
2.3 Formation and Addition Reactions of Enol Ethers
2.4 Asymmetric Synthesis with Enol Ethers
2.5 Reactions of Activated Dienes with Aldehydes

Addition–Elimination Reactions (Acylations)

3.1 The Aliphatic Friedel-Crafts Reaction
3.2 The Bimolecular Aromatic Friedel-Crafts Reaction
3.3 The Intramolecular Aromatic Friedel-Crafts Reaction
3.4 The Reimer-Tiemann Reaction
3.5 The Vilsmeier-Haack Reaction
3.6 Acylation of Esters, Ketones and Nitriles
3.7 The Eschenmoser Coupling Reaction

Additions of Nucleophilic Alkenes to C—NR and C—NR$_2^+$

4.1 The Bimolecular Aliphatic Mannich and Related Reactions
4.2 The Bimolecular Aromatic Mannich Reaction
4.3 Reactions of Allyl and Propargyl/Allenic Organometallics with Imines and Iminium Ions
4.4 The Intramolecular Mannich and Related Reactions
4.5 Additions to N-Acyliminium Ions
4.6 The Passerini and Ugi Reactions

Author Index

Subject Index

Volume 3 Carbon–Carbon σ-Bond Formation

Alkylation of Carbon

1.1 Alkylations of Enols and Enolates
1.2 Alkylations of Nitrogen-stabilized Carbanions
1.3 Alkylations of Sulfur- and Selenium-containing Carbanions
1.4 Alkylations of Other Heteroatom-stabilized Carbanions
1.5 Alkylations of Nonstabilized Carbanions
1.6 Alkylations of Vinyl Carbanions
1.7 Alkylations of Alkynyl Carbanions
1.8 Friedel–Crafts Alkylations
1.9 Polyene Cyclizations
1.10 Transannular Electrophilic Cyclizations

Coupling Reactions

2.1 Coupling Reactions Between sp3 Carbon Centers
2.2 Coupling Reactions Between sp3 and sp2 Carbon Centers
2.3 Coupling Reactions Between sp2 Carbon Centers
2.4 Coupling Reactions Between sp2 and sp Carbon Centers
2.5 Coupling Reactions Between sp Carbon Centers
2.6 Pinacol Coupling Reactions
2.7 Acyloan Coupling Reactions
2.8 Kolbe Reactions
2.9 Oxidative Coupling of Phenols and Phenol Ethers

Rearrangement Reactions

3.1 Wagner–Meerwein Rearrangements
Contents of All Volumes

3.2 The Pinacol Rearrangement
3.3 Acid-catalyzed Rearrangements of Epoxides
3.4 The Semipinacol and Other Rearrangements
3.5 Dienone–Phenol Rearrangements and Related Reactions
3.6 Benzil–Benzilic Acid Rearrangements
3.7 The Favorskii Rearrangement
3.8 The Ramberg–Bäcklund Rearrangement
3.9 The Wolff Rearrangement
3.10 The Stevens and Related Rearrangements
3.11 The Wittig Rearrangement

Other Carbon–Carbon Bond Forming Reactions

4.1 Carbonylation and Decarbonylation Reactions
4.2 Carbon–Carbon Bond Formation by C—H Insertion

Author Index
Subject Index

Volume 4 Additions to and Substitutions at C—C π-Bonds

Polar Additions to Activated Alkenes and Alkynes

1.1 Stabilized Nucleophiles with Electron Deficient Alkenes and Alkynes
1.2 Conjugate Additions of Reactive Carbanions to Activated Alkenes and Alkynes
1.3 Conjugate Additions of Carbon Ligands to Activated Alkenes and Alkynes Mediated by Lewis Acids
1.4 Organocuprates in the Conjugate Addition Reaction
1.5 Asymmetric Nucleophilic Additions to Electron Deficient Alkenes
1.6 Nucleophilic Addition–Electrophilic Coupling with a Carbanion Intermediate
1.7 Addition of H—X Reagents to Alkenes and Alkynes
1.8 Electrophilic Addition of X—Y Reagents to Alkenes and Alkynes
1.9 Electrophilic Heteroatom Cyclizations

Nucleophilic Aromatic Substitutions

2.1 Arene Substitution via Nucleophilic Addition to Electron Deficient Arenes
2.2 Nucleophilic Coupling with Aryl Radicals
2.3 Nucleophilic Coupling with Arynes
2.4 Nucleophilic Addition to Arene–Metal Complexes

Polar Additions to Alkenes and Alkynes

3.1 Heteroatom Nucleophiles with Metal-activated Alkenes and Alkynes
3.2 Carbon Nucleophiles with Alkenes and Alkynes
3.3 Nucleophiles with Allyl–Metal Complexes
3.4 Nucleophiles with Cationic Pentadienyl–Metal Complexes
3.5 Carbon Electrophiles with Dienes and Polyenes Promoted by Transition Metals

Nonpolar Additions to Alkenes and Alkynes

4.1 Radical Addition Reactions
4.2 Radical Cyclizations and Sequential Radical Reactions
4.3 Vinyl Substitutions with Organopalladium Intermediates
4.4 Carbometallation of Alkenes and Alkynes
4.5 Hydroformylation and Related Additions of Carbon Monoxide to Alkenes and Alkynes
4.6 Methylene and Nonfunctionalized Alkylidene Transfer to Form Cyclopropanes
4.7 Formation and Further Transformations of 1,1-Dihalocyclopropanes
4.8 Addition of Ketocarbenes to Alkenes, Alkynes and Aromatic Systems
4.9 Intermolecular 1,3-Dipolar Cycloadditions
4.10 Intramolecular 1,3-Dipolar Cycloadditions
Contents of All Volumes

Author Index
Subject Index

Volume 5 Combining C—C π-Bonds

Ene Reactions
1.1 Ene Reactions with Alkenes as Enophiles
1.2 Metallo-ene Reactions

[2 + 2] Cycloadditions
2.1 Thermal Cyclobutane Ring Formation
2.2 Formation of Four-membered Heterocycles
2.3 Photochemical Cycloadditions
2.4 The Paterno–Büchi Reaction
2.5 Di-π-methane Photoisomerizations
2.6 Oxa-di-π-methane Photoisomerizations

[3 + 2] Cycloadditions
3.1 Thermal Cycloadditions
3.2 Transition Metal Mediated Cycloadditions

[4 + 2] Cycloadditions
4.1 Intermolecular Diels–Alder Reactions
4.2 Heterodienophile Additions to Dienes
4.3 Heterodiene Additions
4.4 Intramolecular Diels–Alder Reactions
4.5 Retrograde Diels–Alder Reactions

Higher-order Cycloadditions
5.1 [4 + 3] Cycloadditions
5.2 [4 + 4] and [6 + 4] Cycloadditions
5.3 [3 + 2] and [5 + 2] Arene–Alkene Photocycloadditions

Electrocyclic Processes
6.1 Cyclobutene Ring Opening Reactions
6.2 1,3-Cyclohexadiene Formation Reactions
6.3 Nazarov and Related Cationic Cyclizations

Sigmatropic Processes
7.1 Cope, Oxy-Cope and Anionic Oxy-Cope Rearrangements
7.2 Claisen Rearrangements
7.3 Consecutive Rearrangements

Small Ring Rearrangements
8.1 Rearrangements of Vinylcyclopropanes and Related Systems
8.2 Rearrangements of Divinylcyclopropanes
8.3 Charge-accelerated Rearrangements

Other Transition Metal Associated Reactions
9.1 The Pauson–Khand Reaction
9.2 Metal–Carbene Cycloadditions
9.3 Alkene Metathesis and Related Reactions
9.4 [2 + 2 + 2] Cycloadditions
9.5 Zirconium-promoted Bicyclization of Enynes
9.6 Metal-catalyzed Cycloadditions of Small Ring Compounds
Volume 6 Heteroatom Manipulation

Displacement by Substitution Processes

1.1 Synthesis of Alcohols and Ethers
1.2 Synthesis of Glycosides
1.3 Synthesis of Amines and Ammonium Salts
1.4 Synthesis of Nitroso, Nitro and Related Compounds
1.5 Synthesis of Sulfides, Sulfoxides and Sulfones
1.6 Synthesis of Phosphonium Ylides
1.7 Synthesis of Halides
1.8 Synthesis of Pseudohalides, Nitriles and Related Compounds
1.9 Ritter-type Reactions

Acylation-type Reactions

2.1 Synthesis of Acid Halides, Anhydrides and Related Compounds
2.2 Synthesis of Esters, Activated Esters and Lactones
2.3 Synthesis of Amides and Related Compounds
2.4 Synthesis of Thioamides and Thiolactams
2.5 Synthesis of Thioesters and Thiolactones
2.6 Selenoesters of All Oxidation States
2.7 Synthesis of Iminium Salts, Orthoesters and Related Compounds
2.8 Inorganic Acid Derivatives

Protecting Groups

3.1 Protecting Groups

Functional Group Interconversion

4.1 Carbonyl Group Derivatization
4.2 Use of Carbonyl Derivatives for Heterocyclic Synthesis
4.3 Functional Group Transformations via Carbonyl Derivatives
4.4 Degradation Reactions
4.5 Functional Group Transformations via Allyl Rearrangement
4.6 2,3-Sigmatropic Rearrangements
4.7 Polonovski- and Pummerer-type Reactions and the Nef Reaction

Elimination Reactions

5.1 Eliminations to Form Alkenes, Allenes and Alkynes and Related Reactions
5.2 Reductive Elimination, Vicinal Deoxygenation and Vicinal Desilylation
5.3 The Cope Elimination, Sulfoxide Elimination and Related Thermal Reactions
5.4 Fragmentation Reactions

Volume 7 Oxidation

Oxidation of Unactivated C–H Bonds

1.1 Oxidation by Chemical Methods
1.2 Oxidation by Nitrene Insertion
1.3 Oxidation by Remote Functionalization Methods
1.4 Oxidation by Microbial Methods
Contents of All Volumes

Oxidation of Activated C—H Bonds

2.1 Oxidation Adjacent to C=C Bonds
2.2 Oxidation Adjacent to C=X Bonds by Dehydrogenation
2.3 Oxidation Adjacent to C=X Bonds by Hydroxylation Methods
2.4 Oxidation Adjacent to Sulfur
2.5 Oxidation Adjacent to Nitrogen
2.6 Oxidation Adjacent to Oxygen of Ethers
2.7 Oxidation Adjacent to Oxygen of Alcohols by Chromium Reagents
2.8 Oxidation Adjacent to Oxygen of Alcohols by Activated DMSO Methods
2.9 Oxidation Adjacent to Oxygen of Alcohols by Other Methods
2.10 Vinylic and Arylic C—H Oxidation
2.11 Synthesis of Quinones

Oxidation of C=C Bonds

3.1 Addition Reactions with Formation of Carbon—Oxygen Bonds: (i) General Methods of Epoxidation
3.2 Addition Reactions with Formation of Carbon—Oxygen Bonds: (ii) Asymmetric Methods of Epoxidation
3.3 Addition Reactions with Formation of Carbon—Oxygen Bonds: (iii) Glycol Forming Reactions
3.4 Addition Reactions with Formation of Carbon—Oxygen Bonds: (iv) The Wacker Oxidation and Related Reactions
3.5 Addition Reactions with Formation of Carbon—Nitrogen Bonds
3.6 Addition Reactions with Formation of Carbon—Sulfur or Carbon—Selenium Bonds
3.7 Addition Reactions with Formation of Carbon—Halogen Bonds
3.8 Cleavage Reactions

Oxidation of C—X Bonds

4.1 Oxidation of Carbon—Boron Bonds
4.2 Oxidation of Carbon—Metal Bonds
4.3 Oxidation of Carbon—Silicon Bonds
4.4 Oxidation of Carbon—Halogen Bonds

Oxidation of C—C Bonds

5.1 The Baeyer—Villiger Reaction
5.2 The Beckmann and Related Reactions
5.3 Glycol Cleavage Reactions
5.4 The Hunsdiecker and Related Reactions

Oxidation of Heteroatoms

6.1 Oxidation of Nitrogen and Phosphorus
6.2 Oxidation of Sulfur, Selenium and Tellurium

Special Topics

7.1 Oxidation by Electrochemical Methods
7.2 Oxidative Rearrangement Reactions
7.3 Solid-supported Oxidants
7.4 Electron-transfer Oxidation

Author Index
Subject Index

Volume 8 Reduction

Reduction of C=X Bonds

1.1 Reduction of C=O to CHO by Metal Hydrides
Contents of All Volumes

1.2 Reduction of C≡N to CHNH by Metal Hydrides
1.3 Reduction of C≡X to CHXH by Hydride Delivery from Carbon
1.4 Reduction of C≡X to CHXH by Dissolving Metals and Related Methods
1.5 Reduction of C≡X to CHXH Electrolytically
1.6 Reduction of C≡X to CHXH by Catalytic Hydrogenation
1.7 Reduction of C≡X to CHXH by Chirally Modified Hydride Reagents
1.8 Reduction of C≡X to CHXH Using Enzymes and Microorganisms
1.9 Reduction of Acetals, Azaacetals and Thioacetals to Ethers
1.10 Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines
1.11 Reduction of Carboxylic Acids to Aldehydes by Metal Hydrides
1.12 Reduction of Carboxylic Acids to Aldehydes by Other Methods
1.13 Reduction of C≡X to CH2 by Dissolving Metals and Related Methods
1.14 Reduction of C≡X to CH2 by Wolff-Kishner and Other Hydrazone Methods

Reduction of X—Y Bonds

2.1 Reduction of Nitro and Nitroso Compounds
2.2 Reduction of N—N, N—N, N—O and O—O Bonds
2.3 Reduction of S—O and SO2 to S, of P—O to P, and of S—X to S—H

Reduction of C—C and C≡C Bonds

3.1 Heterogeneous Catalytic Hydrogenation of C—C and C≡C
3.2 Homogeneous Catalytic Hydrogenation of C—C and C≡C
3.3 Reduction of C—C and C≡C by Noncatalytic Chemical Methods
3.4 Partial Reduction of Aromatic Rings by Dissolving Metals and Other Methods
3.5 Partial Reduction of Enones, Styrenes and Related Systems
3.6 Partial and Complete Reduction of Pyridines and their Benzo Analogs
3.7 Partial and Complete Reduction of Pyrroles, Furans, Thiophenes and their Benzo Analogs
3.8 Partial and Complete Reduction of Heterocycles Containing More than One Heteroatom
3.9 Hydrozirconation of C—C and C≡C, and Hydrometallation by Other Metals
3.10 Hydroboration of C—C and C≡C
3.11 Hydroalumination of C—C and C≡C
3.12 Hydrosilylation of C—C and C≡C

Reduction of C—X to C—H

4.1 Reduction of Saturated Alkyl Halides to Alkanes
4.2 Reduction of Saturated Alcohols and Amines to Alkanes
4.3 Reduction of Heteroatoms Bonded to Tetrahedral Carbon
4.4 Reduction of Epoxides
4.5 Reduction of Vinyl Halides to Alkenes, and of Aryl Halides to Arenes
4.6 Reduction of Ketones to Alkenes
4.7 Hydrogenolysis of Allyl and Benzyl Halides and Related Compounds
4.8 Reduction of α-Substituted Carbonyl Compounds —CX—CO— to Carbonyl Compounds —CH—CO—

Author Index
Subject Index

Volume 9
Cumulative Author Index
Cumulative Subject Index
Cumulative Author Index

This Author Index comprises an alphabetical listing of the names of over 30,000 authors cited in the references listed in the bibliographies which appear at the end of each chapter in these volumes. Each entry consists of the author’s name, bold numbers, and other numbers which are associated with superscripts. For example:

Abbott, D. E., 2, 612, 12c, 1040, 573, 53.

The bold number indicates the volume number, and the other numbers indicate the text pages on which references by the author in question are cited; the superscript numbers refer to the reference number in the chapter bibliography. Citations occurring in the text, tables and chemical schemes and equations have all been included.

Although much effort has gone into eliminating inaccuracies resulting from the use of different combinations of initials by the same author, the use by some journals of only one initial, and different spellings of the same name as a result of transliteration processes, the accuracy of some entries may have been affected by these factors.

Aalbersberg, W. G. L., 5, 1151.
Abdullin, A., I, 331.
Aarts, V. M. L. J., 7, 333.
Abab, R. F., 3, 944.
Abbasi, J. L. M., 6, 859.
Abdel Hady, A. F., 2, 150, 151.
Abdullah, A. H., 4, 699.
Abdel-Kader, M., 7, 72.
Abdel-Wahab, A. M., 3, 325.
Abdel-Halim, F. M., 7, 357.
Abdallah, H., 4, 567.
Abdel-Halim, H., 4, 567.
Abdallah, A. A., 1, 567.
Abdel-Magid, A., 1, 72.
Abdallah, Y. M., 3, 7.
Abdel-Rahman, M. O., 8, 478.
Abd Elhafez, F. A., 6, 75.
Abd Elaziz, A. S., 1, 567.
Abdullaev, N. F., 1, 543.
Abd El Samii, Z. K. M., 6, 516.
Abd Elhaid, E. H. M., 4, 413.
Abdel-Magid, A., 1, 72.
Abdel-Allah, M. A., 1, 567.
Abdel-Halim, M. F., 8, 860.
Abdel-Halim, H., 5, 637.
Abdelkader, M., 5, 71.
Abd Ellail, E. H. M., 4, 413.
Abdel-Magid, A., 2, 116.
Abdel-Magid, A., 2, 116.
Aden, K. M., 4, 386.
Abdel-Wahab, A. M., 3, 325.
Abderhelden, E., 8, 526.
Abo, S. E., 4, 403.
Abdul-Nab, N. F., 1, 543.
Abdel-Hale, S. M., 7, 267.
Abdulla, R. F., 4, 125.
Abdullin, K. A., 6, 515.
Abdul-Malik, N. F., 7, 162.
Abdun-nur, A. R., 8, 214.
Abdurasuleva, A. R., 3, 325.
Abe, A., 3, 530.
Abe, E., 1, 858.
Abe, H., 3, 223.
Abe, J., 6, 523.
Abe, K., 1, 422.
Abe, M., 4, 308.
Abe, R., 5, 96.
Abe, S., 8, 134.
Abe, T., 2, 116.
Abe, Y., 1, 808.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, A., 3, 226.
Abe, J., 6, 239.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Abe, H., 3, 226.
Abe, J., 6, 239.
Abe, E., 1, 858.
Ahn, S. H., 3, 4941
Ahond, A. 2, 901313, 6, 9122, 92044
Aframjian, L., 2, 39710, 4122, 4139
Ahrens, F., 3, 582113
Ahrens, F. B., 8, 59163
Ahrens, G., 6, 519313
Ahrens, K. H., 5, 41040; 6, 524355, 525355, 532355
Ahuja, R. R., 4, 231264
Ahuja, V. K., 8, 375158, 41813, 42213, 42513
Aibe, H., 8, 190161
Aida, T., 2, 605263, 63011, 631111, 4, 4042457, 7, 503275; 8, 856181
Aidhien, I. S., 4, 810713
Aig, E. R., 8, 82129; 3, 28969, 30148
Aigami, K., 3, 38346; 6, 27976; 7, 970
Aigner, H., 2, 108899; 109072
Alharas, S., 7, 881136
Alhaira, T. S., 1, 558134
Aikawa, H., 1, 51172; 4, 11374, 24586, 25986, 26086
Aikawa, Y., 4, 158413
Aiken, W. T., 7, 34096
Aime, S., 8, 45716
Aimenti, J. A., 2, 21219
Aimi, N., 2, 102150; 6, 91631; 8, 31447, 64171
Aimino, D., 8, 42113
Ainley, A. D., 7, 59513
Ainslie, R. D., 8, 697132
Ainsworth, C., 2, 60242, 606165, 8731614, 883168; 3, 62642; 4, 111153
Airoldi, M., 8, 451712
Aishima, I., 8, 754134
Aitken, D. J., 1, 559146
Aitken, R. A., 4, 9534, 95449, 9619; 5, 80837; 7, 47929
Aiura, H., 2, 92095, 92195
Aizpurua, J. M., 4, 542117, 6, 4659; 8, 82044
Aikawa, K., 6, 5899; 59929; 59984; 63938
Aikawa, M., 5, 432119
Aki, O., 8, 9751133, 99215
Aki, K., 1, 120754, 23620, 23730, 35015225, 361355, 362525; 43646, 2, 2493; 556151, 615727, 655138
Aki, Y., 6, 74248; 493157; 7, 9669; 8, 561412
Akhtar, M. H., 3, 92734; 5, 68759
Akhtar, M. S., 7, 265130, 267103
Aki, L. Y., 5, 79765
Aki, O., 8, 975123, 99215
Akiba, K., 1, 120754, 23620, 23730, 35015225, 361355, 362525; 43646, 2, 2493; 556151, 615727, 655138
Aki, T., 7, 69248; 493157; 7, 9669; 8, 561412
Akiyama, M., 5, 91817; 862246, 6, 11371, 533499, 84387; 8, 892297
Akiyama, S., 2, 152100; 3, 585137, 8, 1480
Akiyama, A., 7, 72628; 75298, 75313; 3, 652221; 5, 113975; 8, 661112, 797453, 80743
Akiyoshi, K., 3, 231413
Akiyoshi, S., 7, 9242, 9342
Akikawa, O., 1, 269313, 3, 74670; 5, 11257
Akpuaka, M. U., 3, 8103
Aksen, G., 4, 35816; 5, 76447; 8, 860211, 864240
Aksu, M., 5, 378135, 1543, 15517
Akte, N., 2, 125214; 4, 82682
Akuagwara, K., 1, 481103; 3, 71515, 19736
Akatagawa, S., 4, 609313; 6, 866628; 8, 154195, 495234; 642275
Akutsu, N., 8, 18739
Akuw, G., 3, 740215, 473735, 476215
Aladzhev, I. M., 4, 55156
Alais, J., 6, 51107
Alajarin, M., 4, 44070
Alam, I., 2, 80112
Alam, N., 4, 45980; 46980; 8
Alam, S. K., 8, 33135
Alami, M., 2, 1279; 3, 57893; 4, 98111
Amar, N. E., 2, 98022, 98112
Alario, F., 8, 59316
Alary, J., 8, 594170
Al-Aseer, M., 1, 477313; 3, 6717
Al Ashmawy, M. I., 4, 386156, 387156, 413276
Alaudin, M. K., 5, 383130, 398130, 392138, 392162; 682232; 69138349, 692239, 693810; 103195; 6, 97711, 100711
Alazzaz, J. F., 3, 681100
Albhanauer, J. M., 4, 108123
Andersson, L. H., 7, 331
Andersson, F., 7, 272, 274
Andersson, K., 2, 346
Andersson, L., 6, 207
Andersson, P. G., 4, 371
Andersson, S., 4, 227
Andisik, D., 4, 293, 296
Ando, A., 2, 233, 455, 7, 158
Ando, H., 7, 425
Ando, K., 2, 81, 137, 207, 357, 431, 445, 457, 3, 137, 4, 21, 222, 177, 6, 864, 7, 764, 8, 847
Ando, M., 1, 98, 99, 387, 2, 443, 454, 451, 576, 718, 995, 3, 104, 4, 24, 25, 857, 970, 972, 5, 841, 6, 542, 767, 768, 769, 984, 945, 7, 155, 163, 641, 696, 697, 8, 43, 410, 47, 620, 666, 6720, 39419
Ando, N., 8, 170
Ando, R., 1, 670, 7, 761, 771, 773, 777, 779
Ando, T., 2, 115, 3, 218, 4, 354, 106, 101, 102, 105, 6, 66, 986, 987, 986, 7, 253, 8, 86, 798
Ando, W., 3, 887, 889, 893, 894, 896, 897, 900, 903, 921, 928, 932, 944, 932, 944, 954, 1008, 114, 1147, 440, 740, 763, 762, 762, 770, 770, 784, 851, 8, 979, 14
Andrac, M., 8, 215
Andrade, J. G., 3, 499, 501, 740, 78, 783, 693, 14, 7, 336, 8, 450, 492, 250
Andre, C., 1, 419, 79, 797, 292, 802, 932, 9, 995, 996, 996, 4, 400
André, É., 4, 473
Andrades, S., 7, 801
Andreae, S., 7, 746
Andreati, A., 2, 787
Andree, H., 7, 760, 460
Andree, R. N., 6, 1114
Andrettea, A., 8, 443, 446, 449, 545, 450, 545, 452, 458, 545, 457, 547, 458, 458
Andreetti, G. D., 3, 386, 6, 195
Andreev, L. N., 6, 419, 508
Andreev, V. M., 3, 305, 6, 644, 640, 141
Andreeva, L. N., 4, 992
Andrino, B. P., 3, 525, 40
André, V., 3, 830, 7, 229, 12, 8, 872, 875
Andreecci, A., 3, 804
Andrioli, P. M., 5, 100
Andriou, A. D., 2, 745, 102
Andres, H., 5, 130, 146
Andres, W. W., 7, 157, 158, 43
Andreu, M. R., 5, 474
Andreu, R. G., 2, 578
Andreu, A., 7, 452
Andrews, D. J., 1, 168, 1, 176
Andrews, D. R., 1, 883, 5, 806, 109, 929, 7, 902
Andrews, D. W., 6, 7042
Andres, G. D., 5, 978, 980, 988, 100
Andres, L., 5, 704
Andres, L. H., 8, 604, 605
Andrews, L. J., 5, 714, 6, 980, 8, 796, 888
Antonelli, R., 3, 512, 513; 4, 391, 392; 5, 77, 78, 79; 6, 642, 653, 66; 7, 265, 266; 8, 642, 653, 66; 9, 262, 263; 10, 262, 263.

Antonelli, A., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, D., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, S., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, F., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, G., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, H., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, J., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, K., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, L., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, M., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, N., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, O., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, P., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, Q., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, R., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, S., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, T., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.

Antonelli, U., 1, 251; 2, 252; 3, 253; 4, 254; 5, 255; 6, 256; 7, 257; 8, 258; 9, 259; 10, 260.
Asensio, G., 1, 36172ab, 2, 7907, 98021, 98121, 4, 29096, 29127220, 31146, 31511, 34793, 35193, 354936, 399224, 6, 494335, 7, 93434, 486142, 49076, 501255, 505285, 536352, 8, 854350, 856180, 857194
Ash, A. B., 6, 622135, 7, 65616
Ash, L., 3, 99185, 107185
Ashiani, Y., 8, 97138
Ashbrook, C. W., 3, 93465, 95365
Ashcroft, A. E.,
Asher, V.,
Ashwell, M.,
Ashmore, A. E., 4, 2783
Ashcroft, A. C. T., 10018
Ashcroft, A. E., 4, 2783
Ashcroft, J., 5, 736145, 737145
Ashcroft, W. R., 8, 58742
Ashe, A. J., 111.1, 49P8; 3, 406145, 905138
Ashby, J., 8, 301", 66433
Aschcraft, A. C., 3, 23139
Ashcroft, A. E., 3, 4179
Ashcroft, A. C., 7, 10018
Ashcroft, A. E., 4, 2783
Ashcroft, J., 5, 736145, 737145
Ashcroft, W. R., 8, 58742
Ashe, A. J., 1, 49028; 3, 406145, 905138
Ash, C. W., 3, 94565, 95365
Ashmore, A. J., 111.1, 49P8; 3, 406145, 905138
Ashenazi, P., 3, 62845
Ashley, K. R.,
Ashley, W. C., 2, 5041
Atkinson, R.,
Atkinson, W. D., 3, 89487, 985127
Atkinson, R. E., 2, 75812
Atkinson, J. G., 1, 82128, 3, 28067; 4, 1059155, 5, 6466; 8, 40653
Atkinson, R. S., 5, 938205, 7, 47441, 480100101, 101, 481100103, 1061108, 1111111, 482100115, 116, 4834108, 128129, 74255, 74355, 74455, 6667
Atkinson, T., 8, 206172
Atkinson, T. R. S., 6, 11690, 245122, 256122
Atland, H. W., 7, 185173
Atlani, P., 1, 50620; 3, 96164, 98164, 99164, 8, 59787
Atlay, M. T., 7, 108174
Atsumi, K., 2, 56735, 8, 83346
Atsuta, S., 8, 551180, 66180
Atsumi, S., 6, 48740, 48940
Attah-Poku, S. K., 4, 247734, 5, 944239, 8, 11456
Atanasiu, O., 2, 34524, 5248283, 4, 144063
Attar, A., 6, 42886
Atta-ur-Rahman, 4, 4833, 4843, 4955, 1058152, 1059152
Attenburger, P., 3, 53118
Atia, M. E. M., 5, 938211
Atinina, M., 4, 445203
Atton, J. G., 4, 68855
Attrill, R. P., 2, 105914, 5, 40278
Atwood, S. V., 1, 797293, 4, 38021; 6, 996107; 8, 24882
Atyeggle, A. B., 1, 80820; 6, 188181
Atwell, W. H., 5, 950294
Atwood, J. D., 8, 44796
Atwood, R. L., 1, 623, 17206216, 19103, 372178, 16299
2153; 8, 44796137, 67671, 67961, 68261, 68361, 68561, 68761
Au, A. T., 1, 54434, 55134, 55334; 4, 113669, 5, 15741
Au, K. G., 2, 90449
Au, M.-K., 3, 87789
Lab, J., 1, 683161, 168161, 2, 50617, 96960, 4, 107643;
7, 750132
Aubert, C., 2, 54641, 3, 699161
Aubert, F., 3, 41617, 41717
Aubouet, J., 4, 21070
Aubourg, S., 4, 505140
Auburn, P. R., 4, 56431, 599221, 624221, 641221, 653444;
5, 117437, 6, 450117
Aucis, R. J., 5, 913160, 100863
Audpert, P. C., 3, 583118
Audia, J. E., 2, 6333b, 6403a, 4, 15942, 1862, 24265
25365, 5, 51752, 51929, 53429, 483161168, 7, 273135
Audia, V. H., 3, 226197, 5, 934187, 6, 1044, 1144, 1244,
7, 416112b.
Audin, A., 4, 395206
Audin, C., 4, 79252
Audin, P., 4, 30870409, 311452, 396209, 397209
Audouin, M., 7, 53816
Aue, D. H., 5, 482170, 805100, 7, 47773
Auer, E., 6, 91462, 7, 22220
Auerbach, J., 6, 417411
Auerbach, R. A., 2, 128242, 18412325, 2893158
Auferhaar, E., 4, 2783
Augé, C., 2, 46390, 46490, 8598a, 96, 46790, 6, 662217
Augé, J., 1, 831101101, 2, 6132, 19232, 20799
Augelmann, G., 5, 41953, 8, 395129
Auger, J., 4, 88399, 88499
Augood, D. R., 3, 505162, 507162, 512162
Augur, M. V., 8, 32813, 32913
Aufderhaar, E., 46790; 6, 662217
August, B., 1, 878188; 7, 181197, 182110, 184110,
537187, 174118, 175118, 176118, 177118, 178118,
113218, 6, 724153
Aumiller, J. C., 2, 166153, 3, 4141, 4222
Aurbach, D., 6, 533096
Aurell, C.-J., 5, 6865a, 68858
Aurélien, B., 7, 78125
Auriñcio, S., 8, 64592
Aurich, H. G., 7, 74574
Aurora, R., 7, 85457, 85557
Aurrecochea, J. M., 6, 14371, 8446
Austin, E., 4, 46835
Austin, G. N., 5, 15111
Austin, W. B., 2, 53059, 53369, 53859
Auëte, V., 8, 545585
Auvergne, P., 1, 189115, 21057, 22071b, 2, 6134, 206132,
4, 3497, 3597, 6, 1644197, 198
Auwers, K., 2, 77321, 95719, 4, 21
Au-Yeung, P.-W., 2, 71665, 7, 6161220
Au-Yeung, B.-W., 2, 71665, 7, 6161220
Avaro, M., 2, 52379, 52479
Avasthi, A., 4, 315505
Avetisyan, A. A., 4, 315505
Cumulative Author Index

Byrd, L. R., 1, 43540
Buser, K. R., 3, 223155
Burnette, L. W., 8, 193171
Burn, D., 6, 8768
Burnett, D. A., 1, 389140; 2, 92615, 93715, 940162; 4, 7941, 823255; 5, 100152158, 7, 64771
Burnett, E., 2, 90135, 90835, 90935, 91035
Burnet, M. G., 8, 44688
Burnett, R. E., 8, 461238, 53516
Burnette, L. W., 8, 1402
Burnham, J. W., 2, 73840
Burnier, J. S., 5, 64240, 45246, 70628
Burns, C., 8, 56871
Burns, C. J., 7, 39220
Burns, R. C., 8, 67548, 67648
Burns, R. H., 6, 51325
Burns, S. A., 1, 46112
Burns, T. P., 1, 2124, 2134, 4, 96964
Burns, W., 5, 658
Burnip, R. D., 4, 45126126, 5, 71155158, 68650
Burnage, M. E., 5, 428108
Burrell, J. W. K., 7, 3069
Burki, K., 3, 4143
Burri, F., 7, 647257
Burrous, M. L., 2, 588152; 6, 1034134; 8, 7642, 7702b
Burrow, M. J., 7, 9241
Burrow, P. D., 5, 45227; 7, 86177
Burrows, C. J., 1, 74765; 5, 85621212, 6, 7018
Burrows, E. P., 3, 4141; 7, 7365, 7375, 7455, 7465, 7495
Burrows, W. D., 2, 1024558, 6, 7344
Bursian, N. R., 3, 32814
Burstall, F. H., 7, 77533934
Burstein, K. Ya., 5, 12517
Burstein, S. H., 7, 25320
Burztinghaus, R., 1, 5111, 4, 1151, 11317, 259260
Burn, E. A., 3, 297177, 30656
Burton, A., 1, 723281; 3, 8746, 14286, 14446
Burton, C. I., 2, 14246
Burton, D. J., 3, 20226; 5, 680244444; 6, 172101131, 8, 860253; 861227, 89524, 89611, 89724, 89827, 900223, 90411
Burton, H., 2, 73842
Burton, R., 4, 6632
Burtscher, P., 3, 86211, 86311
Burwell, R. L., 7, 521
Burwell, R. L., Jr., 8, 41918, 447132
Bury, A., 4, 50142142
Burtzloff, H., 6, 195225
Busacca, C., 5, 372104
Busby, R. E., 4, 1021249250
Busch, A., 5, 61275
Busch, F. R., 2, 90449
Busch, M. L., 8, 90835, 90935, 91035
Busch, D., 1, 4282
Busch, H. R., 3, 223155
Busch, K. R., 3, 158440
Bur, E. A., 3, 297177, 30656
Byrn
Byrn, S., 4, 7955, 251152
Byrne, K. J., 6, 675396, 8, 213330, 21433, 21767, 21869
Byrne, L. T., 1, 17219, 36234
Byrne, N. E., 2, 1066122, 5, 45992
Byrne, W. L., 2, 45670, 45770
Byrom, N. T., 4, 37488, 7, 45121

Bystrenina, V. I., 8, 451177
Bystrum, S. E., 4, 56584, 598197, 623197, 639197, 6, 8594, 8695, 5, 9427, 490173
Bystrov, V. R., 7, 773304
Byun, H.-S., 7, 39316, 39816
Bzowei, E. I., 1, 74671
Dunlap, R. B., 2, 388342; 6, 46217; 8, 17074
Dunlap, N. K., 2, 69070, 725106; 4, 16187, 571, 21297
Dunlap, R. P., 8, 8621
Dunkin, I. R.,
Dunlop,
Dum, J. L., 3, 9143, 5
Dunoguks, J., 1, 32817, 18; 2,
Duncan, M. P., 7, 16691, 22237, 22737, 81, 83376
Duncan, W. G., 3, 126318
Dupin, C., 3, 7348
Dupin, J. S., A.,
Dury, H.,
Dusold, L. R., 3, 89142; 6, 10127, 10137
Dustin, H. M., 6, 55478, 48378, 48478, 487146, 49514
Durand-Dran, R., 7, 66675
Durant-Dran, R., J., 2, 49355; 6, 541593, 594
Durant, E., 2, 9043
Durant, F., 1, 67510, 677210, 706210, 721210
Dürckheimer, W., 3, 89024; 5, 881
Duriaux, A., 3, 50219, 40219
Durr, H.,
Durr, M., 6, 55478
Durn, J. M.,
Dusold, L. R., 3, 89142; 6, 10127, 10137
Dusan, A. E., 3, 331198
Duson, T., B., 4, 70421
Duson, T., J., 3, 423
Dussault, P. H., 1, 7441
Dutt, M., A., 3, 31259
Dunning, R. W., 8, 4451
Dunney, S., 8, 341106, 77031, 92616
Dunoguks, J., 1, 32817, 18, 2, 56412, 57558, 57665, 582108, 58416, 72143, 71234, 717659, 7175870, 717145, 72189, 726124, 728140, 141, 90030, 90130, 66462, 10300, 3, 57799, 5, 52799, 8, 168152, 83212, 86512, 8, 40982, 518231, 785115
Dunstan, A. E., 3, 331198
Duong, T., B., 4, 70421
DuPenhoat, C. H., 2, 76638, 8, 842426, 844426, 847426
Dupin, C., 3, 7348
Dupin, J. F., 3, 7348, 6, 177118
Duplantier, A. J., 2, 24914, 6, 452132
Dupont, A., 1, 1008
Dupont, W., 4, 37107, 1076
Dupont, W. A., 4, 74351, 249116
Dupre, B., 3, 7756
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
<th>Volume</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutta, S. P.</td>
<td>8, 333-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutton, F. E.</td>
<td>5, 71-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutton, G. G. S.</td>
<td>6, 435-2, 647-107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutton, H. J.</td>
<td>8, 450-161, 453-191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duval, D.</td>
<td>4, 71-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>du Vigneaud, V.</td>
<td>6, 636-16, 644-90, 664-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dux, F.</td>
<td>III, 8, 803-95, 804-90, 826-69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dvolaizky, M.</td>
<td>3, 807-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dvorák, D.</td>
<td>2, 358-157, 4, 51-7, 5, 461-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dvorko, G. F.</td>
<td>4, 289-190, 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dvortsák, P.</td>
<td>6, 543-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwivedi, C. P. D.</td>
<td>5, 72-184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dworkin, A. S.</td>
<td>3, 328-177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwyer, F. G.</td>
<td>3, 305-75c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwyer, J.</td>
<td>5, 2-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D'yachenko, A. I.</td>
<td>4, 489-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D'yaknov, I. A.</td>
<td>5, 948-273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyall, L. K.</td>
<td>7, 92-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dymov, V. N.</td>
<td>6, 543-60b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dymova, S. F.</td>
<td>4, 992-154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyong, I.</td>
<td>6, 900-114, 7, 489-171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyrbusch, M.</td>
<td>3, 303-55, 4, 111-132d, 221-179, 103-850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyrkacz, G. R.</td>
<td>2, 348-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyszlewski, A. D.</td>
<td>3, 253-69, 262-89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dzhaforova, N. A.</td>
<td>3, 304-69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dzhemilev, V. M.</td>
<td>8, 697-133, 134, 698-133, 140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dziadulewicz, E.</td>
<td>2, 73-57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dzicic, I.</td>
<td>1, 287-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dzieciuch, M.</td>
<td>3, 636-55, 257, 639-55, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dziewonska-Baran, D.</td>
<td>4, 432-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author Name</td>
<td>Volume</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Ekwuribe, N. N.</td>
<td>8</td>
<td>277152</td>
<td></td>
</tr>
<tr>
<td>El Alami, N.</td>
<td>1</td>
<td>21421</td>
<td></td>
</tr>
<tr>
<td>Ek, M.</td>
<td>8</td>
<td>224107</td>
<td></td>
</tr>
<tr>
<td>Eistert, B.</td>
<td>1</td>
<td>21748</td>
<td></td>
</tr>
<tr>
<td>Eisert, M. A.</td>
<td>4, 966, 96892, 97P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejiri, E.</td>
<td>3, 593Is1; 6, 531459*460, 7649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eizenber, R. F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Bouadili,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldred, C. D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elberling, J. A.</td>
<td>3, 84958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Houri, H.</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Enien, M. N.</td>
<td>8</td>
<td>47838</td>
<td></td>
</tr>
<tr>
<td>Elfahham, H. A.</td>
<td>2, 13546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Fleihan, F.</td>
<td>6, 10517, 10618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Feray, F. S.</td>
<td>3, 39077, 3927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elferink, V. H. M.</td>
<td>5, 742161, 6, 572960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elfert, K.</td>
<td>4, 839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgamal, S.</td>
<td>2, 370296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Garby Younes, M.</td>
<td>3, 83478, 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgemeie, G. H. E.</td>
<td>2, 379296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgendy, S.</td>
<td>1, 49054, 501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Ghandour, N.</td>
<td>5, 24726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Gharbi, R.</td>
<td>6, 17346, 1754673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ElGomati, T.</td>
<td>2, 108734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elguero, J.</td>
<td>4, 55157, 439166, 5, 741153, 6, 579984, 8, 6367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elhafza, F. A. A.</td>
<td>1, 14119, 1519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elhamal, M. S. A.</td>
<td>5, 48897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Hallouai, A.</td>
<td>3, 21569, 25157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Hashash, M. A.</td>
<td>2, 74499, 74599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Helow, E.</td>
<td>7, 7197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliaer, J.</td>
<td>8, 23712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elia, H.</td>
<td>3, 89035, 90317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliasan, J.</td>
<td>8, 9497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliei, E. L.</td>
<td>1, 2, 4911, 5011, 5171, 6137, 628461, 6342, 651152, 6657, 69576, 70251, 15052, 15372, 18248, 2857, 4603, 2, 6305, 969456, 565086, 3, 7654, 12473247888728728832, 13272132473232, 4, 3, 18796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elkeb, S.</td>
<td>5, 8830, 75450, 6, 68527, 7, 54941, 8, 14876, 90041, 138451, 2143437, 21725, 218570, 21970, 22411, 224310, 22931637, 23031739, 23131414447148, 232148, 24677, 50263, 84i57, 87pv6, 96671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elkeb, S.</td>
<td>5, 8830, 75450, 6, 68527, 7, 54941, 8, 14876, 90041, 138451, 2143437, 21725, 218570, 21970, 22411, 224310, 22931637, 23031739, 23131414447148, 232148, 24677, 50263, 84i57, 87pv6, 96671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elkeb, S.</td>
<td>5, 8830, 75450, 6, 68527, 7, 54941, 8, 14876, 90041, 138451, 2143437, 21725, 218570, 21970, 22411, 224310, 22931637, 23031739, 23131414447148, 232148, 24677, 50263, 84i57, 87pv6, 96671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldridge, J. M.</td>
<td>7, 583155, 584355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Durini, N. M. B.</td>
<td>8, 77474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Enien, M. N.</td>
<td>8, 47838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elek, M.</td>
<td>2, 453, 45453, 45863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldred, C. D.</td>
<td>5, 584192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elscheid, J. M.</td>
<td>7, 583155, 584355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Durini, N. M. B.</td>
<td>8, 77474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Enien, M. N.</td>
<td>8, 47838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elek, M.</td>
<td>2, 453, 45453, 45863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldred, C. D.</td>
<td>5, 584192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elscheid, J. M.</td>
<td>7, 583155, 584355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Durini, N. M. B.</td>
<td>8, 77474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Enien, M. N.</td>
<td>8, 47838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elek, M.</td>
<td>2, 453, 45453, 45863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldred, C. D.</td>
<td>5, 584192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elscheid, J. M.</td>
<td>7, 583155, 584355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Durini, N. M. B.</td>
<td>8, 77474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elebring, T.</td>
<td>7, 33115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Enien, M. N.</td>
<td>8, 47838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elek, M.</td>
<td>2, 453, 45453, 45863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldred, C. D.</td>
<td>5, 584192</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cumulative Author Index
Cumulative Author Index

Ezzel

Evans, D. E., 3, 56847; 7, 8058
Evans, D. F., 1, 25413, 27613, 27813
Evans, D. H., 3, 56847; 7, 8058
Evans, D. J., 4, 688140.141, 142
Evans, D. L., 7, 143146
Evans, E. A., 5, 75883
Evans, E. L., 2, 32P7
Evans, G., 4, 66S9, 6889; 6, 690399, 691399, 692399
Evans, G. E., 4, 1447
Evans, G. G., 8, 60514
Evans, G. W., 7, 9682
Evans, J., 4, 69176
Evans, J. B., 3, 16P5, lMa5, 166a5
Evans, J. C., 7, 34p9
Evans, J. J., 8, 31658
Evans, J. M., 3, 73519; 7, 7lW
Evans, L. T., 2, 14139
Evans, M. E., 6, 6602°192w
Evans, M. G., 5, 8562w
Evans, P. L., 8, 46OZs3
Evans, R. D., 4, 34T3, 36714, 36814, 36914; 6, 26lO4; 7, 87084; 7, 773Hn
Evans, R. J. D., 6, 88353
Evans, R. M., 7, 82625; 7, 6881
Evans, S., 7, 76396
Evans, S. A., Jr., 6, 2235, 2497, 7439
Evans, S. V., 5, 21192
Evans, T. L., 4, 441183, 443193; 7, 765155
Evans, T. W., 3, 82555, 82625; 7, 6881
Evans, W. H., 3, 38346
Evans, W. J., 1, 23110, 251, 2522b, 8, 447130, 137, 458224
Everbly, M. R., 8, 83926, 84026
Everhardus, R. H., 3, 87213, 105213
Evering, B. L., 7, 718
Evers, M., 6, 46213
Evitt, E. R., 5, 113438, 114928
Evnin, A. B., 5, 40654, 489199, 60454
Evrard, G., 1, 650139, 105167a, 664200, 672200, 675210
677210, 706210, 718200, 719200, 720200, 721210, 722200,
87084; 7, 773Hn
Evstigneev, V. V., 4, 42664
Evstigneeva, R. P., 6, 27188
Evstratova, M. I., 8, 599101
Ewin, G., 6, 53850
Ewing, D. F., 2, 361177
Ewing, J. H., 8, 149120
Ewing, S. P., 1, 5069, 5109
Ewins, R. C., 7, 3901
Exner, H. D., 5, 58943
Exner, O., 6, 79515, 79815, 82115
Exon, C., 5, 105345, 1060642
Exon, C. M., 4, 5781921
Eyer, M., 2, 33224, 33327, 33824
Eyken, C. P., 5, 64926, 65022
Eyley, S. C., 2, 74273, 748226, 948183, 96553, 96671,
9679171; 4, 820216
Eymann, D. P., 8, 23823, 2616
Eyring, H., 5, 72180, 7, 85236
Eyring, L. I., 2312, 25112, 2522
Eyring, M. W., 1, 30696
Ezaki, Y., 6, 17576
Ezmirly, S. T., 5, 78812, 100321
Ezquerra, J., 5, 83248
Ezzel, M. F., 6, 95941
Farrar, D. H., 4, 655, 149
Fau, A. H., 1, 772, 200, 2, 894, 3, 224, 171, 225, 171, 264, 182;
5, 774, 172, 780, 173, 6, 5, 7, 647, 75
Fauran, F., 8, 343, 112
Faust, G., 2, 361, 176
Faust, J. A., 2, 420, 24
Faust, W., 8, 141, 16
Faust, Y., 6, 217, 111
Fauth, D. J., 5, 53, 164
Fauvarquie, J.-F., 3, 443, 158, 450, 102, 454, 117, 118
Fav, A., 4, 374, 90, 8, 187, 32, 188, 35, 21, 55, 394
Fava, A., 1, 516, 60, 517, 61, 2, 147, 196, 149, 113, 151, 143, 196, 2, 152, 1, 153, 264, 113, 153, 396, 143, 155, 396, 865, 27, 944, 90, 91, 496, 2, 958, 90, 112, 6, 898, 103, 7, 760, 64, 764, 126, 767, 126
Favero, J., 7, 71, 100
Favier, R., 7, 447, 73
Favini, G. 2, 267, 54, 2, 386, 57
Favorovskii, A. E., 3, 839, 1, 843, 27
Favre, H., 2, 874, 90, 3, 385, 65
Favreau, D., 2, 1059, 50, 8, 242, 60
Fawcett, F. S., 6, 955, 52
Fawcett, J., 7, 481, 110
Fawcett, S. M., 8, 412, 118
Fawzi, M., 3, 896, 86
Fawzi, R., 5, 1131, 114, 105
Fayat, C., 6, 74, 184
Fayat, G., 8, 36, 69, 70
Fayos, J., 3, 380, 10, 4, 709, 45, 710, 45
Fazakerley, G. V., 1, 254, 2, 276, 13, 276, 13
Fazio, M. J., 6, 74, 148
Fazio, R., 4, 342, 22
Feast, W. J., 5, 16, 101, 176, 131
Fedde, C. L., 6, 898, 106
Feder, H. M., 8, 455, 206
Federici, G., 8, 192, 26
Federici, W., 3, 830, 4, 735, 19
Federlin, P., 7, 805, 56
Fedin, E. I., 6, 279, 137
Fedoronko, M., 2, 140, 26, 8, 292, 42
Fedorov, L. A., 1, 266, 45
Fedorov, V. V., 6, 516, 210
Fedorova, A. V., 4, 276, 18, 284, 115
Fedorova, E. B., 8, 218, 148
Fedorova, L. I., 8, 956
Fedorovich, A. D., 5, 699, 2
Fedorovskii, A. E., 3, 589, 1, 589, 1
Feinberg, M. J., 6, 74, 184
Feil, D., 8, 98, 104
Feil, M., 3, 735, 20
<table>
<thead>
<tr>
<th>Author</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finch, N.</td>
<td>3</td>
<td>124, 270, 127, 128, 127, 129, 70, 629</td>
</tr>
</tbody>
</table>
Gouzoules, F. H., 3, 301, 306, 310, 8, 852, 853-854, 857, 858
Govindachari, T. R., 2, 894, 912, 1016, 3, 396, 741, 6, 736, 7, 221
Govindan, C. K., 7, 761
Govindan, S., V., 4, 1048, 1048, 888, 5, 907, 7, 362
Gowal, H., 3, 822, 831, 832
Gowda, G., 7, 821, 31
Gowlock, B. G., 8, 3649
Gowda, G., 7, 821, 31
Gowland, F. W., 8, 213
Gower, M., 4, 670
Gozlan, A., 3, 640
Gozzo, A., 3, 369, 370
Graboski, G. G., 7, 957, 38
Grabowski, E. J. J., 8, 5432, 5438
Grabowich, P., 7, 139
Grab, L.
Graf, B., 3, 145, 147, 149
Graf, G., 4, 5518
Graf, R. E., 8, 624, 626
Graf, R., 8, 624, 626
Graf, R. D., 6, 1083
Grady, M. M., 7, 765
Gragnon, J.-C., 8, 219
Granados, R., 4, 4381, 6, 8013, 8, 587
Granata, A., 6, 603
Granberg, K. L., 6, 849, 116
Grand, P. S., 3, 147, 157
Grandberg, A. I., 8, 102
Grandberg, I. L., 2, 787
Grandbois, E. R., 8, 159, 166, 170, 178, 179
Grandclaudon, P., 4, 31751, 31861, 6, 47482
Grandy, R. I., 8, 541, 146
Grandjean, D., 1, 303
Grandjean, J., 5, 1130
Grandmason, J.-L., 5, 330
Granger, R., 3, 851, 4, 301, 302, 334
Granik, V. G., 6, 488, 121, 502, 208, 209, 507, 228, 229, 529, 517, 531, 546, 553, 572, 584, 728, 739, 741, 755, 763, 765, 767, 770, 776, 779, 780, 784, 786, 789
Granja, J. R., 3, 983
Grantho, I., 8, 864
Grann, S., 3, 634, 636, 637
Grant, B., 6, 831
Grant, D., 5, 157
Grant, D. P., 4, 629
Grant, H. G., 5, 776
Grant, J., 2, 134
Grant, R. D., 6, 1083
Grant, R. W., 6, 1016
Grantham, R. K., 8, 83925
Grashey, R., 4, 953, 954, 1069, 1070, 1095, 1097, 1098, 1099, 18, 391
Grashey, R. K., 8, 664
Graske, K.-D., 5, 1060
Grasmuk, H., 2, 464
Grassberger, M. A., 6, 1734, 1748
Grassl, M., 2, 465, 45
Grattan, T.
Gray, G. R., 8, 521, 661, 21975-77
Gray, D., 4, 288, 290, 346
Gray, B. D., 8, 601
Gray, A. P., 8, 254
Gray, P., 7, 863
Gray, R. W., 6, 1058
Graysham, R., 6, 134
Grayshay, R., 3, 125, 125, 125, 126, 296, 301, 126, 296, 301, 126, 129, 133
Grayson, D. H., 2, 360, 363
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guziec, F. S., Jr.</td>
<td>1, 63576; 3, 8623; 6, 4613, 98045, 98147; 7, 2523, 258, 26061, 269127, 270127, 2883</td>
</tr>
<tr>
<td>Guzik, H.</td>
<td>8, 62140, 93565</td>
</tr>
<tr>
<td>Guzman, A.</td>
<td>4, 106166</td>
</tr>
<tr>
<td>Gvaliya, T. Sh.</td>
<td>8, 77229</td>
</tr>
<tr>
<td>Gverdtsiteli, D. D.</td>
<td>3, 318128</td>
</tr>
<tr>
<td>Gverdtsiteli, I. M.</td>
<td>8, 77220</td>
</tr>
<tr>
<td>Gvinter, L. I.</td>
<td>8, 535160</td>
</tr>
<tr>
<td>Gvozdeva, H. A.</td>
<td>1, 63261</td>
</tr>
<tr>
<td>Gwynn, D.</td>
<td>5, 85617</td>
</tr>
<tr>
<td>Gybin, A. S.</td>
<td>5, 34570, 34600, 45366, 105546, 105648, 105731, 106251</td>
</tr>
<tr>
<td>Gymer, G. E.</td>
<td>4, 1099183; 7, 74470</td>
</tr>
<tr>
<td>Gyoung, Y. S.</td>
<td>8, 1699107, 17107, 23822, 24122, 24222, 24422, 24722, 25122, 25322, 272114</td>
</tr>
<tr>
<td>Gysel, U.</td>
<td>4, 20761, 20861</td>
</tr>
<tr>
<td>Author</td>
<td>Volume</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Hampson</td>
<td>7</td>
</tr>
<tr>
<td>Hampton</td>
<td>K. G.</td>
</tr>
<tr>
<td>Hamsen, A.</td>
<td>1</td>
</tr>
<tr>
<td>Hamuro, J.</td>
<td>7</td>
</tr>
<tr>
<td>Han, B.-H.</td>
<td>2</td>
</tr>
<tr>
<td>Hans-C.</td>
<td>8</td>
</tr>
<tr>
<td>Han, C. Y.</td>
<td>5</td>
</tr>
<tr>
<td>Han, G.</td>
<td>8</td>
</tr>
<tr>
<td>Han, G. R.</td>
<td>7</td>
</tr>
<tr>
<td>Han, G. Y.</td>
<td>7</td>
</tr>
<tr>
<td>Han, K. L.</td>
<td>5</td>
</tr>
<tr>
<td>Han, L. P.-B.</td>
<td>3</td>
</tr>
<tr>
<td>Han, N. F.</td>
<td>8</td>
</tr>
<tr>
<td>Han, O.</td>
<td>8</td>
</tr>
<tr>
<td>Han, W. T.</td>
<td>6</td>
</tr>
<tr>
<td>Han, X.-M.</td>
<td>8</td>
</tr>
<tr>
<td>Han, Y. K.</td>
<td>2</td>
</tr>
<tr>
<td>Han, Y. X.</td>
<td>4</td>
</tr>
<tr>
<td>Hanack, M.</td>
<td>1</td>
</tr>
<tr>
<td>Hanafusa, M.</td>
<td>7</td>
</tr>
<tr>
<td>Hanafusa, T.</td>
<td>1</td>
</tr>
<tr>
<td>Hanagan, M. A.</td>
<td>1</td>
</tr>
<tr>
<td>Hanaki, A.</td>
<td>5</td>
</tr>
<tr>
<td>Hanaki, K.</td>
<td>8</td>
</tr>
<tr>
<td>Hanamoto, T.</td>
<td>2</td>
</tr>
<tr>
<td>Hanako, M.</td>
<td>2</td>
</tr>
<tr>
<td>Hanazono, K.</td>
<td>7</td>
</tr>
<tr>
<td>Hanaya, K.</td>
<td>8</td>
</tr>
<tr>
<td>Hanaysama, K.</td>
<td>8</td>
</tr>
<tr>
<td>Hanazaki, Y.</td>
<td>3</td>
</tr>
<tr>
<td>Hancock, E. M.</td>
<td>2</td>
</tr>
<tr>
<td>Hancock, J. E.</td>
<td>2</td>
</tr>
<tr>
<td>Hancock, K. G.</td>
<td>2</td>
</tr>
<tr>
<td>Hancock, W. S.</td>
<td>6</td>
</tr>
<tr>
<td>Handa, S.</td>
<td>4</td>
</tr>
<tr>
<td>Handa, Y. I.</td>
<td>1</td>
</tr>
<tr>
<td>Handel, H.</td>
<td>8</td>
</tr>
<tr>
<td>Handel, T. M.</td>
<td>7</td>
</tr>
<tr>
<td>Handley, J. R.</td>
<td>7</td>
</tr>
<tr>
<td>Handley, J. R.</td>
<td>7</td>
</tr>
<tr>
<td>Hannah, D. J.</td>
<td>3</td>
</tr>
<tr>
<td>Hannah, J. M., Jr.</td>
<td>3</td>
</tr>
<tr>
<td>Hanley, J. R.</td>
<td>7</td>
</tr>
<tr>
<td>Hansell, R.</td>
<td>3</td>
</tr>
<tr>
<td>Hansel, R.</td>
<td>6</td>
</tr>
<tr>
<td>Hansen, B.</td>
<td>6</td>
</tr>
<tr>
<td>Hansen, D. W., Jr.</td>
<td>6</td>
</tr>
<tr>
<td>Hansen, E. B. Jr.</td>
<td>6</td>
</tr>
<tr>
<td>Hansen, F.</td>
<td>2</td>
</tr>
<tr>
<td>Hansen, G.</td>
<td>2</td>
</tr>
<tr>
<td>Hansen, H.</td>
<td>6</td>
</tr>
<tr>
<td>Hansen, H.-J.</td>
<td>3</td>
</tr>
<tr>
<td>Hansen, H. V.</td>
<td>7</td>
</tr>
<tr>
<td>Hansen, I.</td>
<td>3</td>
</tr>
<tr>
<td>Hansen, J. F.</td>
<td>3</td>
</tr>
<tr>
<td>Hansen, J. H.</td>
<td>4</td>
</tr>
<tr>
<td>Hansen, M.</td>
<td>2</td>
</tr>
<tr>
<td>Hansen, R.</td>
<td>7</td>
</tr>
<tr>
<td>Hansen, R. T.</td>
<td>4</td>
</tr>
<tr>
<td>Hansen, S. C.</td>
<td>8</td>
</tr>
<tr>
<td>Hansen, S. W.</td>
<td>5</td>
</tr>
<tr>
<td>Hanson, A. W.</td>
<td>5</td>
</tr>
<tr>
<td>Hanson, G. J.</td>
<td>1</td>
</tr>
<tr>
<td>Hansen, R. J.</td>
<td>1</td>
</tr>
<tr>
<td>Hansen, P.</td>
<td>4</td>
</tr>
</tbody>
</table>
Cumulative Author Index
Hencken, G., 1, 90
Hencken, G. N., 5, 741133, 6, 481117
Henrikson, U., 1, 29230
Henriot, A., 8, 59578
Henri-Rousseau, O., 4, 107326, 5, 24726
Henrot, E., 7, 317, 8, 196114
Henry, D. W., 8, 254425, 354171, 81944
Henry, J. A., 8, 96454
Henry, J. P., 5, 102581
Henry, L., 2, 3211
Henry, M. C., 8, 548319
Henry, M. J., 1, 765174
Henshall, A., 7, 506298
Henssen, G., 5, 475146
Hengs, S. G. T., 4, 44112, 44312, 489164
Hentschel, P., 2, 59813
Henz, K. J., 2, 10564, 10764, 5, 40418, 7, 67330
Henzen, R. P., 5, 225102, 913122
Henzen, A. V., 1, 774152
Heppe, E., 6, 26134, 27034
Heppke, G., 6, 46215
Herald, C. L., 7, 1531
Herb, G., 4, 103962
Herberhard, M., 6, 45020, 7, 774319
Herbert, D. J., 2, 851225, 7, 26275
Herbert, K. A., 4, 1018218
Herbert, R., 8, 4726
Herbert, R. B., 3, 670141, 68194, 80731, 4, 435136, 6, 1002133
Herbert, W., 8, 29765
Herbig, K., 4, 48138, 66138a
Herbst, P., 5, 15742
Herbst, R. M., 8, 14597
Hercezeg, P., 5, 438164
Herdewijn, P., 5, 9272
Hergenrother, W. L., 6, 96054
Herges, R., 2, 109072, 5, 77251
Hergott, H. H., 6, 502217, 560140, 7, 65051
Hergrueter, C. A., 3, 25177, 2547
Hering, G., 2, 109072
Hering, H., 8, 31016
Hersssey, H., 3, 693143
Heritage, L. G., 4, 847, 106138a
Herkes, F. E., 4, 49141
Herktorn, N., 1, 476113
Herlem, D., 8, 618162
Heitly, K. P., 3, 72521, 72621
Herlinger, H., 1, 5429, 5465, 2, 108957, 10909689, 109199, 109489, 109599
Herli, A. J., 4, 29892
Herman, B. I., 1, 661167, 167
Herman, D. F., 1, 1392, 1408
Herman, F., 7, 248, 2539
Herman, G., 4, 987147, 8, 93595
Herman, J. H., 4, 609350, 8, 8625
Herman, L. W., 2, 32321
Hermanek, S., 1, 48915
Henriksen, C. K., 4, 463110, 468110, 469110
Henriksen, C. W., 2, 106122
Henriksen, E. C., 6, 2707
Henriksen, H., 4, 52249, 52349
Heuer, W., 2, 108843, 6, 547661
Heumann, A., 2, 7113; 6, 547661
Heusler, K., 2, 156117, 358153; 3, 8755;
Heuschmann, M., 3, 82214, 53089.91
Heusser, H. L., 8, 10817, 11@;
Heusser, H., 8, 22814, 53089.91
Heveling, J., 8, 84797
Hewawasam, P., 2, 547127, 549104
Hewitt, B., 7, 19937
Hewgill, F. R., 3, 66g5;
Hewitt, G. M., 6, 101738, 102438
Hewitt, C. D., 6, 10227
Hewson, A. T., 1, 570263; 2, 363Ig3; 5, 4021, 4031, 4041, 406233b;
Hey, D. H., 3, 65753, 661167;
Heydt, H., 3, 90952; 4, 107533, 110426, 110426;
Heyes, J., 8, 19245
Heymanns, A., 2, 387337
Hickey, D. M. B., 7, 27529, 30067, 32267, 33563;
Hii, G., 18135
Higashiyama, K., 1, 166114, 369%; 8, 65273
Higgs, H., 1, 23, 373
Higgins, R. H., 5, 15873;
Hightower, L. E., 8, 52628
Higgs, L.
High, J., 3, 19733
Higuchi, H., 6, 53348, 554706, 570416,
Hijfe, L. V., 4, 80958
Hikino, H., 3, 396115, 74873
Hild, W., 1, 34177
Hill, A. E., 5, 596132, 597153, 608133
Hicks, D. R., 6, 27113, 98769
Hida, T., 1, 73842; 4, 391779, 6, 998117; 7, 16258, 24366;
Hida, M., 5, 1158173; 8, 44694, 45294, 460254, 55466
Hidaka, A., 2, 60346
Hidaka, T., 3, 52847
Hidber, A., 1, 40193, 2, 19780, 4, 77510
Hideaki, S., 4, 507130
Hideg, K., 7, 56699
Hiebert, J. D., 7, 135105, 136150, 137150, 145105
Heigle, G. A., 3, 653226, 6, 10429, 10449, 8, 947143
Himsttra, H., 1, 37175, 37254, 61752, 77192; 2, 89367, 558162, 586131, 587133, 652238, 97911, 104876,
Hiyama, K., 1, 74685, 75087, 81245
Higby, R. G., 5, 2439
Higgins, J., 6, 21072
Hilbert, G. E., 2, 387337
Hilbert, D., 6, 44lU
Hildebrand, A., 2, 387337
Hilbert, S. D., 2, 387337
Hild, W., 1, 34177
Hildebrand, R., 3, 62131
Hildebrand, U., 6, 44184
Hildebrandt, A., 6, 51834
Hildebrandt, B., 2, 44151, 45151
Hildenbrand, D. L., 1, 2527
Hildenbrand, K., 5, 29090
Hilinski, E. F., 5, 71344, 7, 85114, 85565, 85666, 86587
Hill, A. E., 5, 59624, 59724, 608246
Cumulative Author Index

Horgan, A. G., 5, 829
Horgan, S. W., 5, 72719; 7, 143145, 3469
Hördahl, H.-H., 6, 56497
Horé, F., 4, 48745; 8, 13168, 1327
Horii, H., 6, 647110
Horii, I., 1, 8342112; 3, 97177, 116173, 136189, 13819; 4, 127228b; 5, 89039; 8, 126665
Horii, K., 1, 18870, 55388, 554104; 3, 1041111; 4, 3821323b; 55379, 857104; 7, 45243, 46246, 465130
Horii, M., 3, 966123; 5, 50426, 6, 51099; 89387, 92740; 936106; 8, 99761
Horii, T., 1, 35914, 36314, 38414; 2, 37025; 4, 34032; 6, 10626, 10287, 103187, 7, 9137, 11037
Horii, Y., 4, 313470
Horibe, I., 3, 3867; 8, 80915
Horie, K., 4, 43096
Horie, S., 3, 6389
Horita, H., 4, 435134
Horiguchi, T., 1, 11227; 2, 9039, 117149, 31077, 448454, 45427; 651123; 3, 257111, 464173; 4, 152157; 5, 102247
Horihata, M., 8, 174126, 178126, 179126
Horii, S., 6, 7437
Horii, Y., 6, 88103
Horii, Z., 3, 67781, 68631; 4, 9189; 8, 568466
Horitie, T., 1, 347133, 134; 4, 2371; 6, 16252; 6, 23757; 56914
Horiike, T., 6, 684344
Horikawa, H., 2, 105141; 3, 650210, 216, 651206, 216; 7, 80674
Horikawa, M., 7, 76156
Horike, H., 2, 555134
Horiki, K., 6, 43738, 43838
Horikoshi, K., 8, 195106, 197106
Horino, H., 1, 176168; 4, 85289, 903202, 904202
Horita, K., 6, 239123, 652140; 7, 245730, 246827; 8, 96349
Horita, Y., 6, 88103
Horii, Z., 3, 67781, 68631; 4, 9189; 8, 568466
Horitie, T., 1, 347133, 134; 4, 2371; 6, 16252; 6, 23757; 56914
Horiike, T., 6, 684344
Horikawa, H., 2, 105141; 3, 650210, 216, 651206, 216; 7, 80674
<table>
<thead>
<tr>
<th>Itoh, A.</th>
<th>1, 931, 932, 933</th>
<th>1, 934</th>
<th>2, 935, 936, 937, 938, 939, 940</th>
<th>3, 941</th>
<th>4, 942</th>
<th>5, 943</th>
<th>6, 944</th>
<th>7, 945</th>
<th>8, 946</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itoh, O.</td>
<td>1, 951</td>
<td>2, 952</td>
<td>3, 953</td>
<td>4, 954</td>
<td>5, 955</td>
<td>6, 956</td>
<td>7, 957</td>
<td>8, 958</td>
<td></td>
</tr>
<tr>
<td>Itoh, H.</td>
<td>1, 959</td>
<td>2, 960</td>
<td>3, 961</td>
<td>4, 962</td>
<td>5, 963</td>
<td>6, 964</td>
<td>7, 965</td>
<td>8, 966</td>
<td></td>
</tr>
<tr>
<td>Itoh, I.</td>
<td>1, 967</td>
<td>2, 968</td>
<td>3, 969</td>
<td>4, 970</td>
<td>5, 971</td>
<td>6, 972</td>
<td>7, 973</td>
<td>8, 974</td>
<td></td>
</tr>
<tr>
<td>Itoh, M.</td>
<td>1, 975</td>
<td>2, 976</td>
<td>3, 977</td>
<td>4, 978</td>
<td>5, 979</td>
<td>6, 980</td>
<td>7, 981</td>
<td>8, 982</td>
<td></td>
</tr>
<tr>
<td>Ivanenko, T. L.</td>
<td>1, 983</td>
<td>2, 984</td>
<td>3, 985</td>
<td>4, 986</td>
<td>5, 987</td>
<td>6, 988</td>
<td>7, 989</td>
<td>8, 990</td>
<td></td>
</tr>
<tr>
<td>Ivanics, J.</td>
<td>1, 991</td>
<td>2, 992</td>
<td>3, 993</td>
<td>4, 994</td>
<td>5, 995</td>
<td>6, 996</td>
<td>7, 997</td>
<td>8, 998</td>
<td></td>
</tr>
<tr>
<td>Ivanov, C.</td>
<td>1, 999</td>
<td>2, 1000</td>
<td>3, 1001</td>
<td>4, 1002</td>
<td>5, 1003</td>
<td>6, 1004</td>
<td>7, 1005</td>
<td>8, 1006</td>
<td></td>
</tr>
<tr>
<td>Ivanov, K. I.</td>
<td>1, 1007</td>
<td>2, 1008</td>
<td>3, 1009</td>
<td>4, 1010</td>
<td>5, 1011</td>
<td>6, 1012</td>
<td>7, 1013</td>
<td>8, 1014</td>
<td></td>
</tr>
<tr>
<td>Ivanov, L. L.</td>
<td>1, 1015</td>
<td>2, 1016</td>
<td>3, 1017</td>
<td>4, 1018</td>
<td>5, 1019</td>
<td>6, 1020</td>
<td>7, 1021</td>
<td>8, 1022</td>
<td></td>
</tr>
<tr>
<td>Ivanov, P.</td>
<td>1, 1023</td>
<td>2, 1024</td>
<td>3, 1025</td>
<td>4, 1026</td>
<td>5, 1027</td>
<td>6, 1028</td>
<td>7, 1029</td>
<td>8, 1030</td>
<td></td>
</tr>
<tr>
<td>Ivanova, Zh. M.</td>
<td>1, 1031</td>
<td>2, 1032</td>
<td>3, 1033</td>
<td>4, 1034</td>
<td>5, 1035</td>
<td>6, 1036</td>
<td>7, 1037</td>
<td>8, 1038</td>
<td></td>
</tr>
<tr>
<td>Ivanova, S. K.</td>
<td>1, 1039</td>
<td>2, 1040</td>
<td>3, 1041</td>
<td>4, 1042</td>
<td>5, 1043</td>
<td>6, 1044</td>
<td>7, 1045</td>
<td>8, 1046</td>
<td></td>
</tr>
<tr>
<td>Iversen, T.</td>
<td>1, 1047</td>
<td>2, 1048</td>
<td>3, 1049</td>
<td>4, 1050</td>
<td>5, 1051</td>
<td>6, 1052</td>
<td>7, 1053</td>
<td>8, 1054</td>
<td></td>
</tr>
<tr>
<td>Ivanova, Z. M.</td>
<td>1, 1055</td>
<td>2, 1056</td>
<td>3, 1057</td>
<td>4, 1058</td>
<td>5, 1059</td>
<td>6, 1060</td>
<td>7, 1061</td>
<td>8, 1062</td>
<td></td>
</tr>
<tr>
<td>Ivanovsky, G. D.</td>
<td>1, 1063</td>
<td>2, 1064</td>
<td>3, 1065</td>
<td>4, 1066</td>
<td>5, 1067</td>
<td>6, 1068</td>
<td>7, 1069</td>
<td>8, 1070</td>
<td></td>
</tr>
<tr>
<td>Iversh, K.</td>
<td>1, 1071</td>
<td>2, 1072</td>
<td>3, 1073</td>
<td>4, 1074</td>
<td>5, 1075</td>
<td>6, 1076</td>
<td>7, 1077</td>
<td>8, 1078</td>
<td></td>
</tr>
<tr>
<td>Ives, D. A. J.</td>
<td>1, 1079</td>
<td>2, 1080</td>
<td>3, 1081</td>
<td>4, 1082</td>
<td>5, 1083</td>
<td>6, 1084</td>
<td>7, 1085</td>
<td>8, 1086</td>
<td></td>
</tr>
<tr>
<td>Iwabuchi, R.</td>
<td>1, 1087</td>
<td>2, 1088</td>
<td>3, 1089</td>
<td>4, 1090</td>
<td>5, 1091</td>
<td>6, 1092</td>
<td>7, 1093</td>
<td>8, 1094</td>
<td></td>
</tr>
<tr>
<td>Iwabuchi, Y.</td>
<td>1, 1095</td>
<td>2, 1096</td>
<td>3, 1097</td>
<td>4, 1098</td>
<td>5, 1099</td>
<td>6, 1100</td>
<td>7, 1101</td>
<td>8, 1102</td>
<td></td>
</tr>
</tbody>
</table>
Iyer, S., 4, 602263, 644263; 5, 4740, 68977, 69077a, 733136, 734136, 120256
Iyoda, A., 6, 150129
Iyoda, J., 3, 38121
Iyoda, M., 3, 42140
Izatt, R. M., 6, 7121, 449116
Izawa, K., 2, 1066119; 4, 27679
Izawa, M., 7, 168101
Izawa, T., 2, 213123, 612108, 613109, 68157; 4, 382133, 388133; 8, 272117, 118
Izawa, Y., 3, 89145; 4, 960134; 6, 664, 24079; 7, 969; 8, 917116, 117
Izdebski, J., 5, 433139
Izmailov, B. A., 8, 76511

Izukawa, H., 7, 61822
Izumi, M., 1, 51239
Izumi, T., 3, 5308143, 5368143, 594185, 4, 557112, 558117, 611136, 8371, 83927, 84566, 84776, 858110, 903202, 904202, 8, 18128, 24579
Izumi, Y., 2, 232178, 310131, 311131, 57675, 587136, 615124, 125, 130, 63023, 631124, 23, 635144, 64084, 655139, 4, 16188, 6, 89108, 93130, 23766, 254160, 7, 53967, 8, 149117, 119, 150121, 122, 126, 130, 131, 133, 135, 144, 151121, 133, 135, 145, 148, 151, 533150, 786118, 789123
Izumisawa, Y., 7, 9242, 9342
Izumiya, N., 2, 109488; 6, 63620, 8, 14588
Izzat, A. R., 3, 66431
Jablonski, C. R., 6, 692*05
Jablonski, M., 4, 183*81
Jablonski, N., 1, 571, 528*18; 2, 217*84; 3, 226*203, 485*123, 486*123, 494*255, 516*069, 4, 903*188, 189*49
Jachet, D., 1, 343*115, 17, 3, 224*166, 167, 225*167b, 4, 903*192; 6, 5*23
Jack, D., 2, 323*33
Jack, T., 4, 601*250, 5, 35*12
Jackisch, J., 7, 74*652
Jackman, L. M., 3, 68*35, 68*36, 80728-30; Jackson, A. H., 6, 635*14, 636*14; 8, 368*63, 9*00
Jacknow, B. B., 7, 171*69
Jackson, A. C., 2, 533*29, 542*152, 547*152, 709*8
Jackson, A. E., 6, 635*144, 636*14; 8, 368*63, 9*58
Jackson, R. A., 3, 40*726, 407*147, 407*148
Jack, T. E., 3, 231*17, 234*17
Jackson, H. L., 6, 227*15, 242*15
Jackson, J. L., 5, 226*15
Jackson, B. L. J., 3, 74*360
Jackson, B. G., 6, 93*195; 7, 207*14; 8, 53*113
Jackson, D. A., 3, 68*35, 68*36; 7, 84*63; 8, 31*165, 31*166
Jackson, D. K., 5, 173*102
Jackson, D. Y., 5, 85*192
Jackson, E. L., 6, 36*79
Jackson, H. L., 6, 227*15, 242*15
Jackson, J. L., 4, 128*23
Jackson, L. M., 7, 135*02
Jackson, P. F., 5, 94*257, 7, 56*104
Jackson, R. A., 3, 56*145, 7, 72*116, 8, 51*101, 103, 77*25, 82*56
Jackson, R. F. W., 1, 449*209, 2, 64*352, 3, 226*204; 4, 37*506, 5, 650*335, 668*261
Jackson, R. W., 5, 157*41, 7, 86*16
Jackson, S., 3, 23*134
Jackson, W. I., 8, 281*124, 285*24, 3, 16*491, 169*91, 171*491, 75*122
Jackson, W. P., 1, 436*152, 2, 240*13, 256*13, 257*13, 3, 34*21, 35*141, 35*24; 4, 254*181, 261*18, 391*151; 5, 211*20, 225*180, 8, 84*91
Jackson, W. R. I., 1, 520*970, 63*52, 678*83, 681*83, 691*83; 4, 12*373, 230, 538*101, 588*8, 601*268, 603*268; 6, 609*327, 628*364, 614*297, 615*252, 369, 329, 391*403, 404, 7, 10*7161, 8, 53*154, 536*173, 538*173, 542*173, 85*140, 85*162
Jacob, G. S., 6, 74*31
Jacob, L. N., 6, 62*245
Jacob, P. III, 8, 10*120, 716*90
Jacob, P. W., 5, 82*49
Jacob, T. A., 7, 92*48
Jacob, T. M., 6, 612*71
Jaciober, W. J., 3, 299*33
Jacob, E., 2, 94*169, 97*08
Jacob, P. A. I., 1, 406*28, 5, 491*208, 494*157, 216, 17, 495*218, 579*162, 163, 164, 165, 8, 540*95
Jacobs, H. C. S., 5, 70*79, 708*41; 7, 12*101
Jacobs, I. 3, 629*71
Jacobs, J. W., 5, 85*192; 8, 206*167
Jacobs, P., 4, 146*76, 147*76
Jacobs, P. B., 5, 84*159, 872*89; 8, 392*106, 85*173
Jacobs, S. A., 1, 466*64;
Jäger, K. F., 4, 791-152
Jäger, V., 2, 338-78; 3, 271-2, 272, 390-82, 392-82,
4, 299-103, 303-49, 370-117, 380-122, 1076-46, 1079-84, 65,
5, 260-65; 6, 261-65, 451-12; 6, 962-75, 964-44; 7,
Jaggi, D., 1, 5216, 134-114, 135-114, 2, 625-102, 631-17, 632-17,
634-17; 5, 135-78
Jagner, S., 4, 227-210, 532-288, 534-48, 537-58, 538-58, 539-56
Jagt, J. C., 5, 416-56
Jaguszyn-Grochowska, M., 4, 429-86
Jahangir, I., 3669, 291-49, 140, 2, 913-74, 928, 929-125,
3, 8-36, 42-69, 66
Jahn, E. F., 6, 822-116
Jahng, E., 6, 921-46
Jähnisch, K., 7, 470-15
Jahnke, D., 8, 576-154, 157
Jahres, G., 4, 53-149
Jaim, C., 6, 4-70
Jain, A., 3, 640-106
Jain, A. U., 2, 523-75, 4, 113-70
Jain, A. V., 4, 545-47
Jain, C. P., 6, 538-52; 5, 654-58, 8, 654-84
Jain, T. C., 3, 390-57, 567-79, 9, 392-175, 768-78
Jain, V., 4, 560-454
Jaisli, F., 6, 1056-56, 57
Jakiela, D. J., 4, 213-99
Jakob, P., 2, 1090-73, 1102-23, 1103-73
Jakob, R., 4, 1022-25
Jakobsen, H. J., 6, 462-15, 7, 330-86
Jakobson, P., 6, 547-597, 570-643, 7, 95-60
Jakopid, K., 5, 610-98
195-55, 201-55
Jakovlevic, M., 3, 380-13
Jakubke, H.-D., 6, 635-11, 645-11, 665-116, 667-116,
668-132, 669-132, 684-132
Jakubowski, A. A., 7, 258-84
Jakubrova, J., 6, 523-86
Jakupovic, J., 8, 338-98, 10, 368-98, 669-83, 1269-138;
2, 662-99, 663-20, 664-20, 685-66;
4, 339-154, 5, 432-178, 130
Janko, C. M., 1, 294-44, 45
Jano, P., 4, 1033-86, 1046-55
Jannossy, L., 8, 227-115
Janot, M.-M., 6, 929-45, 7, 222-26
Janssonek, Z., 2, 3, 890-50, 89-74, 4, 758-190, 190-191,
5, 70-111-12, 6, 429-75, 495-142, 143, 496-143, 156, 497-13,
506-26, 514-45, 521-44
Janz, M., 4, 304-125; 6, 683-353; 8, 806-124
Janowicz, A. H., 7, 3-14, 8-12
Jans, A. W. H., 5, 649-22, 650-22
Jänisch, H.-J., 2, 859-21
Jansen, A. B. A., 6, 667-236
Jansen, B. M. J., 1, 570-266, 268; 2, 835-157, 838-170,
6, 102370
Jansen, E. F., 4, 288-186
Jansen, G., 6, 268-99, 271-19
Jansen, J. R., 3, 505-169, 677-82, 6, 738-52, 54-56
Jansen, R. H. A. M., 6, 489-94
Jansen, U., 5, 151-19
Jansons, E., 6, 421-28, 424-28, 436-59, 453-29, 455-29
Jansse, P. L., 6, 662-214
Janssen, E., 4, 874-254, 5, 302-25
Janssen, H. H., 6, 161-180
Janssen, J., 3, 587-12, 7, 742-58
Janssen, J. W. A. M., 6, 1025-79
Janssen, P. A., 4, 932-83
Janssen, R., 8, 737-25
Janssens, F., 2, 723-100
Janssens, A. M., 2, 465-107
Januszewicz, K., 4, 553-48, 7, 431-17, 30; 4, 461-17;
8, 449-70, 452-15, 454-201, 455-201
Janzen, E. G., 7, 884-12
Jacquet, J. C., 4, 519-17, 520-31, 522-19, 6, 286-71-179;
287-179, 12, 8, 527-147, 185-21, 187-17, 451-180
Jaouari, R., 3, 1046-11-5, 7, 793
Japp, F. R., 2, 142-46, 146-59, 3, 828-45, 5, 753-34, 6, 261-14,
275-5, 276-114
Jaques, B., 4, 485-27; 502-119, 503-7
Jaquier, R., 8, 636-1
Jaquier, J.-C., 6, 541-29
Jardim-Barreto, V. M., 6, 436-18
Jardim, F. H., 8, 152-165, 165-167, 443-125, 444-56, 445-18, 55-56,
449-48, 452-18, 453-56, 568-78
Jardine, B., 7, 741-47
Jardim, E. D. F., 5, 151-10
Jareck, C., 1, 733-10
Jarman, M., 4, 231-74, 439-158
Jurek, J. 6, 77344, 8, 92825
Jurgeleit, W. 8, 397142
Jurgens, E. 7, 76386
Juri, P. N. 6, 220126
Juric, P. 6, 554725
Jurion, M. 3, 131333, 8, 93054
Jurjev, V. P. 7, 750129
Jurlina, J. L. 4, 350121, 7, 12124, 53020, 53120
Jursic, B. 6, 22722, 22822, 22922
Jurs, C. D. 4, 436143, 437145, 438150
Just, G. 2, 7477, 1103130, 3, 259132, 38010, 541115, 84641, 4, 262200, 740118, 903199, 5, 94876, 95184, 96110, 42180, 6, 176101, 64272, 7, 231148, 272141, 713168, 8, 47628
Jutand, A. 3, 44358, 450102, 45417, 7, 85445
Jutland, A. 4, 591111, 616111, 633111
Jütten, P. 5, 187173
Jutz, C. 2, 77711, 7791, 7801, 7811, 78215, 7831, 7861, 7871, 7891, 7911, 7921, 5, 71056, 71956, 742160, 74456, 6, 4874, 4884, 4894, 5224
Jutzi, P. 2, 74380
Juve, H. D., Jr. 7, 177145, 182164
Cumulative Author Index

Kosugi, M., 1, 436154, 438160, 462199, 833119, 834124, 3, 1261, 453113, 114, 454200, 463160, 104, 469216, 470216, 6732, 473215, 475216.

Koschenko, L. I., 8, 61163.

Koszalak, G. W., 4, 115106.

Koszinowski, J., 2, 7801, 4, 1102201.

Kot, J. F., 4, 104088, 104888, 95, 9066, 90756, 9086, 90960, 91060, 91262.

Kotai, A., 5, 668224, 67624.

Kotake, H., 1, 159551, 160091, 161451, 4, 359161, 359151, 599212, 604288, 630212, 641212, 642288, 647288, 751364, 6, 641212, 7, 26224, 56495, 56858, 70937, 8, 840930, 86937.

Kotak, H., 4, 1089125.

Kotani, E., 3, 67989, 683102, 459, 69389, 69523, 696154, 904133.

Kotera, K., 8, 964152, 97025, 994215, 476152, 479215, 482215, 484215, 486215, 488215, 490215, 492215, 494215, 496215, 498215, 500215, 502215, 504215, 506215, 508215, 510215, 512215.

Kotoda, I., 3, 8751.

Kotlarek, W., 3, 795280, 797280, 818%.

Kotluk, T., 2, 8625, 8, 661612.

Kotlicki, A., 8, 6, 127115.

Kotsuki, H., 3, 1076, 1106, 568229, 766162, 8, 21533, 217271, 227212, 24022, 24470, 620133, 624133.

Kotthenhahn, A., 7, 768230.

Kötter, H., 4, 8745, 5, 302.

Kötter, J. N., 6, 530156.

Kotov, V. V., 6, 450121.

Kotov, A., 5, 86117.

Kouba, J. K., 4, 97069.

Koukoura, G., 3, 3808.

Koul, A. K., 4, 27115.

Kou, V. K., 1, 390142, 6, 97153.

Koulikas, M., 4, 30459.

Kouragio, K., 1, 62380, 2, 581213, 3, 20071, 4, 34788.

Kousi, N., 5, 727115.

Koutchekly, J., 5, 72178.

Kouwenhoven, A. P., 5, 97071, 21229.

Kouwenhoven, C. G., 4, 4572176, 5, 58495, 67863, 6863.

Kovac, B., 7, 86791.

Kovac, F., 6, 554172.

Kovác, J., 2, 362280, 363187.

Kovic, P., 6, 101628, 1036142, 143, 7, 1072, 74148, 74748.

Kovacik, V., 2, 14036.

Kovacs, C. A., 2, 96880.

Kovács, G., 2, 381203, 52917.

Kovacs, K., 6, 653151.

Kovacs, M., 6, 543612.

Kovad, I., 3, 904153.
Kwasigroch, C. A., 1, 59529, 59629, 60232, 60332,
2, 85131, 57560, 61, 106135, 5, 27716, 27916, 7, 54524
Kwasnik, H. R., 8, 33848
Kwass, J. A., 2, 547105, 550105
Kwast, A., 2, 42930
Kwast, E., 3, 79061, 7, 22668, 55133
Kwiatek, J., 8, 154195, 449159, 453191, 568480
Kwiatkowski, G. T., 3, 66433, 5, 16474
Kwoh, S., 7, 72842
Kwon, H. B., 2, 27241, 31547, 31647
Kwon, S., 4, 350116, 100143
Kwon, T., 8, 44551
Kwon, Y. C., 3, 98316-18, 6, 87621, 88720-22, 8, 720137
Kwong, C. D., 1, 82239
Kwong, K. S., 5, 79765
Kwun, O. C., 3, 29933

Kyba, E. P., 4, 295253, 261, 296261, 5, 477160, 7, 21220,
8, 57173, 66173, 865246
Kyburz, E., 6, 531451
Kyle, D., 7, 404
Kyler, K., 6, 17587, 648117b
Kyler, K. S., 1, 5429, 5449, 5519, 5529, 5539, 5549, 5559,
5579, 5609, 767177, 2, 7362, 42044, 3, 39218, 48218,
21567, 48315, 50013, 5, 429114, 7, 40685, 40985
Kyotani, Y., 4, 2799, 8, 885105
Kyowa-Hakko, 7, 791286
Kyriakakou, G., 2, 41415
Kyriakides, L. P., 2, 13613, 13913, 14013
Kyrides, L. P., 2, 14451
Kyung, S. H., 1, 14217, 14927, 15027, 15227, 162103,
169120, 121, 33146, 33448, 2, 35131
Kyz'mina, L. G., 5, 105546
Cumulative Author Index

Marsico, J. W., 7, 554740, 61490
Marsili, A., 3, 74151, 74559
Marson, C. M., 2, 78647, 8, 82772
Marson, S., 9, 495148, 107186
Marson, S. A., 8, 38971
Marston, C. R., 6, 507232
Martzel, A., 1, 12378; 2, 212120, 213126, 656458,159, 105977; 5, 9270, 94384
Martin, B., 5, 101220
Martell, A., E., 7, 554710, 61487
Martelli, G., 1, 391141, 2, 613114, 656357, 80748, 925111, 926111, 927120, 935193, 965151, 937127, 4, 45220; 5, 100418,155,156, 102174, 6, 2180, 2280, 759140
Martelli, J., 4, 95723, 99046
Martelli, P., 7, 6586
Marten, D., P., 2, 934143; 4, 189104, 190107, 57923, 5, 27227, 27427, 27527, 27727, 27927
Marten, K., 4, 1436, 1877
Martens, D. J., 5, 71586
Martens, F. M., 8, 96493
Martens, H., 2, 723100; 3, 332203; 5, 637109
Martens, J., 6, 462115; 8, 459228, 460294
Marth, C. F., 1, 755141, 756116,116a, 758116,124, 761116
Mart, F., 4, 319220
Martin, J. A., 3, 38013, 386168, 595191, 595192, 619776, 629786, 655291; 7, 31132, 32432; 8, 14130
Martin, J. A. F., 3, 38013, 386168, 595191, 595192, 619776, 629786, 655291; 7, 31132, 32432; 8, 14130
Martin, J. R., 8, 2730, 6630
Martin, K., 5, 139417, 159767, 2, 5119, 619, 8, 447124, 450122, 696123
Martin, H.-D., 3, 38028, 387560, 5, 257560, 571115, 6, 101522
Martin, J., 3, 38013, 386168, 595191, 600113, 7, 452113, 453113, 8, 26979
Martin, J. A., 3, 6803, 807230
Martin, J. A. J., 5, 20123, 220295, 21223
Martin, J. C., 4, 68809, 47169; 2, 74094, 4, 448110, 81486, 96056; 7, 31132, 32432; 8, 14130
Martin, J. D., 4, 37387, 5, 83052; 6, 959198; 7, 413118, 82025
Martin, J. G., 5, 45113, 47013, 5132, 5182
Martin, R. H., 6, 70745
Martin, R. M., 1, 48053
Martin, R. S., 7, 9687
Martin, R. T., 8, 37449
Martin, S., F., 1, 41270, 27527, 383110, 432127, 456137, 5421, 884130; 2, 551401, 4751799, 480181
49699, 49869, 1068127, 1068127, 1097158, 3, 21128, 21524; 4, 15, 31497, 79579; 5, 467111, 52828, 52970, 53070, 531580, 539109, 79657, 81557, 841101, 6, 690196, 7052830, 722137, 138
751211, 7, 228290, 297293
Martin, S. J., 3, 28350, 4, 33756, 6, 23976
Martin, S. R. W., 4, 518
Martin, T., 2, 821105; 7, 3226
Martin, T. R., 1, 1689
Martins, M. E., 6, 278132
Martinho, J. A., 8, 67172
Martinez, A., 2, 78044
Martinez, A. G., 8, 349137, 886196, 93453
Martinez, A. G., 6, 83544
Martinez, F., 6, 432122
Martinez, G. C., 7, 46220
Martinez, G. R., 1, 41041, 47378, 2, 73732, 3, 91826; 4, 10861119, 108719, 6, 17582, 89381
Martinez, M., 2, 84913
Martinez, R. A., 3, 72773
Martinez, V. C., 7, 46219
Martinez-Carrion, M., 8, 52144, 66144
Martinez-Davila, C., 1, 887128, 888138, 5, 856110, 913100, 100778, 100843, 101728, 101848, 102094, 102194
Martinez-Gallo, J. M., 4, 302238, 349110, 351124, 354110, 7, 533126, 53435
Martinho-Simões, J. A., 8, 67117
Martín-Lomas, M., 1, 759132; 4, 1081468, 230247; 8, 22716
Martins, M. E., 6, 278132
Martinsen, A., 6, 24294
Martirosyan, G. T., 5, 41040
Martirosyan, V. O., 6, 27083
Martius, C., 8, 14586
Marion, D., 2, 62932; 5, 64911212, 566220, 57247, 726127
Maron, M. T., 5, 16586
Martos-Bartsai, M., 1, 37071, 37170
Martynov, A. V., 6, 550673, 674
Martynov, V. F., 2, 4114, 42024
Marui, S., 7, 20990
Marumoto, R., 6, 50118, 531188
Maruoka, H., 7, 6728
Maruoka, K., 1, 781012, 13, 18, 7921, 8021, 8121, 8221, 8327, 88521, 52, 52, 52, 959130, 984198, 996445, 10044, 106151111, 26648, 28331, 31631, 3335601, 335601, 348141, 387138; 2,
<table>
<thead>
<tr>
<th>Name</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musada, R.</td>
<td>1</td>
<td>543</td>
</tr>
<tr>
<td>Musallam, H. A.</td>
<td>7</td>
<td>155</td>
</tr>
<tr>
<td>Muschaweck, R.</td>
<td>6</td>
<td>554</td>
</tr>
<tr>
<td>Musco, A.</td>
<td>4, 5</td>
<td>40</td>
</tr>
<tr>
<td>Musgrave, O. C.</td>
<td>7</td>
<td>235</td>
</tr>
<tr>
<td>Mushall, H. A.</td>
<td>8</td>
<td>806</td>
</tr>
<tr>
<td>Musial, S. T.</td>
<td>5</td>
<td>736</td>
</tr>
<tr>
<td>Musil, V.</td>
<td>5</td>
<td>143</td>
</tr>
<tr>
<td>Musker, W. K.</td>
<td>4</td>
<td>366</td>
</tr>
<tr>
<td>Musker, W. K.</td>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>Muskin, P.</td>
<td>4</td>
<td>98</td>
</tr>
<tr>
<td>Muslin, Y.</td>
<td>6</td>
<td>606</td>
</tr>
<tr>
<td>Muslikov, R. R.</td>
<td>4</td>
<td>598</td>
</tr>
<tr>
<td>Musmiller, W. J.</td>
<td>3</td>
<td>747</td>
</tr>
<tr>
<td>Musso, H.</td>
<td>1</td>
<td>752</td>
</tr>
<tr>
<td>Musilak, P.</td>
<td>3</td>
<td>667</td>
</tr>
<tr>
<td>Muskova, M. T.</td>
<td>7</td>
<td>882</td>
</tr>
<tr>
<td>Mysorekar, S. V.</td>
<td>7</td>
<td>154</td>
</tr>
<tr>
<td>Myshkin, V. E.</td>
<td>8</td>
<td>773</td>
</tr>
<tr>
<td>Myrbach, K.</td>
<td>2</td>
<td>464</td>
</tr>
<tr>
<td>Myroboh, B.</td>
<td>7</td>
<td>154</td>
</tr>
<tr>
<td>Myrybach, K.</td>
<td>2</td>
<td>464</td>
</tr>
<tr>
<td>Mytchler, E.</td>
<td>2</td>
<td>381</td>
</tr>
<tr>
<td>Mutter, M.</td>
<td>2</td>
<td>1099</td>
</tr>
</tbody>
</table>

Cumulative Author Index

238
245

Cumulative Author Index

Neunteufel, R. A., 7, 879I5O
Neupokoev, V. I., 8, 150132
Neureiter, N. P., 5, 90777
Neiirrenbach, A., 4, 92OZ2,92lZ2,92322,92422,92522
Neuse, E. W., 5, 732132+132b
Neuss, N., 2, 143”
Neustem, F.-U., 5, 20q4
Neuth, J. F., 6,1 1I@
Neuwirth, Z., 2, 844200
Nevalainen, V., 2, 34645
Nevedov, 0. M., 4, 1058151
Nevell, T. P., 3, 7065
Neville, D. M., Jr., 8, 52I3“j,66136
Neville, 0. K., 3, 822loJ3,8 2 P , 82910J3,83v8,83158
Nevitt, T. D., 4, 279Il8,280118;6,83542
New, J. S., 8, 253Iz1
Newallis, P. E., 6,43l1O7
Newaz, S. S., 2, 3 5 P 9 382314
Newberg, J. H., 8, 1259’3
Newbold, B. T., 8, 36417,36517,382l, 383l, 3901
Newbold, G. T., 8 , 5 2 P , 52982
Newbold, R. C., 5, 21159Jm,23159-160
Newbould, J., 4, 8365a;7, 111’”
Newburg, N. R., 7, 2438
Newcomb, M., 1, 357l; 2, 10P4,4764, 489’@,49V8,
91789,91p9, 92089,92489,
505”, 5101’*37+38*40-42,
93589;3, 30I8l,3 1lE5,32IE5, 34193, 82Q3; 4, 221157,
74740,7571E5,77640,7W3,
71919,72219,72337*40-41,
803130.135 811173,175 812175,176., 5, 10()14779035.
72213;, 7231h6,
6,K P 7 , 531M8,71!h5, 720125JM,
725lZ5;8, 802”@, 947142
Newcombe, P. J., 4, 42420
Newington, I. M., 1, 47714, 54548;8, 387s6
Newitt, D. M., 2 , 3 4 P
Newkirk, J. D., 3, 84220
Newkom, C., 1,82lZ9
Newkome, G. R., 1, 568238;2, 504l;3, 509179,587143;
4, 4621°5;5 , 6 3 P ; 6,507232;8, 11342
Newland, M. J., 8, 77577
Newlander, K. A., 7, 54312,551L2
Newman, B. C., 8, 231147,84357
Newman, H., 2, 725Il6;8, 756149
Newman, L. W. J., 4, 28314
8 W C ;2, 27914,
Newman, M. S., 1, 42396,46852*53,
88817,
28350,409’, 4102, 41 12,749I3O;3, 81470971,
5
4, 724 8984b*
89e2, 89139,89239,89461,89839378;
382lI9.; 6,677315,968Il2;7, 29521;8, 29-367,74G6I:
918lZ1,919lZ1,9501%,972Il6
Newman-Evans, D. D., 8, 81p2,82V2
Newport, G. L., 7, 877133
Newton, B. N., 4, 42p3, 43tIE3,M18’
Newton, C., 3, 369Iz5,372Iz5
Newton, C. G., 5, 52€P7
Newton, D. J., 4, 87239*39b
48412
Newton, M. D., 4, 414*14a,
Newton, M. G., 7, 753159
4, 26OZ8l,38514, 41314; 5,
Newton, R. E, 3,
6,65V5,
82p5, 1043”,
1049”, 105124,36b;
1024’$7, 30263,67433,68285,766178;8, 198135
Newton, R. J., Jr., 8, 3 5 p 3 , 359203,726IE6
Newton, S. A,, Jr., 8, 371108
Newton, T. W., 2, 589153;4, 257217,901 lE3; 5, 762Io5;
8,76924,771”
110O1l8,1101118,110273,
Neyer, G., 2,
110373,118b
Neyer, J., 7, 230133

Nico1aou

Nezhat, L., 4, 1161E7
Nezu, Y., 1, 389137;2,99~1~8
Ng, C. T., 8, 8 e 3
Ng, D. K.P., 8, 84795
Ng, G. S. Y., 7, 31647,31747
Ng, H. C., 5, 16159
Ng, J. S., 3, 20917,21668,2241a; 4, 17543
Ng, K.-K. D., 4, 87876
Ng, K. S., 4,369”, 37e2, 37722;8, 68391
Ng, L. K., 1, 476lZ0;3, 669
Ng, S. Y.-W., 6,24713‘
Ngwhindo, R. I., 1, 47165-s 47483
747148, 771254;
Ngoviwatchai, P., 4, 744132,’746143,
6,83214
Nguyen, C. H., 7, 766I8l
Nguyen, D., 3, 21668,224168
Nguyen, D. H., 2, 60979,10489,10499, 10509, 10649
8, 102l”
Nguyen, N. H., 3,503l”, 512149;5, 1151133J36;
Nguyen, N. V., 5, 9057,9557,69080,733136
Nguyen, S., 5, 805100
Nguyen, S. L., I, 1076, 11@,343If6;3, 224167,264IE6;
4, 17650,17750,903192;6,523
Nguyen, T., 4, 102@36
Nguyen Thi, K.H., 6,540585*586
Nguyen-van-Duong, K., 4, 746147
Nhu Phu, T., 8, 451180
Ni, J., 5, 63699
Ni, Z., 4, 599222,64lZz2
Ni, Z.-J., 8, 84241
Nibbering, M. N., 8, 8 p 3
Nicaise, O., 8, 388m
Niccolai, G. P., 6,29lZ1l
Nicely, V. A., 8, 52413J3c
Nichikova, P. R., 3, 643131
Nicholas, D. L., 8, 36413
Nicholas, K., 5, 2725
Nicholas, K. M., 2,659“; 3, 21671;4, 304355,6954,
956”; 5, 1055”; 6, 690391,692407*408
Nicholas, P. P.,7, 47988
Nicholls, B., 4, 301325,3W08,51915,52215;7, 23617
Nichols, D. E., 8, 14697,36872,37572
Nichols, M. A., 1, 4lZo3
Nicholson, A. A., 5, 12516
Nicholson, E. M., 5, 949283
Nicholson, J. K., 4,588”
Nickel, S., 3, 582Il2
7, 35814
Nickel, W.-U.,
Nickell, D., 8, 395”’
Nickell, D. G., 5, 42077,576143
Nickelson, S. A., 4, 27669,70,28370
Nickisch, K., 4, 15573;7,74”’, 7511’,9578;8, 88172,
88272
Nickolson, R., 7,74I1l,75I1l;8, 88172,88272
386&,
Nickon, A., 1, 8565s;2,4411, 443l; 3,
9F8,
70914,94693;4, 26; 6,77965,96173;7, 9687,88,
11lS8,16582,17882;8, 3 3 P , 3 3 P ,
9888,1
345Iz8,82t180
Nickson, T. E.,8, 37097
Niclas, H. J., 4, 434Iz6
Nicodem, D. E., 1,411”
Nicolaides, D. N., 6, 17345,17572
Nicolaidis, S. A,, 7, 69956
Nicolaou, K. C., 1, 227w, 40835,4C#6*37,43e5, 6301,
672l, 772’*, 779226,808319,876*; 2, 421a, 451a,
38LlN5;3, 39216,86”, 94”, 117”, 217%,22O1I9,
5585132,61820*21,
224174,2783’, 28863,28931*68,


<table>
<thead>
<tr>
<th>Author</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obaya, K.</td>
<td>7</td>
<td>764121</td>
</tr>
</tbody>
</table>
Ozaki, H., 8, 150130,133,135,142, 151133,135,145
Ozaki, K., 7, 15311; 8, 193101, 5571280
Ozaki, N., 4, 934
Ozaki, S., 6, 244112, 6027, 6037, 60557, 7, 245177,78, 248112, 8094
Ozaki, Y., 4, 9604; 6, 43612,16-18, 451129, 485154
Ozawa, S., 3, 457131, 503142
Ozawa, F., 3, 52847; 4, 56027

Ozaki, H., 7, 19935

Ozawa, S., 1, 10193,94, 10393,94, 2, 114123, 26973, 27173; 4, 3395,96, 257227, 261227
Ozawa, T., 4, 10329, 10519; 8, 42231, 42733
Ozbal, H., 6, 10619
Ozbalik, N., 4, 765226, 7, 13119, 7315, 776357
Ozeki, H., 7, 19935
Ozols, A. M., 6, 450121
Ozorio, A. A., 4, 113168, 5, 9106
Parker

Cumulative Author Index

Parker, V. D., 3, 67267,67680;4, 45542;6,282154;7,
799", 8M0,80138-40,85447,85547, 85667,874Ilo
Parker, W., 3, 38013,38667*68,
399118,404133J34,
600213;
8, 26977
Parker, W. L., 5, 8632
Parkhurst, C. S., 4, 597180,622180
Parkin, C., 7,228l"
Parkin, G., 8, 67325,69625
Parkin, J. G., 7, 80567
Parkins, A. W., 3, 2MZ3;4, 70636;5, 1156l@
Parks, G. L., 3, 7711E8
Parks, J. E., 6,533510
Parlar, H., 5, 45366
Parlier, A., 4, 980115,982Il5;5, 10669, 107640111O3l5O,
1104150,158 ~ ~ o ~ l 5 9 , 1 6 1 . 1 6 2 , 1 6 3
6,95419
Parlman, R. M.,3, 102428;4, 115178;
Parmigiani, G., 3, 7349
Pamell, C. A., 4, 9lSSc;5, 543Il5, 115Olz7,1154156;7,
3 3 P ; 8, 11lZ3,11723
Pamell, C. P., 1,30P3,310g3;7, 633
Pamell, D. R., 3, 55747
Pames, H., 8 , 7 9 P , 80065
5, 75232-35*36,
75432.35.36, 75635,36;
Pames, 2.N., 4,
8, 21655,56 31860-6365-67 48659.61 48759 546306,307,308
'
60837,61d56958-61,
61lM:623147,k24147,'6366J87,
77flE4,81312
Parola, A., 3, 56411,56711
Parr, J. E., 3, 88137,95137,165137,167137
Parra, M., 2, 84913
Parra, T., 3, 396Il5
Parra-Hake, M., 5, 9 2 P 6
Parratt, M. J., 3, 20P5
Parreno, U., 5, 92@
Parrick, J., 4, 1021249*250
Parrilli, M., 4, 34795;7, 438I7-l9,44517-1933
Paninello, G., 3, 232268,495938,102221;4, 93159,93260
P&s, C. L., 6, 2MZ9,26829,28629
Parrish, C. I., 7, 737
Parrish, D. R., 2, 167159;3, 2314'; 4, 725;6,718'18; 8,
46OW9,534156,544256,60618
Parrish, F. W., 6,66OZo1
Parrott, M. J., 4, 7178
Parrott, S. J., 2, 53433-35,
53534*35
Parry, F. H., 5, 99134
Parry, M. J., 1,73935;6,998lI8
Parry, R. J., 1,6Ol4O,6 0 P ; 3, 36493;6,96I5O
Parry, S.,7, 415lI3
Parsens, P. J., 4, 82eZ3
Parshall, G. W., 1, 1407, 17415,74351,74651,81l5I;4,
58717;5, 1115', 1116292c,112lZc,1122&,11232c;8,
47109, 451173,175, 551339
Parshin, V. A., 6,554755
Parsonage, J. R., 7, 6161°, 6201°
Parsons, G. H., Jr., 3, 56411,567"
Parsons, J. L., 8, 53314
Parsons, P. J., 2, 90760;4, 390168,395168e9205,
820216*6
83656;7, 54632,55571,56471
Parsons, W. H., 1,838l'O; 4, 3OE8;7, 1O5l5l
Partale, H., 2, 37lZ6l;5, 76239
Partale, W., 3, 88813
Partch, R., 2, 7532*2c
Partch, R. E., 3, 38013
Parthasarathy, P. C., 2, 842189
Parthasarathy, R., 5, 186169
Partis, R. A,, 8, 3921°5
Parton, B., 5, 486IS5,487185
9

,

264

Partridge, J. J., 1,78eZ9,~ 3 5 13,
~~
78323;
;
5, 12933;6,
913%; 8, 26q2, 722I5O
Partsch, R. E., 7, 13'12
Partyka, R. A., 2, 64898,64998,105976
, 4,48137J37g,
824u9;
Parvez, M., 1,1580982,1688;3, 58292*
5, 426lW,843Iz2;6,89490
Paryzek, Z., 7, 31S9,255"; 8, 354169,886110
Pasau, P., 1,664l@,665169,669l@,6701@,7 W 9 ,
7 0 P 9 , 7 0 P 9 , 722259;3, 11lZ3l;4, 991150
Pascal, Y.-L.,
8, 13319,20
Pascali, V.,8, 84036,84436,913%,91494
Pascard, C., 6,718Iz2;7, 6461b
Pascard-Billy, C., 1,34227
Paschal, J. W., 8, 514Io6,623I5l
Pascher, F., 5,29'
Pascual, A., 5, 22383,22483,234140, 8O6lo2,1 0 2 P
Pascual, C., 2, 34536
Pascual, J., 3,
8, 50050, 515Il9
Pascual, 0. S.,4,279"O
Pasedach, H., 5,15l", 83559
Paserini, N., 6, 48754,4 8 P
Pasha, M. A., 8, 889137
Pashayan, D., 3, 58Olo7
Pasini, A., 7, 108173
Pasiut, L. A,, 7, 810S9
Pasquali, M., 4, 17014
Pasqualini, R., 8, 86ez3
Pasquato, L., 4, lO2I3'; 5, 32417;6,999lZ3;8, 8362,
842%,8432e,8UZe
Pasquini, M. A., 6,8069
Pass, M., 7, 3499
Passannanti, S.,1,476lZ1;3, 661°
Passarotti,C., 8, 56Be7
Passer, M., 2, 52920
Passerini, M., 2, 10836,10846*6a
Passerini, N., 6,48752,48952
Passerini,R., 7, 770253
Pasta, P., 8, 194Io5
Pasteels, J., 1,
6,91427
Pastel, M.,5, 736145,737145
Pastern&, V. I., 6,500180,543623
Pasto, D. J., 2, 24215;3, 49167;4, 14534,279116,
30131930324 302319320 314484; 6,8304, 7 6074; 8,
36759,4722,>732-'2,4;413, 47734,35,7O5ld, 70717,
724153,7261°, 93779
Pastor, S. D., 1,320162;4, 443187J88
Pastour, P., 1,6 4 4 I z 2 , 646122,668Iz2,669lZ2,695122.
,6,
5 15236
Pasulto, M. F., 7, 78lZab
Pasynkiewicz, S., 8, 75614, 757162
Patachke, H. P., 5, 42288,42388
Patai, P., 3,5211,5515, 5525,5 5 6 % ~ ~ ~
Patai, S., 1, 1651°7,21539,21839,220a, 22539,3264,
32713,36OZ6,36426,571272,B O 2 , 5812,582?-, 5838*8b,
2
61@, 611Za,616%,6306J4J6,63116 63416 all6*
811,82l, 96l, 3425,34851952,
3495,i525, 38352,
8952,9lS2,
365'11, 727Iz8,7343, 1102120;3, 8652*53,
9452*53,
9 P , 11452*53,
11652,11752-53,
l l P , 20@,
217', 22314, 2712,2722,436'-'OJ1 582lI1 63419
63819,64919, 65519,7226,7236,72'623,73i6, m i ,
82848,82948,8368,8399,8623*7,86734-37,
87237,
88337,88437,8876,8896*25,
89e5, 8936*25,
8946, 8966,
8976,9006,9036,91gZ8;4 37J0 47*16*16a,
411°, 471°,
53I5l,661°, 709, 7119,7&, 865ib, 9395,139l, 15566,
23@, 295257,299303,303350,3 1 6 y 3 175w,329',
3301c,d,33P9,34239*64,
343@,344', 3501,3511,
,

1


265 Cumulative Author Index

Patchett, A. A., 8,

Patchomik,

Patel,

Patapoff, T. W., 53g9

Patel, B. A., 3, 5385402541

Patel, D. I., 6, 53547”

Patel, D. K., 3, 84647

Patel, G. J., 6, 5547”

Patel, D. V.,

Patel, P. D., 6, 22*4, 2132,

Patel, R. N., 7, 5619-21,

Patel, S. K.,

Pati, U. K., 2, 547Io3, 549Io3; 8, 341Io3, 92824

Patanekar, S. G., 7, 2397

Patney, H., 9, 781950, 63

Paton, A. C., 6, 7094

Paton, J., 8, 198135

Paton, J. M., 7, 49922

Paton, R. M., 7, 7397

Patra, A., 3, 39612, 39812

Patra, S. K., 3, 87115

Patriankou, S., 8, 24573

Patricia, J. J., 3, 4199, 42220, 4, 764216, 8017513, 8711924

Patrick, D. W., 3, 87663, 11763; 6, 102681, 102781, 102891, 103051, 103081, 10331; 7, 1248, 1288, 1298, 48959, 7733

Patrick, J. B., 7, 5464

Patrick, J. E., 3, 94688, 99034

Patrick, T. B., 3, 75622, 4, 34427, 7, 72372, 8, 36641

Patrie, W. J., 7, 31153

Patronik, V. A., 4, 43972

Patsaev, A. K., 4, 50412

Patsh, M., 3, 92725; 5, 100799, 10089

Paukstelis, J. V., 6, 50349; 51249

Pattenden, G. I., 1, 133112, 2, 124202, 651117; 3, 50266,

27812, 3842523, 4003, 407147, 431978, 494899, 548137

586153, 587518, 991969, 603227, 604133, 605251, 610151

9764, 97798, 98257, 98959, 99099, 4, 2774, 2984

1022127, 1262112, 51810, 761201201204204, 7915789,

504146, 80160, 5, 13335, 13667, 14906, 18151, 779199,

80396, 97650, 6, 87672, 88027, 104254, 1062576, 7, 33842

Patterson, S. P., 1, 1156

Patterson, D. B., 8, 47414, 47514, 47614

Patterson, I., 1, 40318

Patterson, J. W., 7, 50267

Patterson, J. W., Jr., 3, 96, 106, 20177, 8225, 8345

Patterson, L. A., 4, 28213

Patterson, M. A. K., 8, 8735

Patterson, R. T., 5, 62949

Patterson, W., 3, 266190, 4, 893151, 5, 116619; 6, 96695,

8, 75616

Pattison, F. M. L., 3, 63979, 6, 22832, 8, 90349

Pattison, J. B., 6, 2136

Pattison, V. A., 3, 97519, 9803

Patton, A. T., 2, 12724

Patton, L. 5, 2414

Pau, C. F., 1, 61045, 4, 96862

Paudler, W. V., 5, 637111, 7, 26721, 269121, 270128,

27112128, 278121

Paugam, J.-P., 3, 19955, 257117

Pauktelis, J. V., 1, 36643, 52229, 4, 226200, 6, 90019

Paul, B. D., 8, 51122, 66112

Paul, D. B., 4, 29522; 6, 245119, 246119, 247119, 248119,

249119, 2511219, 2521219, 253119, 254119, 255119, 256119,

258119, 8, 50157

Paul, E. G., 8, 56867

Paul, H., 2, 162400, 4, 72235, 72835
Picon, M., 3, 2734
Pickering, M. W., 2, 76576
Pidcock, A., 8, 26S3
Piechocki, C., 4, 103319
Pidacks, C., 8, 52741,
...
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineau, C.</td>
<td>272</td>
</tr>
<tr>
<td>Pineau, R., A. N., 8, 77887</td>
<td></td>
</tr>
<tr>
<td>Pines, A. R., 1, 1 1643; 3, 103685; 835431, 85431, 7, 777383; 8, 67680</td>
<td></td>
</tr>
<tr>
<td>Pines, H., 3, 30989, 321989, 331197; 4, 316538; 5, 1077; 7, 777321, 8, 8149</td>
<td></td>
</tr>
<tr>
<td>Pines, S. H., 2, 741646, 85497</td>
<td></td>
</tr>
<tr>
<td>Pinetti, A.</td>
<td>2, 83897</td>
</tr>
<tr>
<td>Pinet-Vallier, M., 4, 87876</td>
<td></td>
</tr>
<tr>
<td>Pinheg, L.</td>
<td>2, 79079</td>
</tr>
<tr>
<td>Pinhas, A. R., 1, 11643; 3, 103685; 4, 7032, 70458; 5, 113893</td>
<td></td>
</tr>
<tr>
<td>Pinhey, J. T., 3, 28656b, 90668, 90768, 90868</td>
<td></td>
</tr>
<tr>
<td>Pinkney, P.</td>
<td>3, 11643; 4, 45725, 63796</td>
</tr>
<tr>
<td>Pinkenon, A. A., 1, 53971; 5, 456148d</td>
<td></td>
</tr>
<tr>
<td>Pinto, A. C., 2, 5328-30, 54863, 83810, 84531, 85431; 5, 432, 453, 532, 8301, 6, 103211</td>
<td></td>
</tr>
<tr>
<td>Pipton, M. C., 1, 3572; 2, 437217</td>
<td></td>
</tr>
<tr>
<td>Piscopio, A. D., 2, 5328-30, 54863</td>
<td></td>
</tr>
<tr>
<td>Pisciotti, F., 2, 5641, 71666, 71769</td>
<td></td>
</tr>
<tr>
<td>Piscopo, J., 5, 51625, 864260</td>
<td></td>
</tr>
<tr>
<td>Piscipat, I., 2, 45725, 47725, 503125</td>
<td></td>
</tr>
<tr>
<td>Pistorius, R., 3, 63762, 647170, 648170</td>
<td></td>
</tr>
<tr>
<td>Piszkiwicz, L. W., 8, 4411</td>
<td></td>
</tr>
<tr>
<td>Pitacco, G., 4, 2063, 2163, 5, 33141, 6, 70925, 71057-59, 71162</td>
<td></td>
</tr>
<tr>
<td>Pitchen, P., 6, 1501127, 7, 425146, 777377, 778377, 778377</td>
<td></td>
</tr>
<tr>
<td>Pitchford, A., 1, 48925, 3, 42151</td>
<td></td>
</tr>
<tr>
<td>Pitts, P. M., 8, 2837, 6657</td>
<td></td>
</tr>
<tr>
<td>Pittman, I. H., 7, 778890</td>
<td></td>
</tr>
<tr>
<td>Pitombo, L. R. M., 7, 774136</td>
<td></td>
</tr>
<tr>
<td>Pitt, B. M., 7, 2037, 2062, 2077, 21072</td>
<td></td>
</tr>
<tr>
<td>Pitt, C. G., 1, 5817; 3, 12525, 12635, 12735</td>
<td></td>
</tr>
<tr>
<td>Piteulord, I., 7, 766127, 3, 3804, 4, 2111, 111511, 218137, 33943, 5, 432, 453, 532, 8301, 6, 103211</td>
<td></td>
</tr>
<tr>
<td>Pitteroff, W., 3, 19413</td>
<td></td>
</tr>
<tr>
<td>Pittermann, C. U., Jr., 1, 452184, 4, 3861528, 92355, 93175, 5, 754125, 8, 452175</td>
<td></td>
</tr>
<tr>
<td>Pitrol, C. A., 5, 41870</td>
<td></td>
</tr>
<tr>
<td>Pitts, J. N., Jr., 5, 226109</td>
<td></td>
</tr>
<tr>
<td>Pitts, W. J., 4, 600473, 6001433</td>
<td></td>
</tr>
<tr>
<td>Pitzenberger, S. M., 2, 102775</td>
<td></td>
</tr>
<tr>
<td>Pivett, D., 1, 558119</td>
<td></td>
</tr>
<tr>
<td>Pivitakiki, K. K., 8, 518130</td>
<td></td>
</tr>
<tr>
<td>Pivitskiki, K. K., 1, 520898</td>
<td></td>
</tr>
<tr>
<td>Pivwinski, J. S., 7, 766127, 79123, 88518</td>
<td></td>
</tr>
<tr>
<td>Piyasena, H. P., 5, 267070, 26370</td>
<td></td>
</tr>
<tr>
<td>Pizey, J. S., 1, 83122, 4484, 4, 34795, 7, 3602, 481109, 8, 265, 276, 365, 237292, 2386, 2408, 24120, 2443, 2452, 2497, 2498, 2510, 253820, 8723, 87737</td>
<td></td>
</tr>
<tr>
<td>Pizey, S. S., 6, 20413, 8, 21327</td>
<td></td>
</tr>
<tr>
<td>Pizzala, L., 3, 89277</td>
<td></td>
</tr>
<tr>
<td>Pizzini, L. C., 4, 42413</td>
<td></td>
</tr>
<tr>
<td>Pizzo, C., 6, 89795</td>
<td></td>
</tr>
<tr>
<td>Pizzo, C. F., 4, 370125, 5, 85926</td>
<td></td>
</tr>
<tr>
<td>Pizzo, F., 4, 1060150</td>
<td></td>
</tr>
<tr>
<td>Pizzolato, G., 4, 31928, 37029, 384143, 413277, 80471, 5, 4331776, 6, 531125, 7, 701166, 8, 60868, 88287</td>
<td></td>
</tr>
<tr>
<td>Place, P., 1, 197130, 5, 79925, 82162, 6, 2106, 214860</td>
<td></td>
</tr>
<tr>
<td>Plachky, M., 8, 886112</td>
<td></td>
</tr>
<tr>
<td>Plackett, D. J., 3, 93262</td>
<td></td>
</tr>
<tr>
<td>Pla-Daimau, A., 4, 747148</td>
<td></td>
</tr>
<tr>
<td>Pladziewicz, J., 8, 917115, 918113</td>
<td></td>
</tr>
<tr>
<td>Plakhontik, V. A., 3, 305754</td>
<td></td>
</tr>
<tr>
<td>Plamer, M. A. J., 1, 19281</td>
<td></td>
</tr>
<tr>
<td>Plamondon, J., 8, 21465, 71797, 72695</td>
<td></td>
</tr>
<tr>
<td>Planas, T., 5, 232138</td>
<td></td>
</tr>
<tr>
<td>Planat, D., 2, 78218</td>
<td></td>
</tr>
<tr>
<td>Plante, R., 2, 45618, 8, 18959</td>
<td></td>
</tr>
<tr>
<td>Plappert, P., 1, 36657</td>
<td></td>
</tr>
<tr>
<td>Plaquevent, J.-C., 6, 71061, 717109</td>
<td></td>
</tr>
<tr>
<td>Plasek, E., 8, 39191</td>
<td></td>
</tr>
<tr>
<td>Plaskin, V. S., 3, 64437</td>
<td></td>
</tr>
<tr>
<td>Plastun, I. A., 2, 78727</td>
<td></td>
</tr>
</tbody>
</table>
Poljakova, L. A., 7, 884186
Poljakova, A. M., 3, 89249
Polk, D. E., 1, 36754, 6, 545635
Poll, T. I., 30378, 30778, 5, 36595, 95936a6c
Polla, E., 2, 362181, 52387, 3, 374132; 6, 283160, 7, 74472, 84693-95
Pollack, S. J., 1, 30378, 30778; 2, 1961; 3, 2589
Pollack, S. K., 1, 4874, 48139; 4, 48419
Pollard, A., 2, 14991
Pollard, K. A., 7, 24799
Pollart, D. J.,
Pollart, A., 2, 14991
Pollart, K. A., 7, 24799
Pollata, C., 6, 196230
Pollito, R., 8, 758169
Pollini, G. P., 2, 80332; 3, 73138; 5, 1473%; 149413
Pollini, A. E., 5, 7631, 7691b, 7711b, 77577, 77888, 7898
Pollitt, R. L., 1, 19155, 46217, 46317, 33; 7, 22919
Pollister, R., 8, 758169
Pollister, R., 2, 45623
Pollister, R. J., 1, 24870, 5, 299a
Price, T., 3, 1036, 4, 563
Pricipe, P. A., 5, 863
Prickef, J. E., 5, 948
Prior, S., 4, 20, 21
Pridy, D. B., 3, 304
Pride, E., 8, 526
Pridgen, H. S., 847
Pridgen, L. N., 2, 116, 117, 124, 436, 437, 460, 503
Pride, H., 6, 246
Priebe, W., 1, 564
Priebs, B., 2, 365
Prier, H., 3, 100258, 6, 852, 886, 889, 890, 892
Pries, P., 5, 451
Priest, M. A., 3, 380, 625
Priest, N. A., 3, 380
Prestan, C. U., 6, 734
Prestley, H. M., 7, 483
Prietel, A., 7, 838, 844
Prignano, H. C., 8, 612
Prince, T. L., 3, 582, 8, 840
Principe, L. M., 3, 1025
Pring, B. G., 2, 380
Prisma, M., 4, 206, 216
Priddy, D. B., 3, 304
Price, T., 3, 1036, 4, 563
Prick, E., 7, 667
Proia, R. L., 8, 365
Proin, A., 5, 863
Prokai, B., 8, 807
Prokai-Tatrai, K., 4, 925, 927, 930, 939
Prokipczak, E., 3, 555, 6, 503
Prokop, A. K., 4, 489
Prokofiev, E. P., 1, 555, 6, 503
Prokopiu, P. A., 3, 613, 615, 8, 117, 243, 505
Proksch, E., 7, 842
Prome, J.-C., 2, 855
Promenkov, V. K., 4, 992
Provan, M. S., 6, 533
Pronia, N. V., 4, 1051
Pronke, N. K., 6, 532
Proshkins, V. N., 2, 787
Proskow, S., 5, 742
Proskurovskaia, I. V., 8, 611
Pros, A., 1, 487, 488, 8, 93
Prossel, G., 1, 372, 2, 1049
Prosser, T. J., 7, 246, 256
Prost, M., 2, 742
Prosyanyk, A. V., 1, 837, 7, 747
Prosyypkina, A. P., 7, 477
Prou, J., 7, 679
Prouva, P. J., 5, 736
Prouva, M., 2, 765, 6, 266
Prouchek, G., 2, 334
Proud, J., 8, 766
Proul, P., 7, 821
Prousek, J., 4, 452
Proust, M., 6, 455, 545
Proust, S., 4, 50
Proust, F. S., 2, 343, 348, 358, 367, 4, 98
Proust, K., 2, 125, 127, 128, 315, 316, 4, 247, 4, 375, 4, 171
Provelinghiou, C., 4, 297
Privencher, L. R., 8, 189
Prowse, K. S., 6, 675
Prudent, N., 1, 49, 50, 802, 109, 110, 153, 184, 185, 198, 229, 310, 67, 246, 217
Prudhomme, M., 1, 410
Prud'homme, R. E., 5, 862, 884, 888, 94, 925
Prue, D. L., 6, 912
Prueett, R. L., 4, 520, 914, 922, 923, 924
Prueett, W. P., 2, 387
Prugh, S., 4, 111
Pruit, J. R., 2, 1013, 7, 407
Pruskil, L., 3, 980, 981, 5, 1095, 1098, 112
Pruss, G. M., 6, 955
Pruss, C., 5, 618, 620, 624
Pryanishikov, A. P., 5, 768
Pryce, R. J., 5, 418
Pryde, A. C., 6, 247, 253, 7, 329
Pryor, W. A., 1, 477, 7, 63, 7, 488, 761, 860
Psarras, T., 7, 805
Pscheidt, H. R., 8, 361
Pshezhetskii, V. S., 8, 606, 625, 625
Psior, M., 6, 116, 7, 738, 8, 63, 64, 69
Puapoomchareon, P., 7, 327
Putoon, P., 4, 279, 280
Pucci, R. J., 4, 427, 428, 429
Pudovkina, A. P., 7, 477
Pudova, O. A., 8, 771, 4
Pudovik, A. N., 4, 41110, 55156, 6, 432119, 538570
Puff, H., 2, 52069, 1077133, 4, 222172, 5, 485152, 6, 716104
Pugh, S., 7, 145167
Puglia, M. J., 7, 55156
Puglia, G., 2, 90532
Puglis, J., 5, 25654, 8, 80393, 80493, 82669
Puglisi, V. J., 3, 56175
Puig, S., 4, 110112
Puigalde, R. S., 4, 93263
Puigol, D., 4, 746147
Puigol, F., 1, 54656
Pukhnarevich, V. B., 8, 76512, 77513, 77141, 782104
Pulido, F. J., 2, 583114, 4, 891165, 900165, 5, 478164, 8, 64650,
Pullman, B., 1, 30044
Pulman, D. A., 1, 54656
Pulst, M., 2, 785106, 6, 489111
Pummer, H., 4, 92521, 92122, 92322, 92422, 92522
Pummer, W. J., 3, 8044
Pummerer, R., 6, 91015, 7, 19419, 2021
Punj, A., 4, 55157, 53157
Punk, P. C., 37177
Pura, J. L., 6, 587573, 984156
Purcell, T. A., 1, 560259
Purcell, G., 6, 178121
Purkayastha, M. L., 8, 90771, 90971, 91071
Purcell, I. I., 8, 699130
Purmort, J. I., 2, 52060, 670, 2120
Puraprajna, V., 2, 78955, 79255
Purnell, J. H., 4, 313466, 467
Purohit, M. G., 6, 77143
Purpura, J. M., 5, 790136
Purrello, G., 6, 508280, 509271
Purvis, S. R., 6, 570987
Pusch, J., 3, 563117, 582117
Pushkareva, Z. V., 6, 530421, 538551, 555521, 55925
Pusino, A., 4, 1057145
Pusu, J., 7, 169137, 878140
Put, J., 5, 637109
Puterbaugh, W. H., 2, 1821, 28022, 3, 91515
Putskykin, Yu. G., 2, 854236
Patt, S. R., 6, 1003136, 1004137
Puttaraja, S., 3, 38661, 39261
Putt, M., 3, 87250
Putt, R., 6, 243100
Puttner, R., 7, 2971
Pyatnova, Y. B., 8, 756143
Pye, E. K., 2, 1104132
Pye, W. E., 5, 406323, 6, 814188
Pyke, R. G., 4, 27235, 27535
Pyle, J. L., 2, 823113, 3114
Pyle, R. E., 8, 30048
Pym, F. L., 7, 769240, 770240
Pyne, S. G., 1, 26856, 41140, 51320, 51558, 3, 57372, 59672, 59972, 60272, 60772, 4, 2792, 37104, 39111, 1112, 216124, 221278, 279221, 251144, 80960, 6, 152138, 153138, 7, 40055, 8, 50370
Pynn, H. Y., 7, 76388, 76688
Pyryalova, P. S., 8, 29813
Pyszczek, M. F., 8, 44796
Pytylewski, D., 8, 2620, 2720, 3620, 5420, 5520, 6020, 7020
Pyun, C., 1, 9771, 3, 7992, 4, 48855, 5, 4037, 404718, 6, 74477, 8, 24034, 24764, 25034
Samoilova, M. Y., 4, 1058150
Samokhvalov, G. I., 8, 9567
Samori, B., 5, 99131
Sampath, V., 3, 1025; 4, 10335, 36
Samplavskaya, K. K., 3, 319132
Samuel, O., 7, 4W2
Sanchez, E. L., 4, 103326, 103Pa, 104626a, 105lXa
Sanchez-Ferrando, F., 2, 38138
Sanchez Ballesteros, J., 2, 357I40
Sande, A. R., 8, 537179
Sandehr, L. O., 4, 52G7
Sanders, G. L., 4, 744134
Sanderson, J. J., 2, 73516
Sandman, D. J., 4, 476Is5
Sandmeier, D., 6, 193208, 449115
Sandr6-Le Craz, A., 747509w*100, 74899J00; 8, 36411*23, 36530, 38Z5
Sanfilippo, J., 2, 11644, 426109, 431134; 2, 28056, 3, 2485, 25121, 26923, 4182, 4191, 482, 49497, 5027, 7, 27912, 7442, 84560, 8, 4041, 850121, 851133
Sanfilippo, L. J., 3, 8621
San Filippo, P., 1, 447108, 751100
San Filippo, P. J., 4, 57313, 61473571379, 841138, 905208
San Filippo, P. J., Jr., 1, 11644, 426109, 431134; 2, 28056, 3, 2485, 25121, 26923, 4182, 4191, 482, 49497, 5027, 7, 27912, 7442, 84560, 8, 4041, 850121, 851133
Sanfilippo, J. L., 3, 8621
San Filippo, P., 1, 447108, 751100
Sandb erg, B., 3, 6399
San ader, A., 8, 53719
Sandefur, L. O., 3, 844, 564, 4, 189106, 244177, 25517, 2607
Sand el, V., 4, 52037
Sander, J., 5, 11266
Sander, M., 7, 76226
Sander, W., 6, 96052, 8, 349136
Sanders, A., 6, 69092
Sanders, G. L., 4, 744134
Sanders, H. P., 6, 770167, 8, 948147
Sanderson, D. R., 2, 727134; 5, 76226
Sanderson, J. E., 3, 634116
San derson, J. J., 2, 73516
Sanderson, P. E. J., 4, 68237; 6, 1752, 7, 64732; 8, 788120
Sandhu, M. A., 2, 96246
Sandifer, R. M., 2, 51245, 52374
Sandler, R., 4, 315524, 1018222, 1020233, 6, 294233, 685346, 690346, 692346, 726188, 7, 7414650, 74646, 747590100, 74899100, 8, 3641123, 36530, 3823
Sandman, D. J., 4, 476155
Sandmeier, D., 6, 193208, 449115
Sandmeier, R., 4, 319292k
Sandofer, C., 7, 979118
Sandoval, C., 1, 54435
Sandoval, B. S., 4, 5739, 614378
Sandré-Le Craz, A., 5, 78929
Stamford

Ssebuwufu, P. J., 4, 60595
Staab, E., 7, 384146, 39928, 4003838b, 40638, 40948, 41538

Staab, H. A., I, 42396, 3, 87782, 927495,0, 6, 614457, 7, 59525, 8, 271104
Stabba, R., 8, 74256, 75256
Stabler, R. S., 8, 85060
Stabler, S. R., B, 8, 50118, 66118
Stacey, F. W., 4, 279110, 77045
Stacey, M., 2, 73622, 7, 15146, 76028
Stacey, N. A., I, 56828, 6, 102898
Stach, H., I, 84348, 8982a
Stache, U., 7, 12442
Stachsel, J., I, 28611
Stachulschi, A. V., 6, 64492
Stacino, J.-P., 8, 84788880d
Stackebrandt, J., 2, 10907
Stacy, G. W., I, 22625, 7, 76039
Stadler, H., 6, 77863
Stadler, M., 5, 850152
Stadler, P. A., 3, 1263132, 34623, 35139, 6, 494136, 91939
Stadlwieser, J., 7, 274139
Stadelh, C. F., 7, 274139
Stanaszek, R. S., 8, 278106, 66310
Stam, C. H., 1, 25126, 28106, 41269; 3, 2153, 21122; 4, 69152, 98158, 37385, 37480, 936151, 937157, 5, 100155, 6, 759140
Sta, C., I, 22384, 22554c, 3, 799354, 4, 34799, 37000, 37230, 6, 76816, 77616, 7, 535454, 8, 352448, 710154, 71737
Sred oxide, S. I, 237142
Sreekumar, C., I, 757128, 3, 19550, 6, 17450
Sridar, V., 3, 3809, 4, 79130, 80112, 82050
Sridaran, P., 4, 45331, 46931
Sridharan, V., 4, 84878
Srikrishna, A., 4, 79370, 5, 22591, 768124, 779124, 83971, 8, 566546
Srimannarayana, G., 7, 136112, 137112
Srinivasa, R., 3, 59693, 72730,31
Srinivasachar, K., 5, 9071, 95754, 63966
Srinivasan, A., 4, 190107, 6, 94140
Srinivasan, C., 7, 765154
Srinivasan, C. V., 1, 41041, 47378, 7, 73732
Srinivasan, K., 5, 678167
Srinivasan, K. G., 3, 3807
Srinivasan, K. V., 8, 36644
Srinivasan, N. S., 7, 768207
Srinivasan, P. R., 1, 294391
Srinivasan, P. S., 6, 4637, 43727, 45327, 45527, 45627, 7, 283173, 284162
Srinivasan, R., 5, 13351, 1958, 1961313, 586205, 64714, 649421, 65824, 66134, 67096, 703527; 8, 47513
Srinivasan, V., 3, 3807
Srinivasastava, R.C, 7, 775346
Srivastava, A.K., 6, 524358
Srivastava, P. C., 6, 478102
Srivastava, R.C, 3, 82634, 5, 85
Srivastava, R.D., 7, 24796
Srivastava, S., 5, 436155, 8, 551, 59744, 60626
Srivastava, T.N., 7, 775346
Srivastava, T.S., 1, 29228
Srivastava, V., 6, 51110
Srivatsas, J., 7, 7918
Sma, A., 4, 97071
Smic, T., 7, 4121
Srogl, J., 8, 274138
<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synder</td>
<td>F. F.</td>
<td>4</td>
<td>456-99</td>
</tr>
<tr>
<td>Sylvester</td>
<td>A. P.</td>
<td>7</td>
<td>74256</td>
</tr>
<tr>
<td>Swinerton</td>
<td>G.</td>
<td>3</td>
<td>284-33, 70418, 70617, 70717</td>
</tr>
<tr>
<td>Synder</td>
<td>J. P.</td>
<td>6</td>
<td>935172</td>
</tr>
<tr>
<td>Synder</td>
<td>J. P.</td>
<td>6</td>
<td>935102</td>
</tr>
<tr>
<td>Synder-Lyons</td>
<td>M. R.</td>
<td>4</td>
<td>81620</td>
</tr>
<tr>
<td>Syner-Lyons</td>
<td>M. R.</td>
<td>4</td>
<td>81620</td>
</tr>
<tr>
<td>Syner-V. G.</td>
<td>8</td>
<td>7651</td>
<td></td>
</tr>
<tr>
<td>Syner-V. K.</td>
<td>7</td>
<td>4513</td>
<td></td>
</tr>
<tr>
<td>Syrota</td>
<td>A.</td>
<td>8</td>
<td>3546, 6646</td>
</tr>
<tr>
<td>Syrova</td>
<td>G. P.</td>
<td>7</td>
<td>773304</td>
</tr>
<tr>
<td>Sytyn</td>
<td>V. N.</td>
<td>2</td>
<td>933309</td>
</tr>
<tr>
<td>Syuabae</td>
<td>R. D.</td>
<td>6</td>
<td>553278, 554278, 741773</td>
</tr>
<tr>
<td>Szabo</td>
<td>A. E.</td>
<td>5</td>
<td>583186, 584194</td>
</tr>
<tr>
<td>Szabo</td>
<td>A. G.</td>
<td>7</td>
<td>82131</td>
</tr>
<tr>
<td>Szabo</td>
<td>G.</td>
<td>7</td>
<td>777179</td>
</tr>
<tr>
<td>Szabo</td>
<td>K.</td>
<td>8</td>
<td>75413</td>
</tr>
<tr>
<td>Szabo</td>
<td>L.</td>
<td>2</td>
<td>817199, 851221, 6, 91736</td>
</tr>
<tr>
<td>Szabo</td>
<td>W. A.</td>
<td>5</td>
<td>105189</td>
</tr>
<tr>
<td>Szajewski</td>
<td>R. P.</td>
<td>3</td>
<td>902118, 8, 87339, 93997</td>
</tr>
<tr>
<td>Szántay</td>
<td>C.</td>
<td>2</td>
<td>81272, 817199, 851221, 4, 33, 96168, 6, 91736, 7, 746191, 8, 266235</td>
</tr>
<tr>
<td>Szarek</td>
<td>W. A.</td>
<td>2</td>
<td>167158, 64278, 64378, 6, 73837, 73937, 7, 25855, 274140, 580146, 71278, 8, 794173</td>
</tr>
<tr>
<td>Szarci</td>
<td>A. C.</td>
<td>3</td>
<td>124229, 125229, 6, 132124</td>
</tr>
<tr>
<td>Szczepeanski</td>
<td>B. W.</td>
<td>2</td>
<td>10564, 10764, 5, 40414, 7, 67330, 695139, 8, 354174</td>
</tr>
<tr>
<td>Sze</td>
<td>S. N.</td>
<td>4</td>
<td>93094</td>
</tr>
<tr>
<td>Szechenuri</td>
<td>B.</td>
<td>2</td>
<td>53519, 8, 21981</td>
</tr>
<tr>
<td>Szemljes</td>
<td>G.</td>
<td>3</td>
<td>62517, 4, 1009145, 1085108, 1099146, 110019190, 5, 6414, 7, 4751, 47773</td>
</tr>
<tr>
<td>Szejka</td>
<td>W.</td>
<td>8</td>
<td>21227</td>
</tr>
<tr>
<td>Szegfli</td>
<td>J.</td>
<td>8</td>
<td>224107, 225103</td>
</tr>
<tr>
<td>Szekely</td>
<td>L.</td>
<td>1</td>
<td>708232, 2, 52917</td>
</tr>
<tr>
<td>Szekerke</td>
<td>M.</td>
<td>2</td>
<td>73517</td>
</tr>
<tr>
<td>Szekaczky</td>
<td>Z.</td>
<td>7</td>
<td>80139</td>
</tr>
<tr>
<td>Szent-Gyogyi</td>
<td>A.</td>
<td>8</td>
<td>87309</td>
</tr>
<tr>
<td>Szeto</td>
<td>K. S.</td>
<td>3</td>
<td>92748</td>
</tr>
<tr>
<td>Szevereny</td>
<td>N. M.</td>
<td>1</td>
<td>336143, 436135, 2, 100110</td>
</tr>
<tr>
<td>Szevereny</td>
<td>Z.</td>
<td>7</td>
<td>558180, 559150, 560180, 561180</td>
</tr>
<tr>
<td>Szepespeanski</td>
<td>H.</td>
<td>4</td>
<td>399222</td>
</tr>
<tr>
<td>Szilagyi</td>
<td>L.</td>
<td>5</td>
<td>438164, 534194</td>
</tr>
<tr>
<td>Szilagy</td>
<td>S.</td>
<td>8</td>
<td>407599</td>
</tr>
<tr>
<td>Szirmai</td>
<td>R. P.</td>
<td>3</td>
<td>902118, 70418, 70617, 70717</td>
</tr>
<tr>
<td>Syntyn</td>
<td>V. N.</td>
<td>2</td>
<td>933309</td>
</tr>
<tr>
<td>Szostak-Rzepeiak</td>
<td>B.</td>
<td>2</td>
<td>78752</td>
</tr>
<tr>
<td>Szpilfogel</td>
<td>S.</td>
<td>8</td>
<td>29348</td>
</tr>
<tr>
<td>Sztafajnik</td>
<td>P.</td>
<td>8</td>
<td>11121, 12321</td>
</tr>
<tr>
<td>Szuchnik</td>
<td>A.</td>
<td>7</td>
<td>775130</td>
</tr>
<tr>
<td>Szulczezki</td>
<td>K.</td>
<td>6</td>
<td>43613</td>
</tr>
<tr>
<td>Szurdoki</td>
<td>F.</td>
<td>7</td>
<td>74693</td>
</tr>
<tr>
<td>Szwarzek</td>
<td>M.</td>
<td>7</td>
<td>85113</td>
</tr>
<tr>
<td>Szyczkowski</td>
<td>J.</td>
<td>2</td>
<td>538194</td>
</tr>
<tr>
<td>Szymanski</td>
<td>R.</td>
<td>8</td>
<td>436173</td>
</tr>
<tr>
<td>Szymonjak</td>
<td>J.</td>
<td>2</td>
<td>538153</td>
</tr>
<tr>
<td>Szymoninkova</td>
<td>M. J.</td>
<td>5</td>
<td>984132</td>
</tr>
<tr>
<td>Syza</td>
<td>M. B.</td>
<td>5</td>
<td>225172, 8, 504182, 507182</td>
</tr>
</tbody>
</table>

Cumulative Author Index

Szymula
Thorsen, P. C., 3, 1050
Thompson, J. K., 1, 7441, 2, 21615, 4, 11236, 6, 1458, 1658, 7, 2569
Threadgill, M. D., 4, 444200, 8, 916101, 917101, 918101, 919101, 920101
Threlfall, T. L., 9, 9079
Threlkel, R. S., 8, 6761
Throckmorton, J. R., 1, 878107
Throop, L. J., 8, 321101, 102
Thuan, S. L. T., 3, 72814
Thuillier, A., 2, 8614, 3, 124250, 4, 85745, 5, 55862, 55964, 56065, 66076, 676137, 589210, 61, 6, 453141, 455141, 152153, 706139, 8, 26827
Thuillier, G., 8, 58739
Thuillier, G. L., 4, 359160
Thumel, R. P., 6, 11412, 9601
Thu, K., 3, 89032
Thurkauf, A., 7, 458115
Thurmaier, R. J., 6, 95944
Thurmes, W. N., 7, 55360
Thurn, R. D., 6, 95417
Thurston, J., 4, 812182
Thuy, V. M., 6, 675301
Thweatt, J. G., 4, 45726, 120b, 5, 71155, 68550
Thyagarajan, B. S., 1, 528112, 3, 152192, 1644, 2031, 8031, 80913, 81712, 4, 3101, 4101, 4711, 5311, 6512a, 66110, 826158, 86343, 84412, 7, 8411, 8511, 92108, 106118, 215112, 8, 541207
Thyes, M., 6, 931131, 8, 374144
Tiberi, R., 6, 6251
Tice, C. M., 2, 161137, 4, 255193, 5, 808110, 7, 36737, 7, 36737
Tichman, P., 7, 478138
Tichy, M., 2, 841185, 5, 709496
Ticozzi, C., 1, 51451, 8, 851137, 171
Tidbury, R. C., 4, 37016
Tidwell, E., 2, 4951
Tideswell, J. I., 1, 780299, 6, 860172, 996108
Tidwell, M. Y., 2, 871123
Tidwell, T. H., 1, 418734, 2, 107596, 108596, 106196, 3, 587141, 4, 297279, 298281, 299280, 313416, 313146, 3011, 10413, 5, 87421, 901123, 7, 30265
Tice, C. M., 2, 161137, 4, 255193, 5, 808110, 7, 36737, 7, 36737
Tichman, P., 7, 478138
Tichy, M., 2, 841185, 5, 709496
Ticozzi, C., 1, 51451, 8, 851137, 171
Tidbury, R. C., 4, 37016
Tidwell, T. H., 1, 418734, 2, 107596, 108596, 106196, 3, 587141, 4, 297279, 298281, 299280, 313416, 313146, 3011, 10413, 5, 87421, 901123, 7, 30265
Tice, C. M., 2, 161137, 4, 255193, 5, 808110, 7, 36737, 7, 36737
Tichman, P., 7, 478138
Tichy, M., 2, 841185, 5, 709496
Ticozzi, C., 1, 51451, 8, 851137, 171
Tidbury, R. C., 4, 37016
Tidwell, E., 2, 4951
Tideswell, J. I., 1, 780299, 6, 860172, 996108
Tidwell, M. Y., 2, 871123
Tidwell, T. H., 1, 418734, 2, 107596, 108596, 106196
Trammell, G. L., 3, 35143a
Trainor, G., 1, 294394'
Trachtenberg, E. N., 7, 84401
Traas, P.
Tradivel, R., 7, 81075
Traf, D., 8, 88059
Tramer, J., 8, 18514, 2064
Tran, H. W., 6, 8176, 8276, 8180
Tranchepain, I., 3, 258127
Tranchepain, L., 7, 487146, 495146
Tran Huu Dau, M.-E., 1, 49
Tranne, A., 5, 90275
Trapani, G., 2, 18742, 8, 65797
Trapsentier, P. T., 4, 48140
Tass, P. C., 2, 78221
Trave, R., 3, 38653, 39598, 8, 349145, 146
Travers, S., 1, 21849, 22049, 22349
Traverso, J., 6, 570042
Traverso, J. N., 6, 570042
Travis, E. G., 7, 767192
Traxler, J. T., 8, 950160
Traxler, M. D., 2, 153107, 210111, 25017, 26137, 6753
Trayhanovsky, W. S., 4, 52442
Traylor, P. S., 7, 12513, 135
Traylor, T. G., 4, 294247, 302332, 31483, 315483, 109976;
5, 71163, 7, 12913, 1359549, 59714, 6000, 60718, 8,
9907, 75063
Traynord, J. C., 7, 500242
Traynelis, V. J., 2, 76517, 6, 96054, 7, 22344, 66145,
764123
Traynham, J. G., 3, 37021, 390813, 392813, 649207;
4, 279110, 28021, 297277, 7, 15149
Traynor, L., 2, 153109
Traynor, S. G., 3, 770174, 5, 707013
Treadgold, R., 2, 65119
Trenor, L. R., 3, 10418
Treasurywala, A. M., 6, 92148
Trebellas, J. C., 5, 80073
Trecarten, M., 7, 39521
Trecker, D. J., 3, 334220, 5, 6679, 102581, 7, 230135, 136,
766174
Treco, B. G. R. T., 3, 213151
Trecourt, F., 1, 474249, 96
Tred, A., 5, 422248, 42328
Tred, W., 6, 4942
Trefonas, L. M., 1, 60360, 7536, 46855, 6, 96274
Trehan, A. I., 765165
Trehan, R. I., 5, 515115, 54718
Trehan, S., 2, 89343, 3, 497106, 5, 774173, 780173
Treiber, A. J. H., 4, 100015
Trebs, W., 2, 902341, 7, 924246, 934231, 991133, 15414
Treier, K., 5, 442295
Trejo, W. H., 5, 8633
Trekoval, J., 1, 1082184, 41944
Tremble, J., 3, 162177
Tremelling, M. J., 4, 458667, 463667
Tremiere, B., 5, 105240
Tremper, A., 5, 948292, 949284, 95084
Tremper, H. S., 8, 21656, 48686, 487635, 18134, 18144
Trenbeath, S., 2, 746108, 76256, 82420
Trend, J. E., 5, 43966, 6, 102688, 102788
Trentkle, B., 5, 68973
Trepka, R. D., 7, 483125
Treppendahl, S., 6, 547657, 570943, 945
Trepow, W., 6, 93345
Treshchov, G. E., 2, 53432, 53518
Uyehara, T., 1, 10089; 2, 120175, 948181; 3, 73045; 4, 23814, 247106, 257106, 260106; 5, 6433, 225103,104, 226104

Uyeo, S., 1, 12375, 37383; 6, 820111; 8, 52747, 8364, 8424, 99339

Uzan, R., 8, 552357,358
Usarewicz, A., 8, 87541
Uzlov, L. A., 7, 29438
Uzzell, P. S., 6, 7349
<table>
<thead>
<tr>
<th>Author</th>
<th>Volume(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vonwiller, S. C.</td>
<td>2</td>
<td>1090-72, 1093-71, 1094-71</td>
</tr>
<tr>
<td>Voorbergen, P.</td>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td>Vöpel, K. H.</td>
<td>2</td>
<td>366-18, 783-30</td>
</tr>
<tr>
<td>Vo-Quang, L.</td>
<td>4</td>
<td>48-13, 1003-64, 8, 798-71</td>
</tr>
<tr>
<td>Vo-Quang, Y.</td>
<td>4</td>
<td>48-37, 1007, 8, 798-71</td>
</tr>
<tr>
<td>Vora, M.</td>
<td>3</td>
<td>619-24</td>
</tr>
<tr>
<td>Vora, M. M.</td>
<td>2</td>
<td>828-134</td>
</tr>
<tr>
<td>Vora, V. C.</td>
<td>7</td>
<td>71-95</td>
</tr>
<tr>
<td>Vorrüghen, H.</td>
<td>1</td>
<td>773-203, 203a; 2, 358-153, 381-38</td>
</tr>
<tr>
<td>Vorlflnder, D.</td>
<td>2</td>
<td>147-16; 5, 752-49; 6, 970-121</td>
</tr>
<tr>
<td>Vorobeva, L. I.</td>
<td>7</td>
<td>75-114</td>
</tr>
<tr>
<td>Voronkov, V. V.</td>
<td>3</td>
<td>328-1</td>
</tr>
<tr>
<td>Voronenkov, V. V.</td>
<td>4</td>
<td>291-10, 461-100, 475-100; 6, 509-245, 282; 550-73, 577-97; 8, 763-1, 765-12, 769-12, 25, 770-33, 34, 38, 771-19, 42, 782-90</td>
</tr>
<tr>
<td>Vos, A. I.</td>
<td>1</td>
<td>299-22</td>
</tr>
<tr>
<td>Vos, G. J. M.</td>
<td>4</td>
<td>45-126, 5, 676, 686-48, 687-48</td>
</tr>
<tr>
<td>Vos, M. J.</td>
<td>1</td>
<td>10-35, 11-59</td>
</tr>
<tr>
<td>Vos, M.</td>
<td>7</td>
<td>128-11</td>
</tr>
<tr>
<td>Voskresenskaya, T. P.</td>
<td>8</td>
<td>608-14</td>
</tr>
<tr>
<td>Voss, E.</td>
<td>2</td>
<td>356-132, 5, 458-73, 459-72, 461-106</td>
</tr>
<tr>
<td>Voss, G.</td>
<td>6</td>
<td>488-12, 508-12, 509-12, 512-12, 545-12, 6, 73-29</td>
</tr>
<tr>
<td>Voss, J.</td>
<td>5</td>
<td>436-37, 6, 419-5, 420-6, 425-1, 436-30, 437-6, 444-98, 445-5, 448-111, 449-6, 450-6, 453-6, 454-5, 455-6, 456-3, 475-92, 478-104, 482-91, 8, 303-100, 303-102, 304-101</td>
</tr>
<tr>
<td>Voss, S.</td>
<td>4</td>
<td>1092-144, 1093-144, 1102-199</td>
</tr>
<tr>
<td>Voss, W.</td>
<td>4</td>
<td>47-13</td>
</tr>
<tr>
<td>Vostrikova, O. S.</td>
<td>4</td>
<td>875-56, 8, 697-134, 698-140</td>
</tr>
<tr>
<td>Voticky, Z.</td>
<td>6</td>
<td>524-368</td>
</tr>
<tr>
<td>Vöttler, H.-D.</td>
<td>5</td>
<td>497-124</td>
</tr>
<tr>
<td>Vottero, P.</td>
<td>1</td>
<td>212-4</td>
</tr>
<tr>
<td>Vougioukas, A. E.</td>
<td>1</td>
<td>328-77, 343-17, 545-17; 2, 310-2, 311-32, 654-150, 6, 237-61</td>
</tr>
<tr>
<td>Vowinkel, E.</td>
<td>6</td>
<td>244-111, 8, 815-23, 912-92</td>
</tr>
<tr>
<td>Voyer, R.</td>
<td>5</td>
<td>88-48</td>
</tr>
<tr>
<td>Voyle, M.</td>
<td>4</td>
<td>1618-78, 524-60</td>
</tr>
<tr>
<td>Vrachnou-Astra, E.</td>
<td>3</td>
<td>565-20</td>
</tr>
<tr>
<td>Vranesic, B.</td>
<td>7</td>
<td>380-102, 8, 11-90</td>
</tr>
<tr>
<td>Vredenburgh, W. A.</td>
<td>8</td>
<td>564-442</td>
</tr>
<tr>
<td>Vreencur, D.</td>
<td>3</td>
<td>180-549</td>
</tr>
<tr>
<td>Vreitblad, P.</td>
<td>2</td>
<td>1104-132</td>
</tr>
<tr>
<td>Vrielink, J. J.</td>
<td>4</td>
<td>52-146</td>
</tr>
<tr>
<td>Vries, T. R.</td>
<td>4</td>
<td>12-39</td>
</tr>
<tr>
<td>Vriesema, B. K.</td>
<td>3</td>
<td>229-224, 224a; 6, 70-18, 8, 84-12</td>
</tr>
<tr>
<td>Vrieze, K.</td>
<td>2</td>
<td>114-121</td>
</tr>
<tr>
<td>Vrijhof, P.</td>
<td>5</td>
<td>584-192</td>
</tr>
<tr>
<td>Vroegop, P. J.</td>
<td>5</td>
<td>708-41</td>
</tr>
<tr>
<td>Vu, B.</td>
<td>7</td>
<td>825-90</td>
</tr>
<tr>
<td>Vuilhorgne, M.</td>
<td>2</td>
<td>1018-45</td>
</tr>
<tr>
<td>Vuillerme, J.-P.</td>
<td>7</td>
<td>92-51</td>
</tr>
<tr>
<td>Vukov, R.</td>
<td>7</td>
<td>722-21</td>
</tr>
<tr>
<td>Vull'fson, N. S.</td>
<td>2</td>
<td>277-8, 285-90, 811-70, 813-70, 814-70</td>
</tr>
<tr>
<td>Vullioud, C.</td>
<td>5</td>
<td>362-93, 363-93b</td>
</tr>
<tr>
<td>Vullo, A. L.</td>
<td>6</td>
<td>178-21</td>
</tr>
<tr>
<td>Vuorinen, E.</td>
<td>4</td>
<td>106-174</td>
</tr>
<tr>
<td>Vuper, M.</td>
<td>5</td>
<td>199-57</td>
</tr>
<tr>
<td>Vuuren, G.</td>
<td>4</td>
<td>1063-70</td>
</tr>
<tr>
<td>Vuuren, P. J.</td>
<td>4</td>
<td>1024-26</td>
</tr>
<tr>
<td>Vyazankii, N. S.</td>
<td>2</td>
<td>365-14, 8, 546-10</td>
</tr>
<tr>
<td>Vyazankina, O. A.</td>
<td>8</td>
<td>546-10</td>
</tr>
<tr>
<td>Vyazgin, A. S.</td>
<td>4</td>
<td>50-142</td>
</tr>
<tr>
<td>Vayaznikovtsev, L. V.</td>
<td>4</td>
<td>50-142</td>
</tr>
<tr>
<td>Vysotskii, A. V.</td>
<td>3</td>
<td>328-172</td>
</tr>
<tr>
<td>Vysstrijl, A.</td>
<td>3</td>
<td>757-124</td>
</tr>
<tr>
<td>V'yunov, K. A.</td>
<td>4</td>
<td>329-1, 344-1, 350-1, 351-1</td>
</tr>
</tbody>
</table>
Watanabe, Y., 1, 50615; 2, 357146, 358146, 151; 3, 507175, 96016; 101810, 102110, 10284; 4, 31370, 602264, 60946, 644266, 79249, 93049, 94129, 5, 42169, 89448, 6, 83364, 130364, 20664, 43864, 6022, 6033, 6053, 898703, 901133, 966774, 7, 245774, 7628, 8, 3641, 548161, 558161, 663161, 182, 28924, 291352, 2924, 2936, 395126, 533150, 56867, 591164, 61452, 84675, 86418.

Watamuki, M., 7, 73106.

Waterfield, E. L., 1, 18974; Waterhouse, I., 1, 793273, 794273, 804273.*

Watkins, B. F., 7, Slow.

Watkins, E. K., 4, 87452.

Watkin, D., 1, 24355.

Watkins, N. G., 6, 790116.

Watson, D. G., 1, 23, 373; 6, 43569.

Watson, B. T., 4, 80W0; Watson, K. G., 6, 4287.

Watson, H. L., 1, 792273, 794723, 794273, 804273.

Watson, M. R., 8, 323329, 325329, 329329, 3235, 328329, 5, 5143, 527830, 6, 94142, 8, 11452, 97321.

Wattey, J. W. H., 5, 70216, 71610.

Wattimena, F., 8, 2859, 2929, 2939.

Wattley, R. V., 2, 227160, 821104, 852104.

Watts, C. R., 4, 107530, 1097164, 5, 24720, 248264, 249264, 62530, 62624, 63060.

Watts, J. C., 6, 2707.

Watts, L., 3, 8530, 4, 70126.

Watts, O., 4, 8262.

Watts, P. H. I., 1, 29447.

Watts, W. E., 2, 96244, 3, 82238, 83649, 92135, 4, 8261, 393347, 5182, 5192234, 5213234, 5223234, 5302, 54110, 110, 59, 5934, 95489, 96162, 5, 79434, 980433, 10374, 10394, 10404, 10494, 11388, 11635, 11838, 6, 78656.

Watzel, R., 8, 52871, 97108.

Watt, F. J., 275112.

Waugh, M. A., 2, 52434, 3, 34196, 6, 10667, 7, 7014.

Waquier, J. P., 8, 41922, 42022, 4320, 43622.

Wautier, H., 3, 12044, 14244.

Wawer, I., 6, 576975.

Wawrzak, Z., 4, 8356.

Wawrzyniewicz, W., 4, 100120.

Wawzonek, S., 3, 92400, 4, 86818, 6, 20966; 7, 80673, 8, 2363, 2423, 2474, 2484, 2494.

Way, T. F., 5, 73204.

Wayaku, M., 3, 104111; 7, 107168.

Wayda, A., 6, 5946, 8, 45824.

Waykole, L., 1, 571279, 7, 13162; 8, 61591, 6691.

Wayland, B. B., 8, 66971, 67071, 6717.

Waymouth, R. M., 6, 83110, 83210, 84810.

Wayne, W., 2, 14102, 2408.

Weakley, T. J. R., 6, 83655.

Weatherbee, C., 2, 95730, 9693, 8343.

Weaver, B. N., 8, 70227, 71277.

Weaver, D. F., 1, 52817.

Weaver, J., 4, 71270.

Weaver, M. A., 2, 3873.

Weaver, T. D., 2, 841, 3, 55283, 8, 52748.

Weaver, W. M., 6, 20317, 7, 65518.

Weaver, W. W., 7, 2912.

Weavers, R. T., 4, 80314, 8, 33334.

Webb, A. D., 2, 17310, 83220.

Webb, C. F., 5, 34571a, 34671a.

Webb, F. J., 1, 50612, 630738, 6313, 63638.

Webb, I. D., 3, 42889.

Webb, J. L., 4, 27013.

Webb, K. S., 4, 1815, 249130, 257130, 262130, 6, 10649, 7, 62542, 627242, 43.

Webb, M., 8, 19832.

Webb, M. B., 5, 116617, 116717.

Webb, R. F., 6, 62031, 62513.

Webb, R. R., 2, 69679.

Webb, R. R., Jr., 4, 29521, 399216, 3999260, 404216, 40552, 741135, 5, 43414, 576319, 140, 141, 6, 11590, 9607, 8, 340153.

Webb, T. H. I., 1, 75934.

Webb, T. R., 4, 828315, 6, 938126.

Webb, W. G., 8, 3059.

Webber, A., 6, 17683, 8, 595747.

Webber, G. M. J., 3, 8167.

Webber, S. E. I., 8, 80819, 3, 2174.

Webb, A., 3, 174276, 4, 100712, 1008134, 5, 97, 5915, 596138, 498836, 6, 23474.

Webber, E. A., 1, 4001, 2, 11307, 11633, 25414, 2554, 25671, 8, 38663.

Weber, E. I., 1, 1587, 18034, 29438, 30438, 6153.

Westbrook, K., 7, 4962
Westorp, I., 6, 9856
Westrop, I., 3, 584130
Wester, R. T., 1, 7445; 4, 650226; 5, 112336; 6, 1458; 16, 158
Westerberg, A. D., 8, 51121; 66121
Westerdin, P., 6, 619116
Westhof, P., 8, 52885.8
Westrink, B. C., 2, 9026
Westruil, C., 3, 4955; 8, 3847
Westerman, I. J., 6, 619116
Westermann, J., 6, 619116
Westerm, M., 6, 619116
Westwood, K. T., 2, 78436, 79262; 6, 48984
Westwood, D., 5, 68736
Wettach, R. M., 6, 68736
Wetter, H., 6, 68736
Wettlaufer, D. G., 6, 68736
Wettstein, A., 6, 68736
Wetterham, K. E., 6, 89436
Wetzel, P., 6, 89436
Weuthen, M., 6, 89436
Wexler, B. A., 3, 70917; 8, 93138
Wey, J. E., 8, 93138
Weyenberg, D. R., 8, 93138
Weygand, C., 8, 93138
Weygand, F. L., 1, 73736, 37487, 84446; 3, 88784, 8884, 8934;
89796, 89876, 9004, 9034, 6, 43737, 63519, 63619;
64256, 669225, 669225; 7, 21310120, 8, 26994;
270g97100
Weymuth, C., 4, 764222, 765222, 808155
Weyna, P. L., 4, 10057; 10, 2067
Whalen, D. L., 3, 903120
Whalen, R., 6, 1650
Whaley, A. M., 4, 27016, 27116; 6, 20410
Whaley, W. M., 2, 101625; 6, 7365
Whalley, W., 1, 880171, 5, 796247, 8, 96475
Whan, D. A., 8, 43164
Whang, J. J., 4, 10793
Whango, M.-H., 1, 506; 3, 21315; 4, 52146; 17017; 6, 135
Wharry, D. L., 8, 43776
Wharton, P. S., 3, 39168, 653226, 89252; 5, 79448;
8094112; 6, 83772; 10, 85872, 10448, 105484, 105524; 8,
34110120, 92616, 92719
Wheatley, P. J., 4, 51915, 52013
Wheel, D. M. S., 1, 2435; 2, 741144; 8, 541207
Wheel, H. L., 2, 4079
Wheeler, M. H., 1, 2435; 8, 541207
Wheeler, N. G., 7, 7208
Wheeler, O. H., 7, 73838; 8, 23925, 24025, 24125
Wheeler, R. A., 7, 42220
Wheeler, T. N., 4, 105024
Whelan, J., 4, 56436, 599221, 624221, 641221, 653445; 6,
450117
Wheland, R. C., 5, 65120, 118815
Whetstone, R. B., 8, 42822
Whipp, P. O., 4, 298292
Whippe, E. B., 5, 168103
Whitby, R., 3, 225224, 4446667; 4, 87883, 1089128,
10921128, 1093128
Whitcombe, G. P., 7, 31110, 31220
Whitcombe, M. J., 8, 347144
White, A. A., 1, 46435
White, A. D., 8, 67536; 7, 31130, 31239, 489172
White, A. H., 1, 133161, 16707209, 210212, 21721819,
36233120, 37177175, 50225; 2, 60925; 5, 144104
White, A. M., 3, 33214; 4, 305364366367, 306366
White, A. M. S., 8, 31438, 31534
White, A. W., 4, 192115, 5, 814139
White, A. W. C., 7, 231137
White, C., 8, 442344, 454200
White, C. T., 2, 221425, 226158
White, D. A., 3, 642114; 4, 58736, 6651, 6706, 6748
White, D. E., 7, 25427
White, D. H., 3, 592175; 6, 83545; 7, 72337
White, D. L., 4, 6954
White, D. M., 5, 65349
White, D. N., 8, 724170
White, D. R., 1, 8276; 2, 42025, 42741; 7, 16030
White, W. E., 2, 110220; 6, 291199, 84390
White, W. E., 8, 326222, 33822
White, W. F., 1, 51454; 2, 102666, 3, 72420, 8140; 4, 380119;
6, 74094; 7, 22451, 27436
White, W. L., 6, 477700
White, W. L., 2, 71131
White, J., 2, 87011; 6, 4875860, 48959
White, J. B., 1, 24869, 884130; 5, 79657, 81557
White, J. C., 5, 631; 102378
White, J. D., 1, 131103, 24354, 25930, 403139; 2, 28787;
42158, 54837, 63112; 843135, 3, 21599, 261148, 264148;
35134; 683132, 71422; 4, 33110, 34510; 37343;
Williams, R. M., 1, 12314, 37512, 3752, 3762, 40423, 2, 582107, 649104, 105248, 10754, 107648152, 3, 27726, 79016, 6, 96052, 7, 18367, 22668, 23025, 39933, 55131, 8, 65866

Williams, R. O., 5, 79127, 79927, 82028, 8, 33848

Williams, R. V., 3, 74646, 6, 1003134

Williams, R. W., 7, 54529

Williams, T. H., 7, 67872

Williams, T. M., 2, 32325, 33325

Williams, T. R., 8, 41011

Williams, T. W., 3, 690124

Williams, V. Z., Jr., 3, 334220

Williams, W. G., 7, 78523

Williams, D., 7, 82131

Williamson, D. H., 4, 66511, 66611, 66711, 66911, 5, 916119, 8, 13922, 15222, 15472, 44311, 44718

Williamson, H., 3, 51149

Williamson, K. L., 3, 73942, 4, 24772725, 5, 34772726, 7, 16797120, 8, 89823, 89925

Williamson, M., 5, 120256

Williamson, R., 2, 74014, 7566, 7606

Williamson, S. A., 2, 1079138, 5, 467116, 52668, 5314810

Williamson-Smith, D. L., 8, 890131

William, P. G., 1, 10519, 19015514, 271819, 28141, 28491, 30132, 32157, 37176183, 38184, 41120, 43136141, 2, 10083, 109698, 3, 58591, 75197, 4, 52038, 54228, 5, 137823, 22160, 1102134, 6, 937117, 939117, 94011, 7, 3622830, 8, 54324, 940106

Willis, B. J., 2, 784398, 2, 259276, 7093149

Willis, C. L., 4, 78523

Willis, J. P., 2, 1018156, 7, 73112, 8, 251105

Willis, W. W., Jr., 1, 63445, 63545, 63645, 63745, 63845, 63945, 64445, 64645, 64745, 64845, 66645, 67225103, 672258510, 658251

Willis, W. W., Jr., 1, 1234, 3234, 6, 96588, 7, 30672, 73112, 8, 251105

Willson, T. M., 1, 30316, 63165, 694238, 697238, 7, 18320, 8, 251105

Wilson, A. N., 2, 28456, 7, 73112, 8, 251105

Wilson, D., 1, 4931, 4941, 49511

Wilson, D. R., 1, 4931, 4941, 49511

Wilson, C. V., 7, 7181, 73112, 8, 251105

Wilson, D. A., 7, 29417

Wilson, D. M., 2, 73112

Wilson, D. R., 1, 4931, 503

Wilson, E. A., 7, 7596

Wilson, E. R., 3, 42270, 63539

Wilson, F. B., 3, 38236

Wilson, F. G., 5, 75251

Wilson, G. E., Jr., 2, 80545, 81544, 7, 20773

Wilson, G. S., 7, 765161

Wilson, J. D., 6, 546664, 7, 79823

Wilson, J. G., 7, 6667276

Wilson, J. M., 4, 42642, 42726, 6, 79924

Wilson, J. S., 8, 81943, 82043

Wilson, J. W., 1, 485571011, 49025, 492363739, 49437, 495446, 49851, 49951, 501436, 50229, 2, 572, 3, 199666, 6, 21170, 7, 59757, 8, 17903

Wilson, J. Z., 1, 24864, 74297, 2, 91195, 5, 435150

Wilson, K. D., 1, 48038, 4, 12120566

Wilson, K. E., 8, 16919, 542230, 543230

Wilson, K. J., 6, 450116

Wilson, K. A., 5, 468135

Wilson, M., 8, 198131

Wilson, M. A., 8, 941112

Wilson, M. E., 5, 113114, 117322

Wilson, P., 5, 181155

Wilson, R., 8, 38972

Wilson, R. M., 5, 1543134

Wilson, S. E., 4, 887128130130, 8, 48354, 48554

Wilson, S. L., 7, 16910

Wilson, S. R., 1, 8941561, 2, 106463, 3, 380116, 616134, 4, 290206, 2952218, 398218218, 399218218c, 5, 52348

Wilson, E., 1, 340138, 2, 564328, 6308

Wilson, T. M., 2, 564328, 6308, 655145

Wilson, W., 7, 12013, 8, 52624

Wilt, J. W., 3, 71413, 85317, 6, 48326, 8, 47626, 941114, 942115

Wilt, M. H., 7, 54437

Wilton, D. C., 8, 56112

Wilwerding, J., 5, 341138, 52033

Wilzbach, K. E., 5, 64666, 66235

Wi楼盘ana, K., 7, 99108

Wimmer, E., 1, 92124, 5, 857227

Winans, C. F., 8, 14316, 14466

Winberg, H. E., 8, 65279

Winch, B. L., 3, 79934

Winkler, H., 5, 4511

Wincott, F. E., 2, 57848, 70185, 4, 3396, 3496, 7, 237237

Wincott, F. J., 1, 10351

Windaus, A., 6, 685357

Winders, J. A., 8, 198130

Windholz, T. B., 6, 659796, 8, 49528

Windhövel, U. F., 6, 7345

Windle, J. J., 3, 36645

Winemund, R. J., 8, 99119

Wing, R. E., 7, 2351

Wing, R. M., 4, 608320, 646320, 5, 925156

Wingard, L. B., Jr., 2, 1104132

Wingard, R. E., Jr., 3, 86735, 87335, 5, 60967, 6, 247131

Wingermühle, D., 1, 2342, 2358, 74978, 8168

Wingfield, M., 2, 852235

Wingler, F., 1, 21534
Wong, M. K. Y., 7, 256
Wong, M. S., 7, 763
Wong, M. Y. H., 8, 90
Wong, P. C., 4, 37107, 5, 6451, 65014, 25, 6511, 7, 87511
Wong, P. K., 1, 442178, 2, 93143, 4, 614
Wong, R. Y., 3, 762
Wongs, S., 1, 373
Wong, T., 8, 8849, 8858
Wong, W., 8, 8588
Wong, W. C., 8, 3697, 4290, 6697
Wong, W. S. D., 8, 5496, 6638
Wonnacott, A., 1, 16613, 314128, 323128, 34198, 780228, 3, 1743071273a, 1752728
Woo, E. P., 3, 8736
Woo, J. C., 8, 4451
Woo, P. W. K., 8, 8434, 8464, 8464
Woo, S. H., 2, 8462, 6, 68030
Woo, S. L., 3, 280
Woo, S. O., 3, 68912
Wood, A., 1, 425105, 449200
Wood, A. E., 7, 767102
Wood, A. F., 1, 688116
Wood, A. M., 3, 38349
Wood, C. Y., 2, 104915, 8, 18734
Wood, D. C., 4, 700944, 710447, 71270
Wood, G., 3, 5644, 72728
Wood, G. P., 6, 46323
Wood, G. W., 3, 3803, 38117, 7, 582149
Wood, H. B., 8, 26985
Wood, H. C. S., 2, 45626, 3, 24638, 8, 36976
Wood, J., 6, 219122
Wood, J. L., 4, 348108a, 349108a, 7, 105151
Wood, K. V., 8, 629186
Wood, L. L., 3, 81471
Wood, M. L., 2, 96334
Wood, R. D., 4, 398291, 6, 5277, 7, 40672, 503722
Wood, S. E., 8, 67330
Wood, S. G., 4, 74643
Wood, T. R., 6, 27070
Wood, W. A., 2, 466177, 468117, 8, 36568, 66568
Woodard, R. W., 7, 574275
Woodard, S. S., 3, 225185, 264181, 6, 21, 253, 88105, 89105, 7, 39113, 40677, 40977, 41113, 41213, 41313, 41447, 41457, 42013, 42171, 42377
Woodbridge, D. T., 7, 765166, 769226, 771422, 779592
Woodburn, H., 6, 54651
Woodbury, R. F., 2, 27912, 60560, 7, 144152
Woodcock, D., 2, 110230, 8, 96344, 972114
Woodgate, P. D., 1, 753102, 3, 325137, 67574, 34796, 350121, 351126, 354126, 369122, 370212, 37121, 37722, 554126, 1058149, 7, 12124, 502261, 530233, 53120, 70522, 8, 39010, 31110, 31210, 31310, 944323
Woodhouse, D. L., 2, 72292, 4, 69814
Woodin, R. L., 1, 28716
Woodin, D. J., 6, 547666
Woods, G. F., 3, 84644, 4, 5177, 6, 967101, 7, 582149
Woods, J. C., 6, 80239
Woods, J. M., 7, 73717
Woods, L. A., 1, 1077, 3, 2089, 24419, 4, 148476
Woods, M. C., 3, 38017, 7, 25427
Woods, S. G., 4, 44343
Woods, T. L., 5, 639120
Woods, W. G., 8, 72012
Woodward, B., 8, 65686
Woodward, P., 3, 38010, 4, 712, 5, 113654, 1146107
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wysocki, R. J., Jr.</td>
<td>5, 78271, 26676, 26776,76b, 26876</td>
</tr>
<tr>
<td>Wysong, E.</td>
<td>1, 36754</td>
</tr>
<tr>
<td>Wyss, P. C.</td>
<td>6, 4886</td>
</tr>
<tr>
<td>Wythes, M. J.</td>
<td>1, 449209</td>
</tr>
<tr>
<td>Wyvratt, M. J.</td>
<td>3, 62332,33, 4, 37367, 5, 347734, 6, 106381</td>
</tr>
</tbody>
</table>
Xan, J., 7, 759
Xenakis, D., 6, 790
Xi, S.-K., 2, 765
Xia, C., 4, 452
Xia, Y., 1, 772
Xi, S.-K., 2, 765
Xia, C., 4, 452
Xiang, J.-N., 5, 859
Xiao, C., 1, 212
Xie, G., 7, 446
Xie, Z.-F., 1, 893, 8, 198
Xing, W. K., 8, 371

Xing, Y., 5, 211
Xu, B., 3, 638
Xu, G., 2, 146
Xu, L., 4, 101
Xu, R. X., 2, 743
Xu, S. L., 5, 690
Xu, X., 1, 417
Xu, X.-J., 5, 1039, 1133, 1146
Xu, Y., 4, 854, 7, 579
Xu, Y. C., 5, 1076, 1084, 1096, 1098, 1099, 1104, 1107, 1112, 1113
Xuan, T., 5, 429
Xuong, N. D., 8, 328, 340
Xuong, N. T., 6, 436
Yuasa, Y., 2, 374275, 10608899, 1073141, 4, 410261, 502121122, 8471, 6, 74998
Yue, S., 1, 26836, 3, 599211
Yue, S. T., 1, 85194
Yuen, P.-W., 5, 40418
Yuhara, M., 4, 591118, 613369, 6, 64161
Yukawa, H., 2, 104913
Yukawa, Y., 6, 7991920
Yukhno, Yu. M., 6, 535334
Yuki, H., 1, 147476
Yuki, Y., 1, 5421, 33985
Yukimoto, Y., 2, 90431
Yukizaki, H., 3, 24639, 25739
Yuldashev, Kh. Yu., 3, 321140
Yulina, V. I., 3, 30681
Yun, L. M., 7, 747
Yunker, M., 6, 98769, 8, 21979

Yura, T., 1, 8342121b, 2, 116132, 139; 4, 230266257; 6, 26108
Yura, Y., 1, 36836, 36939; 4, 113164, 5, 71794
Yurchenko, A. G., 3, 30286, 38347
Yur'ev, V. P., 8, 699150
Yur'eva, V. S., 7, 774335
Yus, M., 1, 83094, 3, 25390, 78890; 4, 290200
Yus-Astiz, M., 4, 291219, 30341, 315313
Yuste, F., 1, 54435, 55280; 8, 36867, 37467
Yusufoglu, A., 7, 429151
Yusufov, N. U., 3, 30338
Yuzawa, T., 5, 56497
Yvonne, G. R., 1, 55281
Zhu

Zhu, Z., 4, 62948

Zhu, D. S., 5, 93520

Zhukov, A. G., 3, 30250

Zhuraleva, A. G., 6, 53855

Zhurkovich, I. K., 8, 50049

Zia, A., 6, 25516

Zibarev, A. V., 5, 42286

Zibuck, R., 3, 224173, 6, 136343; 8, 354162

Ziegenbein, W., 3, 2712, 2722

Zieger, H. E., 8, 31426

Ziegler, C., Jr., 4, 7542178, 7552178, 84464, 84580, 84673, 847673, 84973

Ziegler, C. B., 4, 3759377, 746142

Ziegler, Jr., 6, 193296

Zielinski, J., 6, 525383, 77142

Zimmer, D. M., 2, 102450

Zimmerman, A. G., 5, 12517

Zimmerman, H. E., 1, 528112; 2, 153107; 20110, 25037, 26137, 39710, 41293, 41393, 67553; 3, 158842, 16442

Zimmer, K., 5, 22473, 5, 12517, 19414, 19510, 19641, 19714, 19814, 199245, 20424, 20484, 20751, 209248, 21012596, 219421, 70319, 70519, 914110, 8, 358196, 49111, 52620

Zimmerman, I., 5, 636101

Zimmerman, J., 3, 41230, 7, 65725

Zimmerman, J. E., 6, 664222

Zimmer, R. L., 5, 947930, 960260

Zimmer, W. T., 2, 37069, 8, 940109, 947930, 952109

Zimmerman, D. C., 2, 104919

Zimmerman, G. E., 2, 6018, 62184

Zimmermann, H. F., 6, 96032

Zimmermann, H.-J., 2, 11292, 24114; 4, 14553

Zimmer, J. E., 6, 664222

Zimmerman, P., 6, 5312, 723

Zimmer, R., 6, 17152, 1725, 17712311, 1812111, 1822111, 1845, 185121, 1851111, 1852111, 1981111, 19926, 206111, 2071111, 208112, 20821, 8, 863238

Zimmerman, R. G., 3, 43939

Zinnia, J., 5, 54181

Zincuk, J., 6, 63028

Zingales, F., 4, 71048

Zingaro, R. A., 8, 41313

Zingri, Z., 1, 54315

Zinke, H., 7, 71261

Zinke, P. K., 5, 508286, 537286

Zioudrou, C., 6, 61483, 61983

Zinke, H., 7, 71261

Zinke, P. K., 5, 508286, 537286

Zinke, P. W., 1, 26342, 26442, 26542, 26642, 27424

Zinn, M. F., 4, 16323

Zinner, H., 6, 67722

Zimmer, G. E., 1, 386125

Zinner, H., 6, 67722

Zoeller, L., 4, 1063172
Cumulative Author Index

Zysman, J., 5, 79285
Zwaschka, F., 6, 196229
Zweifel, G., 1, 785, 954, 22066, 48916, 1720, 2, 827, 831, 914, 964, 586, 587, 3, 19957, 58, 25913, 134, 48312, 13, 4864, 4897, 4957, 4974, 5034, 557, 6, 1414, 887, 130, 889, 139, 893, 143, 901, 186, 6, 2449, 9, 7, 59511, 1, 5965, 5975, 6, 607, 601, 73, 8, 21446, 70616, 70719, 70823, 71, 71333, 76, 89, 89, 91, 93, 71752, 71, 71919, 72631, 7235, 73, 7357, 7362, 73717, 74024, 7424, 74364, 74617, 75317, 75425, 77, 75511, 124, 129, 132, 756141, 142, 150, 75779, 124, 129, 132, 758124, 164, 174, 129100, 76117

Zweig, A., 7, 8544, 85547
Zweig, J. S., 4, 220212
Zwenger, C., 3, 669
Zwick, W., 2, 44837, 4, 741124, 126
Zwierzak, A., 6, 765, 794, 8277, 80, 11691, 26757, 7, 483123, 50044, 245, 8, 38544, 857148
Zwiersler, M. L., 7, 18574
Zwikker, J. W., 6, 48940
Zwolinski, B., 7, 85236
Zybill, C. E., 6, 17719, 17819, 19020020, 19620227
Zychlinski, H. v., 2, 10494, 10989
Zydzosky, T. M., 5, 79653, 7, 23014, 8, 50120, 66120
Zydo, K., 5, 433139
Zy, N. V., 4, 33536, 347106, 356144
Zymalkowski, F., 6, 2254, 2266, 2586, 48832, 48932, 56612, 5677, 56813, 57132, 795, 7, 74146, 74646, 74799100
Zysman, J., 5, 832130
Cumulative Subject Index

JOHN NEWTON
David John Services Ltd, Maidenhead, Berks, UK

A-23187 — see Calcimycin

A26771B
 synthesis
 via nitrile oxide cyclization, 4, 1127

Abietic acid
 allylic oxidation, 7, 93
 Birch reduction
dissolving metals, 8, 500
dioxy ester rearrangement, 3, 834
 Ab initio calculations carbonyl compounds reduction, 8, 4

Absolute stereochemistry control
 Diels–Alder reaction, 2, 680
 Diels–Alder reactions chiral auxiliary based methods, 2, 681

Abstraction hydrogen atom recombination, 3, 1046
ABX blood antigen oligosaccharides synthesis
 Diels–Alder reaction, 2, 681

Acenaphthalene hydrobromination, 4, 280
 hydroformylation, 4, 919
 Pauson–Khand reaction, 5, 1047

Acenaphthene, perisuccinoyl-synthesis
 Friedel–Crafts reaction, 2, 763

Acenaphthenes hydrochlorination, 4, 273
 synthesis
 Friedel–Crafts cycloalkylation, 3, 325

Acenaphthoquinone reaction with hydroxides, 3, 828

Acenaphthylene reduction, 8, 568

Acenaphthylene synthesis
 Ramberg–Bäcklund rearrangement, 3, 883

Acagogenin related ethers synthesis, 3, 688

Acetal, benzylidene diol protection removal, 6, 660

Acetal, 4-methoxybenzylidene diol protection cleavage, 6, 660

Acetaldehyde oxidation palladium(II) catalysis, 4, 552
 reaction with 2-hydroxy-1,4-naphthoquinone and amines
 Mannich reaction, 2, 960
 Acetaldehyde, 2-aryl-2,2-dimethoxy-aldol reaction
 five-membered rings from, 2, 620

Acetaldehyde, chloro-by-product
 Wacker process, 7, 451
 Acetaldehyde, cyclohexylidene-oxidation, 7, 306
 Acetaldehyde, diphenyl-Knoevenagel reaction α-naphthol synthesis, 2, 354
 Acetaldehyde, p-hydroxyphenyl-synthesis
 via ketocarbenoids and furans, 4, 1060

Acetaldehyde, α-methoxyphenyl-synthesis chiral, 1, 527

Acetaldehyde, trichloro-
 Oppenauer oxidation secondary alcohols, 7, 320, 323

Acetals
 acyclic alcohol protection, 6, 647
 asymmetric epoxidation compatibility, 7, 401
 bicyclic reduction, 8, 227
 carbonyl group protection, 6, 675
 chiral
 aldol-type reactions, 2, 650
 asymmetric synthesis, 1, 347
 conjugate additions, 4, 208–210
 nucleophilic addition reactions, 1, 63
 cyanation, 1, 551
cyclic
diol protection, 6, 659
cyclization
 Lewis acid induced, 3, 362
 vinylsilanes, 1, 585
 enol ethers from, 2, 598
 heterolysis
 N-acyliminium ion reactions, 2, 1084
 hydride donors
 to carbonium ions, 8, 91
 intermolecular additions allylsilanes, 1, 610
 stereochemistry, 1, 615

401
N,O-Acetals

Cumulative Subject Index

Mannich reaction, 2, 1013
cyclization, 2, 1015
reactions with allylsilanes, 2, 567
reactions with enol silanes
Lewis acid mediated, 2, 635
reactions with organocopper compounds, 3, 226
reactions with organometallic compounds
Lewis acid promotion, 1, 345
reduction
metal hydrides, 8, 267
to ethers, 8, 211–232
silyl ketene
preparation, 2, 599, 604
synthesis
palladium(II) catalysis, 4, 553
thiol ester silyl ketene
aldol condensation, stereoselectivity, 2, 634
type III ene reaction, 2, 553
α,β-unsaturated
addition reactions with alkylaluminum compounds, 1, 88

N,O-Acetals
chiral
conjugate additions, 4, 210
Acetals, allylic
reaction with organocopper compounds, 3, 227
Acetals, α-amino-
synthesis
via azirines, 6, 787
Acetals, bis(2,2,2-trichloroethyl)-
carbonyl group protection
removal, 6, 677
Acetals, dithio-
synthesis
via oxidative cleavage of alkenes, 7, 588
Acetals, halo-
radical cyclizations, 4, 792
Acetals, 2-halo-
rearrangements, 3, 788
Acetals, α-hydroxy
chiral
addition reactions with alkylaluminum compounds, 1, 89
Acetals, α-keto
cyclic
nucleophilic addition reactions, 1, 63
Peterson alkenation, 1, 791
Acetals, propargylic
reaction with organocopper compounds, 3, 227
Acetals, silyl ketene
amination, 6, 118
Claisen rearrangement, 6, 858
reaction with imines, 5, 102
S,N-Acetals, N-trimethylsilyl
aldol condensation
stereoselectivity, 2, 634
reaction with aldehydes
stereoselectivity, 2, 632
Acetamidation
electrochemical
aromatic compounds, 7, 800
Acetamide
catalyst
Knoevenagel reaction, 2, 343
Acetamide, adamantyl-
synthesis, 6, 401
Acetamide, (N-alkenyl)iodo-
cyclization
palladium catalysts, 4, 843
Acetamide, α-allyloxy-
Wittig rearrangement, 3, 1004
Acetamide, N-(2-bromocyclohexyl)-
synthesis via Ritter reaction, 6, 288
Acetamide, cyano-
Knoevenagel reaction, 2, 361
Acetamide, dimethyl-
dimethyl acetel
Eschenmoser rearrangement, 5, 891
Acetamide, N,N-dimethyl-
Vilsmeier–Haack reaction, 2, 779
Acetamide, fluoro-
lithium enolates
stereoselectivity, 2, 211
Acetamide, α-sulfanyl-
enolates
aldol reaction, stereoselectivity, 2, 228
Acetamide, thiocyanon-
Knoevenagel reaction, 2, 361
Acetamide, trifluoro-
alkylation
alkyl halides, 6, 83
Acetamides, fluorinated
synthesis, 7, 498
Acetamides, phosphono-
Hofmann reaction
substituent effect, 6, 801
Acetamide, β-sulfonyl-
synthesis, 6, 550
S-Acetamidomethyl group
thiol protection, 6, 664
Acetate enolates
chiral
diastereofacial selectivity, 2, 226
enantioselective aldol reaction, 2, 315
Acetates
alcohol protection
carbohydrates, 6, 657
deprotection, 6, 657
nucleophilic addition to α,β-allylpalladium complexes
regioselectivity, 4, 637
stereochemistry, 4, 621
photochemical deoxygenation, 8, 817
reduction
silanes, 8, 824, 825
Acetates, alkylidene cyanono-
addition reactions
with organomagnesium compounds, 4, 89
with organozinc compounds, 4, 95
Acetates, alkylidene isocyanato-
addition reactions
with organomagnesium compounds, 4, 89
Acetates, alkylidene phosphono-
addition reactions
with organomagnesium compounds, 4, 89
with organozinc compounds, 4, 95
Acetates, 2-halo-
synhydroxylation
alkenes, 7, 445
Acetates, methoxy-
alcohol protection
nucleoside synthesis, 6, 658
Acetates, β-nitro-
synthesis, 7, 493
Acetates, phenoxy-alcohol protection
nucleoside synthesis, 6, 658

Acetates, 2,2,2-trialkoxy-synthesis, 6, 556

Acetic acid
t-butyl ester
enantioselective aldol reaction, 2, 308
Ritter reaction, 6, 269

Acetic acid, acylimino-8-(-)-phenylmenthyl ester
synthesis, 2, 996

Acetic acid, α-alkoxyesters, Wittig rearrangement, 3, 1008
zirconium enolates, 3, 1000
8-phenylmenthyl ester
Wittig rearrangement, 3, 1001

Acetic acid, α-aminophenyl-catalyst
Knoevenagel reaction, 2, 343

Acetic acid, aryl-esters
Knoevenagel reaction, 2, 362
Knoevenagel reaction, 2, 362
synthesis, 4, 429
Perkin reaction, 2, 406
Vilsmeier–Haack reaction, 2, 786

Acetic acid, arylsulfinyl-ester
Knoevenagel reaction, stereochemistry, 2, 350

Acetic acid, benzyol-ethyl ester, oxime
hydrogenation, 8, 149

Acetic acid, bis(3'-thienyl)-Friedel–Crafts reaction, 2, 759

Acetic acid, bromo-
Vilsmeier–Haack reaction, 2, 786

Acetic acid, α-bromo-
t-butyl ester
Reformatsky reagent, crystallographic study, 2, 280

Acetic acid, 4-carboxy-β-phenyl-Friedel–Crafts reaction, 2, 756

Acetic acid, cyano-esters
Knoevenagel reaction, 2, 360
Knoevenagel reaction, 2, 360
Vilsmeier–Haack reaction, 2, 786

Acetic acid, 2,2-dialkyl-
synthesis, 3, 53

Acetic acid, diazo-esters
synthesis, 6, 124
ethyl ester
C−H insertion reactions, 3, 1051

Acetic acid, ethynitro-
Knoevenagel reaction, 2, 364

Acetic acid, fluoro-
toxicity, 6, 216

Acetic acid, p-fluorophenyl-
hydrogenolysis, 8, 903

Acetic acid, p-hydroxymethylphenyl-
carboxy-protecting groups
anchoring, 6, 670

Acetic acid, iododifluorosilyl ketene acetal
preparation, 2, 604

Acetic acid, isoocyano-
esters
Knoevenagel reaction, 2, 360

Acetic acid, methoxy-
ortho ester
diol protection, 6, 660

Acetic acid, N-methoxyimino-
8-(-)-phenylmenthyl ester
reaction with allyl organometallic compounds, 2, 995, 996

Acetic acid, methoxyphenyl-
methyl ester
synthesis, 5, 1084

Acetic acid, 2-naphthylcyclopentyl-
Friedel–Crafts reaction, 2, 761

Acetic acid, o-phenylephenthyl-
Friedel–Crafts reaction, 2, 753

Acetic acid, phenyl-
acyl cyanide synthesis, 6, 317
ethyl ester
acetylation, 2, 734
acyloan coupling reaction, 3, 619
solvent for reductive decarboxylation, 7, 720
methyl ester
acyloan coupling reaction, 3, 619
Schmidt reaction, 6, 817
synthesis
via oxidative cleavage of 3-phenylpropene, 7, 583

Acetic acid, phenylsulfinyl-
Knoevenagel reaction
activated methylenes, 2, 363
Pummerer rearrangement, 7, 194

Acetic acid, trialkyl-
esters
synthesis, 3, 644
Acetic acid, tributyrylstannylethyl ester
reaction with benzaldehyde, 2, 611

Acetic acid, trichloro-
reaction with thionyl chloride
N,N-dimethylformamide catalyst, 6, 302

Acetic acid, trifluoro-
Beckmann rearrangement, 7, 695
catalysis
epoxide ring opening, 3, 738
Friedel–Crafts reaction, 2, 736

Acetic acid, trimethylsilyl-
ethyl ester
acyloan coupling reaction, 3, 619
Knoevenagel reaction, 2, 369

Acetic anhydride
activator
DMSO oxidation of alcohols, 7, 294
hydrogenation
ruthenium catalyst, 8, 239
Perkin reaction, 2, 406
synthesis
via ketene, 6, 332

Acetic nitrate, trifluoro-
titanyne tetrachloride complex
crystal structure, 1, 303

Acetic anhydride, trifluoro-
activator
DMSO oxidation of alcohols, 7, 295
Friedel–Crafts reaction, 2, 754
reactions with boron-stabilized carbanions
synthesis of alkenes, 1, 499

Acetic nitrate, trifluoro-
nitration with, 6, 110
Acetidinone, acetoxy-
reaction with dienes, 2, 1058
Acetimidate, arylsulfanyl-N-methoxy-
methylation, 2, 488
Acetimidate, trichloro-
benzyl ester
reaction with alcohols, 6, 23
glycoside synthesis, 6, 34, 49, 50
4-methoxybenzyl ester
reaction with alcohols, 6, 23
Acetimidates, trichloromethyl-
arraignements, 6, 843
Acetimide, N-hydroxymethylchloro-
amidomethylation with, 2, 971
Acetimidic acid, trichloro-
alicyl ester
alcohol protection, 6, 652
benzyl ester
alcohol protection, 6, 651
t-buty1 ester
alcohol protection, 6, 650
carboxy group protection, 6, 668
Acetoacetates
Michael addition, 4, 3
Acetoacetic acid
allyl esters
π-allylpalladium complexes from, 4, 589
esters
synthesis, 6, 332
ethyl ester
Reformatsky reaction, 2, 284
ethyl ester, oxime
hydrogenation, 8, 149
methyl ester
γ-alkylation, 3, 58
enol silyl ethers, 2, 606
hydrogenation, chirally modified catalyst, 8, 150
Acetodiazooacetic acid
ethyl ester
synthesis, 3, 889
Acetone
sild reaction
aliphatic aldehydes, 2, 143
aromatic aldehydes, 2, 143
dimerization, 2, 134
hydrogenation
catalytic, 8, 141
lithium bromide complex
crystal structure, 1, 299
phenylhydrazone
catalytic hydrogenation, 8, 143
photolysis
with 1-methylthio-1-propyne, 5, 163
reduction
dissolving metals, 8, 114, 526
self-condensation, 2, 141
sodium cation complexes
theoretical studies, 1, 287
Acetone, acetyl-
enantioselective hydrogenation, 8, 151
Acetone, 1-(N-acetyl-2-piperidyl)-
phenylhydrazone
catalytic hydrogenation, 8, 143
Acetone, benzoyl-
aldol reactions
unsaturated β-diketones, synthesis, 2, 189
Acetone, benzyl-
reduction
borohydrides, 8, 537
Acetone, benzylidene-
hydrogenation, 8, 551
kinetics, 8, 535
iron complexes, 4, 688
reduction
transfer hydrogenation, 8, 552, 554
Acetone, dibenzylidene-
Nazarov cyclization, 5, 752
thermal cyclization, 5, 754
Acetone, α,α′-dibromo-
[4 + 3] cycloaddition reactions, 5, 603
Acetone, dihydroxy-
arsenate monoester
aldolase substrate, 2, 461
Acetone, dimethoxy-
dimerization, 2, 140
Acetone, 1,3-diphenyl-
tosylhydrazone
organolithium indicator, 6, 784
Acetone, geranyl-
allylic oxidation, 7, 94
cyclization, 3, 349
synthesis
via Carroll rearrangement, 5, 835
via Claisen rearrangement, 5, 828
Acetone, hexachloro-
hydridetransfer
with 1,4-dihydropyridines, 8, 93
Acetone, hexafluoro-
carbonylchlorobis(tripheny1phosphine)iridium
complex
crystal structure, 1, 310
ene reaction, 2, 538
Knoevenagel reaction, 2, 366
Acetone, hydroxy-
Wittig reaction, 1, 757
Acetone, phenyl-
enolate
reaction with propionaldehyde, 2, 235
Acetone, tetrabromo-
[4 + 3] cycloaddition reactions, 5, 603
Acetone, 1,1,1-trifluoroacetyl-
Knoevenagel reaction, 2, 357
Acetone, triphenylphosphoanyldi-
chlorotrimethyltin complex
crystal structure, 1, 305
Acetone cyanohydrin
catalyst
benzoin condensation, 1, 543
Acetone cyanohydrin nitrate
nitrination with, 6, 110
Acetonides
diol protection, 6, 660
Acetonitrile
decyanation, 8, 252
Ritter reaction
to N-β-buty1 acetamide, 6, 261
Acetonitrile, 2-alkoxy-
synthesis
via sulfoxides, 6, 239
Acetonitrile, alkoxysilyltrimethylene-
amide acetal synthesis, 6, 574
Acetonitrile, α-alkoxy-α-substituted
synthesis, 1, 551
Acetonitrile, aryl-

Acetophenone

Knoevenagel reaction, 2, 362

Acetonitrile, bromo-
coupling reactions
with arylzinc reagents, 3, 260, 466

Acetonitrile, dialkylaminophenyl-
oxidative deacynation
phase transfer, 6, 402

Acetonitrile, dichloro-
al Kellylation, 3, 794

Acetonitrile, diethoxyphosphoryl-
oxide
reaction with alkenes, 3, 201

Acetonitrile, 1,3-dioxolan-2-yl-
synthesis
via Wacker oxidation, 7, 451

Acetonitrile, diphenyl-
aromatic nucleophilic substitution, 4, 429

Acetonitrile, ethylthio-
synthesis, 6, 231

Acetonitrile, 3-indolyl-
synthesis
Mannich reaction, 2, 967

Acetonitrile, methoxy-
boron trifluoride complex
NMR, 1, 292

Acetonitrile, phenyl-
aromatic nucleophilic substitution, 4, 429

hydrogenation, 8, 252
lithium enolate
crystal structure, 1, 32

reduction, 8, 253
synthesis
via S$_{N_{2}}$ reaction, 4, 468

Acetonitrile, phenyleisenyl-
conjugate addition reactions, 4, 111

Acetonitrile, phenylsulfenyl-
Knoevenagel reaction
activated methylenes, 2, 363

Acetonitrile, phenylsulfonyl-
conjugate addition reactions, 4, 112

Acetonitrile, α-silyl-
Peterson alkenation, 1, 790

Acetonitrile, trichloro-
O-aryl trichloroacetimidate synthesis, 6, 50
Knoevenagel reaction, 2, 368

Acetonitrile, trihalo-
reactions with amines, 6, 546

Acetonitrile, trimethoxy-
synthesis, 6, 556

Acetonitrile, trimethylsilyl-
conjugate addition reactions, 4, 111
Knoevenagel reaction, 2, 369

Acetonitriles
Vilsmeier–Haack reaction, 2, 789

Acetophenone
aldol reaction
benzaldehyde, 2, 150
nucleophilic addition reactions
stereoselectivity, 1, 69
oxidative rearrangement
solid support, 7, 845

oxime
Beckmann rearrangement, 7, 696
reaction with allylic organometallic compounds, 1, 156

reduction
chloroborane, 7, 603
synthesis
Friedel–Crafts reaction, 2, 740

Acetophenone, O-alkyl-2-enoxycarbonyl-O-diazo-
reaction with rhodium acetate
carbonyl ylide intermediate, 4, 1091

Acetophenone, benzylienede-
hydrogenation
non-catalytic, 8, 142
oxide
benzyl acid rearrangement, 3, 830

Acetophenone, bromo-
reactions with 2-bromocyclohexanone, 1, 202

Acetophenone, p-bromo-
hydrogenation, 8, 907

Acetophenone, 1-chloro-
reductions
dialkylzinc, 1, 319

Acetophenone, 4-chlorotrifluoromethyl-
reduction
hydride transfer, 8, 94

Acetophenone, diazo-
rearrangements, 3, 887

Acetophenone, ω,ω-dichloro-
synthesis
Houben–Hoesch synthesis, 2, 747

Acetophenone, 2,6'-di hydroxy-
synthesis, 7, 338

Acetophenone, 3,5-dihydroxy-
Mannich reaction, 2, 956

Acetophenone, 2,4-disopropyl-
Friedel–Crafts reaction, 2, 738

Acetophenone, ω-(dimethylaminomethyl)-
lithium enolate
crystal structure, 1, 28

Acetophenone, enolate
reaction with π-allylpalladium complexes, 4, 591

Acetophenone, p-ethyl-
acetalysis
Friedel–Crafts reaction, 3, 301

Acetophenone, p-fluoro-
reduction, 8, 903

Acetophenone, 2-hydroxy-
Vilsmeier–Haack reaction, 2, 790

Acetophenone, 4-hydroxy-
Mannich reaction, 2, 956

Acetophenone, 2-hydroxy-2-phenyl-
reduction, 8, 924

Acetophenone, methoxy-
tin(IV) chloride complexes
crystal structure, 1, 306

Acetophenone, p-methoxy-
oxime
Beckmann rearrangement, 7, 692

Acetophenone, 4-methyl-
synthesis
Friedel–Crafts reaction, 2, 738

Acetophenone, nitro-
hydrogenation
catalytic, 8, 141

Acetophenone, 2-phenyl-
reduction, 8, 924

Acetophenone, 2,3,5,6-tetramethyl-
Acetophenone
Friedel–Crafts reaction, 2, 745

Acetophenone, trifluoro-

Acetophenone

Cumulative Subject Index

406

electrochemical reduction, 8, 987
reaction with 1,4-dihydropyridine, 8, 93
Acetophenone, 2,4,6-trimethylrearrangement, 2, 745
Acetophenone imine, trichloro-reduction, 6, 500
Acetophenones
alkynes from, 8, 950
Birch reduction
dissolving metals, 8, 508
electropinacolization
induction of chirality, 8, 134
electroreduction, 8, 131
hydrogenation
asymmetric, 8, 152
catalytic, 8, 141
platinum oxide catalyst, 8, 319
hydroxylation
asymmetric, 8, 174
O-methyloxime
reduction, 8, 176
oxime
hydrogenation, 8, 149
reduction
chirally modified lithium aluminum hydride, 8, 168
dissolving metals, 8, 115
ionic hydrogenation, 8, 319
lithium aluminum hydride, 8, 166
lithium amalgam, 8, 115
modified lithium aluminum hydride, 8, 164
stereospecific pinacolization
electroreduction, 8, 133
1,4-Acetoxychlorination
palladium catalyst, 4, 565
Acetoxylation
electrochemical
aromatic compounds, 7, 799
α-Acetoxylation
electrochemical
amides, 7, 804
carbamates, 7, 804
ketones, 7, 798
Pummerer rearrangement, 7, 196
Acetoxymercuration
vinylallenes
cyclopentenone synthesis, 5, 774
trans-Acetoxy palladation
dienes, 4, 565
Acetoxythalation
vinylallenes
cyclopentenone synthesis, 5, 774
1,4-Acetoxytrifluoroacetoxilation
1,3-cyclohexadiene
palladium catalyst, 4, 565
Acetylation
base-catalyzed
ester synthesis, 6, 327
Acetyl chloride, 1-phenanthryl-Friedel-Crafts reaction, 2, 757
Acetyl-CoA
structure, 6, 436
Acetylene (see also Alkynes)
hydroisilylation, 8, 769
monometallation, 3, 271
trimerization, 5, 1145
Acetylene, alkoxy-
reaction with ketenes
cyclobutene synthesis, 5, 689
Acetylene, alkylthio-
reaction with ketenes
cyclobutene synthesis, 5, 689
Acetylene, bis(trimethylsilyl)-acetylation
Friedel-Crafts reaction, 2, 725
cycloaddition reactions, 5, 1149
o-quinodimethane precursor
Diels-Alder reactions, 5, 389
Acetylene, bis(trimethylstannyl)-cycloaddition reactions, 5, 1149
Acetylene, r-butyl-trimerization
palladium catalysis, 5, 1148
Acetylene, di-r-butyl-hydrogenation
cycloaddition reactions, 5, 431
Acetylene, di-r-butyl-synthesis
Ramberg-Bäcklund rearrangement, 3, 883
Acetylene, dichloro-Michael addition, 4, 42
Acetylene, dicyano-
vinylallenes
reactions, 5, 6
Acetylene, dilithio-
synthesis, 3, 271
Acetylene, diphenyl-acetoxymercuration, 8, 858
carbolithiation, 4, 872
hydrogenation, 8, 440
hydrogenation to trans-stilbene
homogeneous catalysis, 8, 458, 459
hydrozirconation, 8, 688
photolysis
with methyl p-cyano benzoate, 5, 163
reaction with r-butyl lithium, 4, 872
reaction with carbene complexes, 5, 1089
reaction with tetrahydropyridine carbene complexes, 5, 1105
reduction, 8, 485
transfer hydrogenation, 8, 552
synthesis
Ramberg-Bäcklund rearrangement, 3, 883
Acetylene, divinyl-dimethynyldistannyl-
carboboration, 4, 886
Acetylene, ethoxy-carboration, 4, 886
carbocupration, 4, 900
hydrozirconation, 3, 498
reaction with carbene complexes, 5, 659
reaction with dialkylallylboranes, 5, 34
reaction with diphenylketenes, 5, 732
Acetylene, hexamethyldistannylcarboboration, 4, 886
Acetylene, lithio-
synthesis, 3, 271
Acetylene, phenyl-
carbocupration, 4, 897
carbozincation, 4, 883
cycloaddition
3-hexyne, 5, 1146
hydroalumination, 8, 735
hydrochlorination, 4, 277
hydrogenation to ethylbenzene
homogeneous catalysis, 8, 456
hydrogenation to styrene
homogeneous catalysis, 8, 457
hydrodsilylation, 8, 770
reduction, 8, 485
Acetylene, silyl-
hydrodsilylation, 8, 771
Acetylene, sodio-
synthesis, 3, 271
Acetylene, tolyl-
synthesis, 3, 271
Diels–Alder reactions, 5, 324
Acetylene, trimethylsilyl-
carboration, 4, 886
in terminal alkyne synthesis, 3, 531
Acetylene, trimethylsilylthio-
cycloaddition reactions, 5, 1149
Acetylene, vinyl-
hydrochlorination, 4, 278
hydrofluorination, 4, 278
Acetylenedicarbonyl chloride
synthesis
via retro Diels–Alder reaction, 5, 552
Acetylenedicarboxylic acid
dialkyl esters
eone reactions, 5, 6
reaction with enamines, cyclobutene ring
expansion, 5, 687
dimethyl ester
Diels–Alder reactions, 5, 347
hydrogenation to dimethyl fumarate, 8, 458
hydrogenation to dimethyl maleate, 8, 458, 459
Acetylenes — see Alkynes
1-Acetyylethyl group
phosphoric acid protecting group, 6, 625
N-Acetyl group
amine-protecting group, 6, 642
Acetylides
organometallic
coupling reactions, 1-haloalkynes, 3, 553
oxidative coupling reactions, 3, 554
Sn1 reactions, 4, 472
Acetyl iodide, trifluoro-
deoxygenation
epoxides, 8, 890
Acetylum tetrafluoroborate
formation
Friedel–Crafts reaction, 2, 734
N-Acetylyneuraminic acid aldolase
cloning, 2, 464
organic synthesis
use in, 2, 463
substrate specificity, 2, 463
Acetyl nitrate
nitration with, 6, 105, 106
Acetyl nitrate, trifluoro-
nitration with, 6, 106
synthesis, 6, 109
Acetyltiosulfenyl chloride
reactions with alkenes, 7, 516
Acid anhydrides
acid halide synthesis, 6, 307
acyloin coupling reaction, 3, 617
amide synthesis, 6, 383
α-amino-N-carboxylic
peptide synthesis, 6, 383
α-amino-N-thiocarboxylic
peptide synthesis, 6, 383
Curtius reaction, 6, 810
synthesis, 6, 301–318
via carboxylic acids, 6, 309
via carboxylic acid salts, 6, 314
Acid bromides
alkenic
divinyl ketones from, 5, 777
reduction
metal hydrides, 8, 264
synthesis
via acid chlorides, 6, 306
Acid chlorides
acylation
alkylrhodium(I) complexes, 1, 450
lithium dialkyllcuprates, 1, 428
organostannanes, 1, 446
palladium complex catalysis, 1, 436
synthesis of ketones, 1, 414
acyloin coupling reaction, 3, 617
acyl transfer
ester synthesis, 6, 327
adducts
dimethylformamide, 6, 493
alkenic
divinyl ketones from, 5, 777
aromatic
thioamide adducts, 6, 493
coupling reactions
with sp3 organometallics, 3, 463
Curtius reaction, 6, 807
reaction with organoaluminium reagents
ketone synthesis, 1, 95
reduction, 8, 286
Reformatsky reaction, 2, 296
synthesis
via carboxylic acids, 6, 302
Tebbe reaction, 1, 743
α,β-unsaturated
reaction with diazomethane, 3, 889
vinyl substitutions
palladium complexes, 4, 835
Acid cyanides
α-acylation, 4, 261
Claisen condensation, 2, 801
decarboxylation
palladium-catalyzed, 3, 1041
Acid fluorides
amide synthesis, 6, 383
reduction
metal hydrides, 8, 264
synthesis, 6, 306
via acid chlorides, 6, 306
Acid halides
acid anhydride synthesis, 6, 314
acid halide synthesis, 6, 306
acylation
thiols, 6, 440
aliphatic
divinyl ketones from, 5, 775
amide synthesis, 6, 383
decarboxylation, 3, 1040
Friedel–Crafts reaction
bimolecular aromatic, 2, 740
<table>
<thead>
<tr>
<th>Acidic chalcogenides</th>
<th>Cumulative Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>halogenation, 7, 122</td>
<td>408</td>
</tr>
<tr>
<td>halogen transfer agents</td>
<td>acid halide synthesis, 6, 304</td>
</tr>
<tr>
<td>al-ketonitrile synthesis, 6, 317</td>
<td></td>
</tr>
<tr>
<td>methylation</td>
<td></td>
</tr>
<tr>
<td>Tebbe reagent, 5, 1124</td>
<td></td>
</tr>
<tr>
<td>nitrile synthesis, 6, 233</td>
<td></td>
</tr>
<tr>
<td>Pummerer rearrangement, 7, 203</td>
<td></td>
</tr>
<tr>
<td>reactions with organocopper reagents, 3, 226</td>
<td></td>
</tr>
<tr>
<td>reduction, 8, 239</td>
<td></td>
</tr>
<tr>
<td>hydrides, 8, 262</td>
<td></td>
</tr>
<tr>
<td>stability</td>
<td>presence of Lewis acids, 2, 709</td>
</tr>
<tr>
<td>synthesis, 6, 301–318 via acid anhydrides, 6, 307</td>
<td></td>
</tr>
<tr>
<td>via acid halides, 6, 306</td>
<td></td>
</tr>
<tr>
<td>via acyl amides, 6, 308</td>
<td></td>
</tr>
<tr>
<td>via aldehydes, 6, 308</td>
<td></td>
</tr>
<tr>
<td>via carboxylic esters, 6, 307</td>
<td></td>
</tr>
<tr>
<td>via carboxylic acids, 6, 302</td>
<td></td>
</tr>
<tr>
<td>tandem vicinal dialkylations, 4, 261</td>
<td></td>
</tr>
<tr>
<td>acylations by, 2, 710</td>
<td></td>
</tr>
<tr>
<td>vinylic acylations</td>
<td>palladium complexes, 4, 856</td>
</tr>
</tbody>
</table>

Acidic chalcogenides catalysts	Friedel–Crafts reaction, 3, 296
Acidic oxides catalysts	Friedel–Crafts reaction, 3, 296
Acidic sulfides catalysts	Friedel–Crafts reaction, 3, 296
Acid iodides synthesis via acid chlorides, 6, 306	
Acids α-halogenation, 7, 122	
Aclacinomycin synthesis Friedel–Crafts reaction, 2, 762	
Aconitum alkaloids synthesis, 8, 945	
β-Acoradiene precursor synthesis via intramolecular ene reaction, 5, 11	
synthesis via photocycloaddition, 5, 139	
Acoragmacrone synthesis via cyclization, 1, 553	
via isoacoragmacrone, 7, 619	
β-Acorenol precursor synthesis via intramolecular ene reaction, 5, 11	
Acorenone precursor synthesis via intramolecular ene reaction, 5, 11	
synthesis via arene–metal complexes, 4, 543 via cyclopropane ring opening, 4, 1043 via photochemical cycloaddition, 5, 129	
Acorenone B precursor synthesis via intramolecular ene reaction, 5, 11	
synthesis via arene–metal complexes, 4, 543	
Acosamine amino sugars, 2, 323	
Acridine electrophoresis, 8, 594	
hydrogenation palladium catalysis, 8, 598	
regioselective reduction, 8, 600	
Acridine, dihydro-hydride transfer with 2,3,5,6-tetracyano-2,3,5,6-tetrachlorobenzoquinone, 8, 93	
Acridine, 1,8-dioxodecachloro-fluorimetric analysis aldehydes, 2, 354	
Acridine, perhydro-synthesis, 8, 598	
Acridinium ions hydride acceptors reduction with formic acid, 8, 84	
Acridinium salts, 10-methyl-reduction dihydropyridine, 8, 589	
Acridizinium cations Diels–Alder reactions, 5, 499	
Acridonecarboxylic acids synthesis Friedel–Crafts reaction, 2, 759	
Acridones photochemical ring opening, 5, 712 synthesis, 7, 333 via arynes, 4, 497	
Acrolein conjugate additions organocuprates, 4, 183	
cyclic acetal hydroformylation, 4, 923	
[2 + 2] cycloaddition reactions, 5, 72	
hydroxyethylene, 5, 73	
dimer nucleophilic addition reactions, 1, 52	
ene reactions intermolecular, 5, 3	
Lewis acid catalysis, 5, 5	
Lewis acid complexes conformation, 1, 288	
lithium cation complexes structure, 1, 289	
Acrolein, β-chloro-synthesis Vilsmeier–Haack reaction, 2, 785	
Acrolein, β-dimethylamino-synthesis Vilsmeier–Haack reaction, 2, 784	
Acrolein, β-ethoxy-synthesis Vilsmeier–Haack reaction, 2, 784	
Acrolein, α-fluoro-synthesis via cyclopropane ring opening, 4, 1020	
Acrolein, α-halo-synthesis via dihalocarbene, 4, 1005	
Acrolein, α-lithio-synthesis, 3, 253	
Acrolein, 2-siloxy-	
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>generation of oxyallyl cations</td>
<td>409</td>
</tr>
<tr>
<td>[4 + 3] cycloaddition reactions</td>
<td>5, 597</td>
</tr>
<tr>
<td>Actino-acetals</td>
<td>409</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>5, 341</td>
</tr>
<tr>
<td>Acrylic aldehydes</td>
<td>409</td>
</tr>
<tr>
<td>trimethyl-synthesis</td>
<td>409</td>
</tr>
<tr>
<td>via hydroformylation</td>
<td>4, 924</td>
</tr>
<tr>
<td>Acrylamides, α-acyloxysynthesis</td>
<td>409</td>
</tr>
<tr>
<td>Acrylamides, α-cyanosynthesis</td>
<td>409</td>
</tr>
<tr>
<td>Knoevenagel reaction</td>
<td>2, 361</td>
</tr>
<tr>
<td>Acrylamides, cyclohexenylene reactions</td>
<td>409</td>
</tr>
<tr>
<td>intramolecular</td>
<td>5, 15</td>
</tr>
<tr>
<td>Acrylamides, hydrophenyl-magnesium salt</td>
<td>409</td>
</tr>
<tr>
<td>intramolecular ene reactions</td>
<td>5, 15</td>
</tr>
<tr>
<td>Acrylates</td>
<td>409</td>
</tr>
<tr>
<td>addition reactions</td>
<td>409</td>
</tr>
<tr>
<td>benzenceselenenyl chloride</td>
<td>7, 520</td>
</tr>
<tr>
<td>anionic polymerization</td>
<td>4, 246</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>5, 355</td>
</tr>
<tr>
<td>ene reactions</td>
<td>409</td>
</tr>
<tr>
<td>Lewis acid catalysis</td>
<td>5, 4</td>
</tr>
<tr>
<td>optically active</td>
<td>409</td>
</tr>
<tr>
<td>cycloaddition reactions with nitrile oxides</td>
<td>5, 263</td>
</tr>
<tr>
<td>α-substituted</td>
<td>409</td>
</tr>
<tr>
<td>ene reactions</td>
<td>5, 4</td>
</tr>
<tr>
<td>synthesis</td>
<td>409</td>
</tr>
<tr>
<td>rearrangement of epoxides</td>
<td>3, 760</td>
</tr>
<tr>
<td>via retro Diels–Alder reaction</td>
<td>5, 553</td>
</tr>
<tr>
<td>vinyl substitutions</td>
<td>409</td>
</tr>
<tr>
<td>heterocyclic compounds</td>
<td>4, 837</td>
</tr>
<tr>
<td>Acrylates, α-haloene reactions</td>
<td>5, 5</td>
</tr>
<tr>
<td>Acrylates, β-lithiosynthesis</td>
<td>3, 253</td>
</tr>
<tr>
<td>Acrylates, 3-polyhydroxyalkyl-synthesis</td>
<td>409</td>
</tr>
<tr>
<td>Knoevenagel reaction</td>
<td>2, 385</td>
</tr>
<tr>
<td>Acrylates, α-vinyl-synthesis</td>
<td>409</td>
</tr>
<tr>
<td>copper catalysts</td>
<td>3, 217</td>
</tr>
<tr>
<td>Acrylic acid, α-acylamino-asymmetric hydrogenation</td>
<td>409</td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td>8, 460</td>
</tr>
<tr>
<td>Acrylic acid, 3-aryl-synthesis</td>
<td>2, 744</td>
</tr>
<tr>
<td>Acrylic acid, 2-(diethylphosphonopheno)-ethyl ester</td>
<td>409</td>
</tr>
<tr>
<td>addition reaction with enolates</td>
<td>4, 103</td>
</tr>
<tr>
<td>Acrylic acid, α-formylamino-reaction of isocyanate</td>
<td>409</td>
</tr>
<tr>
<td>non-Knoevenagel product</td>
<td>2, 361</td>
</tr>
<tr>
<td>Acrylic acid, α-(methylthio)-methyl ester</td>
<td>409</td>
</tr>
<tr>
<td>addition reaction with enolates</td>
<td>4, 109</td>
</tr>
<tr>
<td>Acrylic acid, β-nitro-ethyl ester</td>
<td>409</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>5, 320</td>
</tr>
<tr>
<td>methyl ester</td>
<td>409</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>5, 320</td>
</tr>
<tr>
<td>Acrylic acid, perfluoro-oxidative rearrangement</td>
<td>7, 816</td>
</tr>
<tr>
<td>Acrylic acid, α-phenylsulfanyl-Pummerer rearrangement</td>
<td>2, 363</td>
</tr>
<tr>
<td>Acrylic acid, β-(2,6,6-trimethylcyclohexyl)-synthesis</td>
<td>409</td>
</tr>
<tr>
<td>via oxidative cleavage</td>
<td>7, 587</td>
</tr>
<tr>
<td>Acrylic acids</td>
<td>409</td>
</tr>
<tr>
<td>acid chloride synthesis</td>
<td>6, 304</td>
</tr>
<tr>
<td>asymmetric hydrogenation</td>
<td>409</td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td>8, 461</td>
</tr>
<tr>
<td>boron complexes</td>
<td>289</td>
</tr>
<tr>
<td>configuration</td>
<td>409</td>
</tr>
<tr>
<td>Knoevenagel reaction product</td>
<td>2, 345</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>3, 320</td>
</tr>
<tr>
<td>chiral catalysis</td>
<td>5, 377</td>
</tr>
<tr>
<td>Lewis acid complexes</td>
<td>409</td>
</tr>
<tr>
<td>conformation</td>
<td>1, 288</td>
</tr>
<tr>
<td>tandem vicinal difunctionalization</td>
<td>4, 247</td>
</tr>
<tr>
<td>trisubstituted</td>
<td>409</td>
</tr>
<tr>
<td>asymmetric hydrogenation</td>
<td>8, 461</td>
</tr>
<tr>
<td>Acrylic esters</td>
<td>409</td>
</tr>
<tr>
<td>asymmetric hydrogenation</td>
<td>409</td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td>8, 461</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>409</td>
</tr>
<tr>
<td>dimerization</td>
<td>5, 63</td>
</tr>
<tr>
<td>stereochemistry</td>
<td>5, 67</td>
</tr>
<tr>
<td>ene reactions</td>
<td>409</td>
</tr>
<tr>
<td>intermolecular</td>
<td>5, 3</td>
</tr>
<tr>
<td>hydroformylation</td>
<td>4, 926</td>
</tr>
<tr>
<td>oxidation</td>
<td>409</td>
</tr>
<tr>
<td>Wacker process</td>
<td>7, 451, 452</td>
</tr>
<tr>
<td>reactions with Yamamoto’s reagent</td>
<td>1, 124</td>
</tr>
<tr>
<td>Ritter reaction</td>
<td>6, 265</td>
</tr>
<tr>
<td>mechanism</td>
<td>6, 263</td>
</tr>
<tr>
<td>synthesis</td>
<td>409</td>
</tr>
<tr>
<td>via aluminum compounds</td>
<td>6, 241</td>
</tr>
<tr>
<td>Acrylonitrile, 2-acetoxy-cycloaddition reactions</td>
<td>5, 267</td>
</tr>
<tr>
<td>preparation</td>
<td>409</td>
</tr>
<tr>
<td>Darzen glycidic ester condensation</td>
<td>2, 419</td>
</tr>
<tr>
<td>Acrylonitrile, α-chlorodiels–Alder reactions</td>
<td>5, 339</td>
</tr>
<tr>
<td>Lewis acid promoted</td>
<td>5, 339</td>
</tr>
<tr>
<td>Acrylonitrile, β-chlorosynthesis</td>
<td>409</td>
</tr>
<tr>
<td>Vilsmeier–Haack reaction</td>
<td>2, 785</td>
</tr>
<tr>
<td>Acrylonitrile, 2-(N-methylanilino)-addition reactions</td>
<td>409</td>
</tr>
<tr>
<td>with enolates</td>
<td>4, 100</td>
</tr>
<tr>
<td>with organolithium compounds</td>
<td>4, 79</td>
</tr>
<tr>
<td>Acrylonitrile, phenylseleno-radical cyclization</td>
<td>4, 733</td>
</tr>
<tr>
<td>Acryloyl chloride</td>
<td>409</td>
</tr>
<tr>
<td>ene reactions</td>
<td>409</td>
</tr>
<tr>
<td>thermal</td>
<td>5, 3</td>
</tr>
<tr>
<td>synthesis</td>
<td>409</td>
</tr>
<tr>
<td>via acrylic acid</td>
<td>6, 302</td>
</tr>
<tr>
<td>Acryloyl chloride, β, β-dimethyl-Nazarov cyclization</td>
<td>5, 778</td>
</tr>
<tr>
<td>Acryloylmethyl lactate</td>
<td>409</td>
</tr>
<tr>
<td>titanium tetrachloride complex</td>
<td>7, 303</td>
</tr>
<tr>
<td>crystal structure</td>
<td>1, 303</td>
</tr>
<tr>
<td>Actinic activation</td>
<td>409</td>
</tr>
<tr>
<td>electron-transfer equilibria</td>
<td>7, 850</td>
</tr>
<tr>
<td>Actinide complexes</td>
<td>409</td>
</tr>
</tbody>
</table>
Actinidine

hydrogenation
alkenes, 8, 447
hydrometallation, 8, 696

Actinidine
synthesis, 3, 599
via Diels–Alder reaction, 5, 492

Actinobolin
synthesis, 1, 404
e ne reaction, 2, 542
via cyclofunctionalization of cycloalkenes, 4, 373

Active hydrogen compounds
aromatic nucleophilic substitution, 4, 429–433
Active metals
reduction
acetals, 8, 212
Active methylene compounds
diazo transfer, 6, 125
Actimicinolide
synthesis
Knoevenagel reaction, 2, 373
via Diels–Alder reaction, 5, 468

Acycline
substrate specificity
synthetic applicability, 2, 456
Acyclic stereoselective synthesis
allyl metal reagents, 2, 2
crotyl metal reagents, 2, 2
Acyl amides
acid halide synthesis, 6, 308
Acylamino radicals
cyclizations, 4, 794

Acyl anions
addition reactions, 4, 113–115
equivalents, 1, 542
conjugate additions, 4, 162
selenium containing, alkylation, 3, 134, 136
sulfur containing, alkylation, 3, 134
synthetic utility, 2, 55
lithium
generation, 1, 273
masked equivalents
benzoin condensation, 1, 544
samarium
generation, 1, 273

Acylating agents
Reformatsky reaction, 2, 296

Acylation
acid catalyzed, 2, 797
N-acylimidazoles, 6, 333
amines, 6, 382
arenes, 6, 445
boron-stabilized carbanions, 1, 497
carbonbines, 6, 445
Claisen condensation and, 2, 817
enzymatic, 6, 340
esters, 2, 795–863
Friedel–Crafts reaction
bimolecular aromatic, 2, 739
hydrogen sulfide
imidates and orthoesters, 6, 450
imidodithioates, 6, 455
intermolecular
alkenes, 2, 709
ketones, 6, 332
ketones, 2, 795–863
mixed anhydrides
ester synthesis, 6, 328
nitriles, 2, 795–863
organocopper reagents, 1, 426
organometallic compounds, 1, 399
palladium catalysis
mechanism, 1, 438
thiols
acyl halides, 6, 440
anhydrides, ketenes and esters, 6, 443
carboxylic acids, 6, 437

O-Acetylation
anomic
glycoside synthesis, 6, 59
glycoside synthesis, 6, 49
Acyl hypoiodites
decarboxylative fluorination, 7, 723
Acyl hypohalites
carboxyl radicals from, 7, 718
Hunsdiecker reaction, 7, 723
synthesis, 7, 718
Acyl hypophosphites
synthesis, 7, 723

N-Acyliminium ions
acyclic, 2, 1070
intermolecular reactions, 2, 1070
intramolecular reactions, 2, 1071
addition reactions, 2, 1047–1079
electrophilicity, 2, 1056
generation, 2, 1084
reactions
as carbocations, 2, 1053
as Diels–Alder dienes, 2, 1054, 1055
reviews, 2, 1048

N-Acyliminium salts
stability, 2, 1053

Acyliminium ions
initiators
polyene cyclization, 3, 342

Acyl isocyanates
2-azetidinones from, 5, 104

Acylmetallation
alkynes, 4, 905

Acyl nitrates
decomposition
nitroalkanes, 7, 729

Acyl nitroso compounds
reactions with alkenes, 6, 115

Acylolvin rearrangement
2-hydroxy ketones, 3, 791

Acylons
coupling reactions, 3, 613–631
heterocyclic systems, 3, 629
cyclic
synthesis, 3, 620
hydrogenation
catalytic, 8, 142
synthesis
epoxide ring opening, 3, 753
unsaturated
e ne reactions, 5, 23
unsymmetrical
synthesis, 1, 551

Acyloxallyl cations
initiators
polyene cyclization, 3, 342

α-Acylxoycarboxamides
synthesis, 2, 1084
Acyloxymercuration demercuration
alkenes, 4, 314–316
Acyloxy radicals
cyclization, 4, 812
Acyl phosphates
phosphorylation, 6, 607
synthesis, 6, 331
Acyl radicals
addition to alkenes, 4, 740
cyclizations, 4, 796, 798
samarium generation, 1, 273
Acylic tosylates
synthesis, 6, 329
Acylic transfer
anhydrides
ester synthesis, 6, 327
intramolecular ketones, 2, 845
to alcohols
ester synthesis, 6, 324
Acylic transfer agents
selenol esters, 6, 461, 468
β-Acylvinyl carbocations Diels–Alder reactions, 5, 502
Acylic xanthates
photolysis radical addition reactions, 4, 749
Adaline
synthesis
Mannich reaction, 2, 1014
Adamantane
alkylation Friedel–Crafts reaction, 3, 334
anodic oxidation, 7, 794
arylation Friedel–Crafts reaction, 3, 322
functionalization alkylthio, 7, 14
oxidation silver trifluoroacetate, 7, 13
solid support, 7, 842
the ‘Gif’ system, 7, 13
oxidative rearrangement, 7, 823
reactions with carbonium ions, 7, 9
rearrangements, 3, 854
synthesis Friedel–Crafts reaction, 3, 334
Adamantane, adamantylidene reaction with bromine, 4, 330
kinetics, 4, 344
Adamantane, aminoquaternary synthesis, 7, 505
Adamantane, 1-amino synthesis via 1-bromoadamantane, 6, 270
Adamantane, 1-bromo reaction with naphthalene
Friedel–Crafts reaction, 3, 302
Ritter reaction, 6, 269
2,4,6,8-Adamantane, 1,3-dilithio-5,7-dimethylmethylation, 3, 134
Adamantane, 1-hydroxymethyl-

Cumulative Subject Index

Ritter reaction effect of conditions, 6, 264
Adamantane-1-carboxylic acid ethyl ester acyloin coupling reaction, 3, 619 synthesis, 7, 727
Adamantane-1,3-diol, 2-nitro synthesis
Henry reaction, 2, 329
Adamantanethione S-methylide cycloadditions, 4, 1074
1-Adamantanone synthesis via solid support oxidation, 7, 842
2-Adamantanone oxidation solid support, 7, 842
Adamantanone, 3-proto synthesis via intramolecular Barbier reaction, 1, 262
2-Adamantantione synthesis via solid support oxidation, 7, 842
Adamantanones Peterson alkenation enol ether preparation, 2, 597
reduction ionic hydrogenation, 8, 319 stereoselectivity, 8, 5
adamantane dichloride, 8, 323
Adamantene
dimerization, 5, 65
Adams’ catalyst
dihydrogenation, 8, 418
dihydrogenolysis epoxides, 8, 882
Addition–fragmentation intramolecular expansion, 1, 892
Addition reactions C—halogen bond formation, 7, 527–539
C—N bond formation, 7, 469–508
Wacker oxidation, 7, 449–466
C—S bond formation, 7, 515–524
C—Se bond formation, 7, 515–524
electrochemical, 4, 129
radicals, 4, 727–731
Adenosine, 8-bromo coupling reactions with Grignard reagents, 3, 462
Adenosine, 6-N-(3,3-dimethylallyl)-allylic oxidation, 7, 88
Adenosine 59-phosphate, O-(N-acetylthioleucyl)-synthesis, 6, 450
Adipic acid synthesis via oxidative cleavage of cyclohexene, 7, 587
Adiponitrile synthesis, 7, 8
Adipoyl chloride
Friedel–Crafts reaction, 2, 741
Adociane, diisocyano synthesis
Adociane

via organostannane acylation, 1, 446
Adociane, 7,20-diisocyanato-
synthesis
via conjugate addition, 4, 218

Adrene

synthesis
via Michael addition, 4, 29

β-Adrenergic blocking agents

synthesis, 7, 397
Adrenosterone

synthesis, 3, 24
Adriamycin

synthesis, 7, 341

Aerothionin

biosynthesis, 3, 689
synthesis, 7, 337
A-factor

synthesis
via conjugate addition, 4, 215

Aflatoxin B₁

epoxidation, 7, 374

Aflavinine, 3-demethyl-
synthesis
Manich reaction, 2, 911

Africanine

biosynthesis, 3, 404
Africalol

biosynthesis, 3, 404
synthesis
via methyl lithium addition to unsaturated acid, 1, 413

α-Agarofuran, 19-keto-
reduction
dissolving metals, 8, 118

Ajmalicine

microbial hydroxylation, 7, 65
synthesis, 6, 740
Knoevenagel reaction, 2, 372

Aklavinone

synthesis
via cyclofunctionalization of cycloalkenes, 4, 373
via Diels-Alder reactions, 5, 327, 342, 393

Alamaridine

synthesis
Manich reaction, 2, 913

Alamethicine

synthesis, 2, 1096

Alane, alkenyloxy-
preparation, 2, 268
Alane, alkenyloxydialkyl-
homochiral
aldol reactions, 2, 271
Alane, alkenyloxydiethyl-
aldol reactions
imines, 2, 271
Alane, alkoxy-
synthesis, 8, 214

Alane, chloro-
reduction
acetics, 8, 214
Alane, chlorodiethyl-
aldol reactions, 2, 272
Alane, crotyldiethyl-
reaction with aldehydes, 2, 31
Alane, dialkylchloro-
aldol reactions
zinc coreagent, 2, 269

Alane, dibromo-
selective ketone reduction, 8, 18
Alane, dichloro-
reduction
acetals, 8, 214
Alane, diethyl(phenylethylnyl)-
reaction with epoxides
regioselectivity, 6, 7
Alane, diethyl[(trimethylsilyl)ethynyl]-
reaction with epoxides
regioselectivity, 6, 7
Alane, diisobutyl-
reaction with epoxides
regioselectivity, 6, 7
Alane, diisobutylphenoxy-
aldol reaction, 2, 271
Alane, dimethyl-4,4-dimethylpent-2-en-2-ox-
aldol reactions, 2, 268
Alane, methylalkenyl-
synthesis, 3, 329
Alane, α-silyl-
allylation, 3, 259
Alane, β-stanny-
allylation, 3, 259
Alane, triisobutyl-
reaction with epoxides
regioselectivity, 6, 7
Alane, trimethyl-
reaction with epoxides
regioselectivity, 6, 7

Alanes
chirally modified
asymmetric reduction, 8, 169
reduction
acetals, 8, 213
amides, 8, 251
carboxylic acids, 8, 238, 260
dimesityl ketone, 8, 3
esters, 8, 244
nitriles, 8, 253
pyridines, 8, 580

setzipinal rearrangement, 3, 730
synthesis, 8, 214

Alanes, alkenyl-
allylation, 3, 259
conjugate additions
α, β-enones, 4, 141
reactions
nickel catalysis, 3, 230
Alanes, allyl-
carboalumination, 4, 891
Alanes, benzyl-
carboalumination, 4, 891
Alangimaridine
synthesis
Manich reaction, 2, 913

Alanal, phenyl-
nucleophilic addition reactions
stereoselectivity, 1, 56

Alainamide, phenyl-
reduction, 8, 249

Alanine
asymmetric synthesis, 8, 146
bislactim ether
lithium salt, crystal structure, 1, 34
synthesis, 3, 53
catalyst
Knoevenagel reaction, 2, 343, 358
synthesis
via reductive amination, 8, 144
Alanine, N-benzyloxy-
synthesis, 6, 113
Alanine, N-carbamoyl-
Hofmann rearrangement, 6, 802
Alaninol, S-phenyl-
methyl ether
lithiated imine, 3, 37
Albene
synthesis, 8, 932
via [3 + 2] cycloaddition reactions, 5, 308
Alcohol dehydrogenase
hydride transfer, 8, 82
Alcohols
acyl transfer to
ester synthesis, 6, 324
addition to activated alkynes, 4, 48
aliphatic saturated
anodic oxidation, 7, 802
alkanenitrile synthesis, 6, 234
alkynic
Ritter reaction, 6, 268
π-allylpalladium complexes from, 4, 588
anti-Markovnikov, 7, 643
arene alkylation
Friedel-Crafts reaction, 3, 309
axial
synthesis, 1, 116
azide synthesis, 6, 252
Birch reduction
proton source, 8, 492
β-chiral
synthesis, 3, 797
chiral synthesis
via aldehydes, 1, 70
deoxygenation, 8, 812, 818
deuterated
synthesis, via enzyme reduction, 8, 203
dimerization
mercury-photosensitized, 7, 5
dissolving metals, reductions
chemoselectivity, 8, 113
ester synthesis
hydroxy group activation, 6, 333
homoaitionally tertiary
synthesis, ene reaction, 2, 538
hydride donors, 8, 88
catalysis, 8, 91
photochemical reactions, 8, 91
transfer hydrogenation, 8, 551
hydrobromination, 4, 282
inversion, 6, 18, 21
oxidation, 7, 299, 305–325
activated DMSO, 7, 291–302
chromium reagents, 7, 251–286
solid support, 7, 841, 846
primary
oxidation, 7, 305
synthesis, via oxidative cleavage of alkenes, 7, 541
protecting groups, 6, 646
reactions with alkenes, 6, 297–316
palladium(II) catalysis, 4, 553
reduction
ionic hydrogenation, 8, 487
silanes, 8, 216
to alkanes, 8, 811–832
Ritter reaction, 6, 267
secondary
synthesis, via oxidative cleavage of alkenes, 7, 541
solvents for reduction
dissolving metals, 8, 111
synthesis
via carboxylic acids, 8, 235–254
via enantiomeric reduction of carbonyl
compounds, 8, 185
via epoxide reduction, 8, 871
via hydrogen transfer, 8, 110
via β-hydroxyalkyl selenides, 1, 699, 718
via metal hydride reduction, 8, 1–22
via organoboranes, 3, 793
via organocerium compounds, 1, 231
via oxidative cleavage of alkenes, 7, 543
via reduction of hydroperoxides, 8, 396
via substitution processes, 6, 1–28
tertiary
from cyanoborates, 3, 798
from triorganylboranes, 3, 780
synthesis, 1, 66
thioacetylation
anhydrides, thiketones, thioesters and
dithioesters, 6, 449
thioacetyl halides, 6, 448
tritiated
synthesis, via enzyme reduction, 8, 203
Vilmameier-Haack reaction, 2, 790
Alcohols, β-alkoxy
synthesis, 7, 632
Alcohols, alkynic
asymmetric epoxidation
kinetic resolution, 7, 423
oxidation, 7, 300
Alcohols, amino
chiral aziridines from, 7, 473
dimermer-bound
selective ketone reduction, 8, 18
synthesis
Knoevenagel reaction, reduction, 2, 360
Alcohols, 1,3-amino
synthesis
via 1,3-dipolar cycloadditions, 4, 1078
Alcohols, 2-amino
diastereoselective synthesis, 3, 596
Lewis acid catalysts, 1, 317
rearrangements, 3, 778, 781
semipinacol rearrangements, 3, 777
threo
synthesis, 1, 380
synthesis
via O-silylated cyanohydrins, 1, 548
Alcohols, γ-amino-
synthesis
via 1,3-dipolar cycloadditions, 4, 1078
Alcohols, 2-amino-1,2-diaryl
rearrangement, 3, 782
Alcohols, azido
cyclization, 7, 473
Alcohols, 1,2-azido
synthesis
Alcohols

via epoxides, 6, 93
Alcohols, γ-chloro
 synthesis
 ene reaction, 2, 531
Alcohols, erythro-1,2-diamino
 synthesis
 Henry reaction, 2, 335
Alcohols, epoxy
 reduction
 metal hydrides, 8, 879
Alcohols, 2,3-epoxy
 C(2)-amination
 regioselective, 6, 89
 reactions with organocupper compounds, 3, 225
 reactions with organometallic compounds
 regioselectivity, 1, 343
 rearrangement
 to 1,2-epoxy-3-alkanols, 6, 89
 ring opening
 stereochemistry, 6, 5
Alcohols, α,β-epoxy-
 alkene stereoselective synthesis, 7, 369
 synthesis, 7, 378, 403
Alcohols, 2-nitro
diastereomeric mixtures
 Henry reaction, 2, 322
 in synthesis, 2, 323
 in oxidation, 2, 323
 reductive denitration, 2, 323
Alcohols, threo-nitro
 synthesis
 Henry reaction, 2, 337
Alcohols, β-(phenylthio)
 synthesis
 organochromium-mediated, 1, 203
Alcoholysis
 acid chlorides
 mechanism, 6, 328
Aldehyde dehydrogenase
 coimmobilized
diol oxidation, 7, 316
Aldehydes
 achiral
 reactions with chiral allyl organometallics, 2, 33–40
 reactions with type I crotyl organometallics, 2, 9–19
 reactions with type III crotyl organometallics, 2, 19–24
 acid halide synthesis, 6, 308
acyclic
 synthesis via retro Diels–Alder reactions, 5, 573
 tandem vicinal difunctionalization, 4, 243–245
addition reactions
 cyanides, 1, 460
1,2-addition reactions
 acyl anions, 1, 546
 cyanohydrin ethers, 1, 551
 cyanohydrins, 1, 548
 α-(dialkylamino)nitriles, 1, 554
 hydrazones, 2, 511
 phosphonate carbonilines, 1, 562
aldol reactions
 boron-mediated, 2, 251
 mixed, 2, 139
 syn/anti ratios, 2, 266

with ketones, 2, 142–156
aliphatic
 ene and Prins reactions, 2, 537
 McFadyen–Stephens aldehyde synthesis, 8, 297
 Perkin reaction, 2, 400
 reactions with boron-stabilized carbanions, 1, 499
alkenic
electroreduction, 8, 134
α-alkylated
 enantioselective synthesis, 3, 35
 synthesis, 3, 26
alkylation, 3, 20
α-alkylation, 4, 260
alkyl enol ether derivatives
 alkylation, 3, 25
alkylidene transfer, 4, 976
analysis
 Knoevenagel reaction, 2, 354
 aromatic
 ene and Prins reactions, 2, 537
 hydrogen donors, 8, 557
 hydrogenolysis, 8, 319
 aryl
 methylation, 1, 738
 β-aryl-α,β-unsaturated
 synthesis, 2, 139
 asymmetric synthesis
 hydroformylation, 4, 931
 bisulfite adducts
 oxidation, 6, 402
 boron trifluoride complexes
 NMR, 1, 292
 chiral
 reactions with allyl organometallics, 2, 24–32
 α-chiral
 Lewis acid complexes, 1, 298
 chiral β-alkoxy
 alдол reaction, chelation control, 2, 221
 chiral α-methyl
 reactions with allylboron compounds, 2, 42
 cycloaddition with diynes
 bicyclic α-pyran synthesis, 5, 1157
 dehydrogenation
 palladium catalysts, 7, 140, 141
 deuterated
 synthesis, 8, 271
 dialkylzinc addition reactions, 1, 317
 Diels–Alder reactions, 2, 662; 5, 433
 electron deficient
 Diels–Alder reactions, 5, 431
 ene reaction, 2, 534
 enantioselective addition
 alkyllithium, 1, 72
 organolithium, 1, 70
 enol acetates
 halogenation, 7, 121
 enolates
 addition reactions with alkenic π-systems, 4, 99–105
 arylation, 4, 466
 synthesis, 2, 101
 enol silyl ethers of, 2, 599
 germinal dialkylation
 titanium(IV) reagents, 1, 167
 halogenation, 7, 120
 homologation, 3, 897
diazoc compounds, 6, 129
hydride transfer, 8, 86
hydrogenation
 catalytic, 8, 140
 α-hydroxylation, 7, 186
intermolecular additions
 allylsilanes, 1, 610
 intermolecular pinacol coupling reactions, 3, 570
intraprotemolecular additions
 allylsilanes, stereochemistry, 1, 615
 allyltrimethylsilane, 1, 612
keto
 aldol cyclization, 2, 158
 cyclization, regiochemistry, 2, 159
Lewis acid complexes
 rotational barriers, 1, 290
metal enolates
 alkylation, 3, 3
 α-methoxy
 aldol reaction, stereoselective addition, 2, 222
methylenation
 Tebbe reagent, 5, 1123
 titanium isopropoxide, 5, 1125
Meyers synthesis, 6, 274
nonalkenic
 enolate, 7, 30
 a-hydroxylation, 7, 186
optically active
 synthesis, hydroformylation of prochiral alkenes, 3, 1022
 γ-oxo synthesis, 3, 103
photolysis
 benzoin formation, 1, 544
protection
 via titanium reagents, 1, 170
radical cyclizations, 4, 817
reactions with activated dienes, 2, 661–706
reactions with allenylsilanes, 1, 599
reactions with allylic organocadmium compounds, 1, 226
reactions with allyl metal compounds
 synthesis of homoallylic alcohols, 6, 864
reactions with arynes, 4, 510
reactions with boron enolates, 2, 250
reactions with boron stabilized carboniums, 1, 498
reactions with α-bromo ketones, 1, 202
reactions with chloromethyleniminium salts, 2, 785
reactions with diazoalkanes, 1, 845
reactions with dithioacetals, 1, 564
reactions with nitriles, 6, 270
reactions with organolaluminum reagents
 discrimination between ketones and, 1, 83
reactions with organocadmium compounds, 1, 225
reactions with organocuprates, 1, 108
reactions with organometallic compounds
 chemoselectivity, 1, 145
 Cram versus anti-Cram selectivities, 1, 80
 Lewis acid promotion, 1, 326
pinacolic coupling reactions, 1, 270
reactions with type I crotylboron compounds, 2, 10–15
reactions with zinc ester dienolates, 2, 286
reduction
 cathodic, 8, 131
chiral boron reagents, 8, 101
diimide, 8, 478
dissolving metals, 8, 307–323
electrochemical, 8, 131
samarium diiodide, 8, 115
selective, 8, 16
Reformatsky reaction, 2, 281
saturated metal enolates
 alkylation, 3, 20
Schiff bases
 Mannich reaction, 2, 954
selenenylation, 7, 131
self-reactions, 2, 136
sulfenylation, 7, 125
synthesis
 alkylboronic esters, 3, 797
carbonylation, 3, 1021
 α-heterosubstituted sulfides and selenides, 3, 141
organoboranes, 3, 793
 via alkenes, 7, 602
 via carboxylic acid reduction, 8, 259–279, 283–304
 via oxidative cleavage of alkenes, 7, 541
via selective oxidation of primary alcohols, 7, 305
tandem vicinal difunctionalization, 4, 242–246
tri-n-butylvinyl enolates
 alkylation, 3, 20
unconjugated unsaturated
 hydrogenation, 8, 439
 α,β-unsaturated
 addition reactions with organozinc compounds, 4, 95
 aldo reactions, 2, 137
 alkylation, Cope rearrangement, 5, 789
 conjugate additions, 4, 183, 208–212
 Diels–Alder reactions, chiral catalysis, 5, 377, 464
dienolates, alkylation, 3, 25
econe reactions, 5, 5
enzymic reduction, 8, 205
Henry reaction, regioselectivity, 2, 330
Henry reaction, stereoselectivity, 2, 330
hydrobromination, 4, 282
hydroformylation, 4, 924
hydrogenation, homogeneous catalysis, 8, 453
imine protection, 4, 252
preparation, directed aldo reaction, 2, 477
preparation from epoxy sulfoxides, 2, 417
reaction with organolithium compounds, 4, 72
synthesis via bis(methylthio)allyllithium, 6, 138
synthesis via retro Diels–Alder reactions, 5, 553, 573
α,β,γ,δ-unsaturated
 synthesis, 6, 903
β,γ-unsaturated
 isomerization, 6, 896
 optically active, synthesis, 6, 855
 stereoselective synthesis, 6, 851
 synthesis, 3, 934
γ,δ-unsaturated
 synthesis, 3, 103
 synthesis via Claisen rearrangement, 5, 830
ununsaturated aliphatic
 hydrogenation, 8, 140
Aldehydes, α-alkoxy
 aldo reaction
 stereoselective nonchelation, 2, 307
Aldehydes

Cumulative Subject Index

416

chiral
- reaction with enol silanes, 2, 640
Diels–Alder reactions
- TiCl₄-catalyzed, 2, 667
N,N-dimethyldihydrazone
- reactions with organometallic compounds, 1, 380
- reactions with organochromium compounds, 1, 198
- reactions with organocuprates, 1, 108
- reactions with organozinc compounds
 - 1,2-asymmetric induction, 1, 336
 - stereoselectivity, 1, 221
Aldehydes, β-alkoxy
- aldol reaction
 - chelation control, 2, 152
 - reactions with organocuprates, 1, 108
 - reaction with allyl organometallic compounds, 2, 985
- reaction with enol silanes
 - chelation control with TiCl₄, 2, 646
Aldehydes, α-alkoxy chiral
- reactions with organochromium compounds
 - addition to crotyl halides, 1, 185
Aldehydes, β-alkoxy-γ-hydroxy
- nucleophilic addition reactions
 - stereoselectivity, 1, 59
Aldehydes, β-alkoxy-α-methyl
- reaction with allylchromium
 - stereoselectivity, 1, 183
Aldehydes, alkynic
 - intramolecular ene reaction
 - type I, 2, 547
 - reduction, 8, 114
Aldehydes, β-allylsiloxy
- intramolecular additions
 - Lewis acid catalyzed, 1, 615
Aldehydes, amino
- nucleophilic addition reactions
 - stereoselectivity, 1, 56
Aldehydes, α-amino
 - dibenzyl protected
 - nucleophilic addition reactions, 1, 56
 - reaction with enol silanes
 - chelation control with TiCl₄, 2, 646
 - statine synthesis, 2, 223
 - synthesis
 - use of protecting groups, 6, 644
 - via ester reduction, 8, 266
Aldehydes, β-amino
- synthesis
 - Mannich reaction, 2, 896
Aldehydes, α-aryl
- synthesis
 - via rearrangement of arylalkenones, 7, 828
Aldehydes, α-bromo
- synthesis
 - via haloborane addition to alkynes, 4, 358
Aldehydes, α,β-dialkoxy
- reactions with organocuprates, 1, 108
- reaction with enol silanes
 - stereoselection, 2, 642
Aldehydes, N,N-dibenzyl-α-amino
- carbonyl compound complexes
 - nonchelation-controlled addition, 1, 460
Aldehydes, α,β-dibenzylxoy
Cumulative Subject Index

Aldol reactions

reactions with organometallic compounds, 1, 382
N-heterosubstituted
homallylamines from, 2, 994
imine anions from, 2, 477
lithiated α,β-unsaturated
alkylation, 3, 33
metallated
aldol reaction, 2, 477
metallation, 2, 476
pinacol coupling reactions, 3, 580
reactions with allenic organometallic compounds
syn–anti selectivity, 2, 993
reactions with crotyl-9-BBN, 2, 15
reactions with crotyl organometallic compounds
regioselectivity, 2, 989
reduction
metal hydrides, 8, 272
α,β-unsaturated
addition reactions with organomagnesium compounds, 4, 85
Aldimines, α-alkoxy-
reaction with allyl organometallic compounds, 2, 987
Aldimines, N-isopropyl-
reaction with crotyl organometallic compounds
syn–anti selectivity, 2, 992
Aldimines, N-phenylsulfonyl-
Diels–Alder reactions, 5, 474
Aldimines, N-propyl-
reaction with allyl organometallic compounds, 2, 983
Aldimines, N-prot-
reaction with crotyl organometallic compounds
syn–anti selectivity, 2, 992
Alditols, amino-
synthesis
via cyclization of allylic substrates, 4, 404
Aldolase
asymmetric synthesis
summary of enzymes available, 2, 467
organic synthesis
carbon–carbon bond formation, 2, 456
substrate specificity
synthetic applicability, 2, 456
Aldol reactions
acetyliron enolates
diastereofacial selectivity, 2, 316
acid and general base catalysis, 2, 133
acyl–transition metal complexes, 2, 314
addition
driving force, 2, 135
stereochemistry, 2, 153
aldehydes
cross-addition, 2, 139
self-addition, 2, 136
alkenoyloxyalkylalanes
homochiral, 2, 271
alkenoyloxyalkylboranes
homochiral, 2, 248
aluminum-mediated, 2, 268
2,3-anti products
from hindered aryl esters, 2, 201
anti-selective, 2, 256
anti/syn selectivity, 2, 258
background, 2, 134
boric acid
catalyst, 2, 138
boron enolates
from homochiral acyl sultam, 2, 253
boron-mediated, 2, 240
kinetic control, 2, 154
κ3-C-bound metal enolates, 2, 312
chiral auxiliary
recycling, 2, 232
condensation
acrylic stereospecificity, allyl metal reagents, 2, 2
double asymmetric synthesis, 2, 2
cross-coupling
aluminum-mediated, 2, 268
crossed
from boryl enolates, 2, 242
lithium dimethylhydrazine anions, 2, 511
cyclizations
enantioselective, 2, 167
intrafunctional, aluminum-mediated, 2, 269
ring-size selectivity, 2, 165
stereochemistry, 2, 166
diastereofacial selectivity, 2, 217
diastereoselective
alkenylxoyboranes, 2, 244
boron ligands, less polar solvents, 2, 247
dicyclopentadienylichlorozirconium enolates
stereochemistry, 2, 305
syn:anti selectivity, 2, 303
directed
alkenylxoyboranes, 2, 242
electrochemistry, 2, 138
enantioselectively pure
preparation, 2, 232
tenioselective
use of hydrazones, 2, 514
enol ethers, 2, 611
enol silanes
rhodium(I) catalyzed, 2, 311
enones, 2, 152
enzymatic, 2, 455–470
equilibration
thermodynamic control, 2, 234
Group I and II enolates, 2, 181–235
Group III enolates, 2, 239–275
imine anions
directed, 2, 477
immolative process
chiral auxiliaries, 2, 232
indirect
homoallylic alcohol synthesis, 6, 864
intrafunctional, 2, 156–176
Reformatsky reaction product, 2, 282
intrafunctional diastereoselective
silyl enol ethers, 2, 651
ketones
asymmetric, boron reagents, 2, 264
cross-addition, 2, 142
external chiral reagents, 2, 262
self-addition, 2, 140
with aldehydes, 2, 142–156
kinetic control, 2, 154
kinetic stereoselectivity
Aldol-type reactions

Cumulative Subject Index

418

enolate stereochemistry and structure, 2, 190
lanthanide metal enolates, 2, 301
lithium-mediated, 2, 239
mechanism
X-ray structure of intermediates, 1, 4
mediated by alkenyloxydialkoxyboranes, 2, 266
α-mercurio ketones
η1-metal enolates, 2, 312
syn:anti selectivity, 2, 313
metallated alkimines
with carbonyl compounds, 2, 477
methyl isocyanooacetate
diastereoselectivity, 2, 318
enantioselectivity, 2, 318
η1-O-bound metal enolates, 2, 302
open transition states, 2, 155
propionyliron enolates
stereochemistry, 2, 317
radical cyclization, 4, 791
reactions with aldehydes
boron-mediated, 2, 251
reversibility, 2, 134
limitations, 2, 136
simple diastereoselection
use of preformed enolates, 2, 190
solvent effects, 2, 153
stereoselection
addition to chiral aldehydes, 2, 217
cation, 2, 191
enolate geometry, 2, 190
stereoselective
allyl rearrangement, 6, 833
stereoselectivity
chiral aldehydes, steric effects on facial preference, 2, 221
chiral enolates, 2, 223
restoring energy, 2, 154
3,4-stereoselectivity, 2, 248
substitution effect
enone formation, 2, 146
syn/anti ratios, 2, 266
syn-selective, 249
thermochemistry, 2, 134
thermodynamic control, 2, 154
thioates, 2, 258
titanium enolates
enantioselectivity, 2, 309
syn/anti selectivity, 2, 306
syn stereoselectivity, 2, 305
transannular cyclizations, 2, 169
transition metal enolates, 2, 301-318
unsymmetrical ketones
regioselectivity, 2, 144
vinylaminodichloroboranes
with carbonyl compounds, 2, 479
Wittig directed
use of lithium diisopropylamide, 2, 182
Aldol-type reactions
α-bromo ketones
with aldehydes, 1, 202
Aldonolactones
reduction
electrochemical, 8, 292
formation of aldoses, 8, 292
Aldonolactone sugars
synthesis
via Paterno–Büchi reaction, 5, 158
Aldosterone
synthesis, 7, 236
Aldoxan
synthesis, 2, 138
Aldoxime ethers
reactions with organometallic compounds, 1, 385
Aldoximes
Beckmann rearrangement, 6, 763, 775; 7, 695
dianions
alkylation, 3, 35
oxidation
nitrile oxides from, 4, 1078
reactions with allylboronates, 2, 15
A. leucocreta
sex pheromone
synthesis, 2, 78
Allylic compounds
synthesis
via reduction of aromatic compounds, 8, 490
Alliquat-336
rhodium trichloride ion-pair
hydrogenation, 8, 535
Alka-2,4-dienoic acid
ethy ester
preparation, ene reaction, 2, 535
1,α-Alkadiynes
hydroalumination
locoselectivity, 8, 742
Alkali carbonates
phosphonium ylide synthesis, 6, 175
Alkali hydroxides
phosphonium ylide synthesis, 6, 175
Alkali metal cyanides
amide acetal synthesis, 6, 573
2,2-bis(dialkylamino)carbonitrile synthesis, 6, 578
Alkali metal enolates
carbonyl compounds
deprotonation, 2, 100
α,β-unsaturated, 2, 106
enol acetates
stable enolate equivalents, 2, 108
silyl enol ethers
stable enolate equivalents, 2, 108
synthesis, 2, 100
from amide bases, 2, 100
from ketenes, 2, 107
miscellaneous methods, 2, 109
Alkali metal fluorides
catalyst
Knoevenagel reaction, 2, 343
Alkali metals
deselenations, 8, 848
desulfurizations, 8, 842
liquid ammonia
reduction
alkyl halides, 8, 795
benzylc compounds, 8, 971
P—C bonds, 8, 858
Alkaloids
dehydrogenation
microbial, 7, 65
hydroxylation
microbial, 7, 65
synthesis
Dieckmann reaction, 2, 829
via 1,3-dipolar cycloadditions, 4, 1077
Alkanal, 3-phenyl-
chiral synthesis, 2, 68
Alkane-1-boronic acids, 1,4
reactions with carbonyl compounds, 1, 501
Alkanecarboxylic acid
Baeyer–Villiger reaction, 2, 684
Alkanes
acylation
Friedel–Crafts reaction, 2, 727
alkylation
Friedel–Crafts reaction, 3, 322
carboxylation
transition metal catalysis, 7, 6
cracking, 7, 7
dehydrodimerization, 7, 5
dehydrogenation
transition metal catalysis, 7, 6
electrochemical oxidation, 7, 8
functionalization, 7, 2
electrophilic addition reactions, 7, 7
silyl substituent, 7, 8
hydroxylation
photolytic method, 7, 12
isomerization, 7, 5
microbial oxidation, 7, 56
nitrilation, 7, 8
reactions with alkylpotassium, 7, 2
synthesis
via alcohols and amines, 8, 811–832
via alkyl halide reduction, 8, 793–807
via enzyme reduction of alkenes, 8, 205
via trialkylboranes, 7, 603
thermolysis, 7, 7
Alkanes, azido-
synthesis, 7, 607
Alkanes, bis(5-deazaflavin-10-yl)-
synthesis, 4, 435
Alkanes, 1,1-bis(dialkoxyboryl)-
oxidation
formation of aldehydes, 7, 600
Alkanes, 2,2-bis(dialkoxyboryl)-
oxidation
formation of ketones, 7, 600
Alkanes, 1,1-bis(ethyldithio)-
alkylation, 3, 124
Alkanes, chloroalkoxy-
synthesis, 8, 214
Alkanes, chlorophenyl-
cycloalkylations
Friedel–Crafts reaction, 3, 324
Alkanes, diazo-
addition to ketones, 3, 783
fluorination, 6, 219
Alkanes, 1,1-diboryl-
synthesis, 1, 489
Alkanes, 1,1-dibromo-
reagent from
enol ether synthesis, 2, 597
Alkanes, 1,2-dibromo-
reductive elimination, 8, 806
Alkanes, α,α-dibromo-
monoauration
with aryl Grignard reagents, 3, 464
Alkanes, α,α-dichloro-
benzene alkylation by
Friedel–Crafts reaction, 3, 318
Alkanes, α,α-diethynyl-
oxidative coupling, 3, 557
Alkanes, difluoro-
synthesis, 4, 271
Alkanes, gem-dihalo-
cyclopropanation, 4, 961–976
dialkylation with
1,2-dicarbonionic species, 4, 976
Alkanes, dimesitylboronyl(trimethylsilyl)-
cleavage
synthesis of α-boryl carbamions, 1, 490
Alkanes, 1,1-diseleno-
carbonyl compound synthesis from, 3, 142
Alkanes, 1,1-disulfanyl-
reaction with allylic epoxides
synthesis of macrocycles, 3, 177
Alkanes, fluoro-
synthesis, 4, 270
Alkanes, 1-fluoro-2-amino-
synthesis, 7, 498
Alkanes, halo-
imidoyl halide synthesis, 6, 527
Alkanes, (hydroxyalkyl)nitr- anions
formation, 2, 323
Alkanes, β-hydroxyaryl-
synthesis
Friedel–Crafts reaction, 3, 313
Alkanes, 1-(indol-3-yl)-2-nitro-
reduction, 8, 375
Alkanes, 1-lithio-1-(phenylseleno)cyano-
reaction with cyclohexenone, 1, 686
Alkanes, 1-metallo-1,1-bis(alkyldithio)-
in synthesis, 3, 123
Alkanes, 1-metallo-1,1-bis(dithio)-
alkylation, 3, 121
Alkanes, 1-metallo(phenylthio)-
in synthesis, 3, 123
Alkanes, nitro-
acyl anion synths, 2, 324
aliphatic
reduction, 8, 374
aryl radical traps, 4, 472
α,α doubly deprotonated
Henry reaction, 2, 335
functionalized
Henry reaction, 2, 331
Michael addition, 4, 12
synthesis, 2, 321; 6, 104
via decomposition of acyl nitrates, 7, 729
tandem vicinal difunctionalization, 4, 259
Alkanes, nitroso-
synthesis
via oxidation of amines, 7, 737
Alkanes, α-phenylselenonitro-
metallation, 1, 642
Alkanes, polyhalo-
reaction with alkenes
Alkanes

radical addition reactions, 4, 753
Alkanes, 2-pyridyldi-synthesis via cycloaddition, 5, 1155
Alkanes, 1,1,1-trihalo-aminal ester synthesis, 6, 574
ortho acid synthesis, 6, 556
tris(dialkylamino)alkane synthesis, 6, 579
Alkanes, tris(dialkoxyboryl)-synthesis via production of boron-stabilized carbanions, 1, 489
Alkanes, tris(dialkoxyboryl)-2,2-bis(dialkylamino)carbonitrile synthesis, 6, 577
synthesis, 6, 579
catalyst coupling reactions
Alkanesulfonic acids synthesis, 7, 14
Alkanesulfonic acid, perfluoro-Friedel-Crafts reaction, 3, 297
reaction with sp³ organometallics, 3, 455
Alkanesulfonic acids synthesis, 7, 14
Alkanesulfonyl bromide, α-halo-reaction with alkenes, 3, 879
Alkanethioates, S-2-methylbutyl esters synthesis, 6, 441
Alkanethioates, perfluoro-
Alkanethiolates reactions with aryl halides, 4, 475
Alkanoates enolates, 3, 45
Alkanoic acid, α-chloro-benzene alkylation Friedel–Crafts reaction, 3, 303
Alkanoic acid, 2-oxo-esters synthesis, allylic anions, 2, 60
Alkanoic acid, 5-oxo-
Alkanoic acids α,β-disubstituted synthesis via conjugate addition to sultams, 4, 204
Alkanoic acids, aryl-esters synthesis, 3, 778
methyl esters anodic oxidation, 7, 811
optically active esters synthesis, Friedel–Crafts reaction, 3, 312
oxidation, 7, 336
synthesis, 3, 788; 7, 827
Friedel–Crafts reaction, 3, 316
via oxidative rearrangement of aryl ketones, 7, 829
Alkanoic acids, perfluoro-decarboxylation, 7, 930
Alkanols, aryl-cycloalkylation Friedel–Crafts reaction, 3, 325
oxidation, 7, 336
Alkanols, azido-
synthesis, 6, 253
Alkanones, α-aryl-
synthesis, 7, 827

Alkanoyl chloride, α,ω-trimethylsilylethynyl-cyclization, 2, 726
Alkatrienes synthesis, 3, 644
2-Alkenamides, 2-acylamino-synthesis
Erlenmeyer azlactone synthesis, 2, 405
Alkenation allenic phosphonates to cumulatrienes, 6, 845
Alkenations alkyl-gem-dichromium reagents, 1, 205
carbonyl compounds phosphorus stabilized, 1, 755
(1E)-selective, 1, 758
sulfur stabilized
Julia coupling, 1, 792
Alkenes activated conjugate additions catalyzed by Lewis acids, 4, 139–164
acyclic diastereoselective hydroxylation, 7, 441
epoxidation, 7, 359, 368, 378
Pauson–Khand reaction, 5, 1043–1046
acylation, 2, 709
acyloxymercuration-demercuration, 4, 314
addition reactions, 7, 493
carbon-centered radicals, 4, 735–765
carbon nucleophiles, 4, 571–583
cleavage, 7, 506
dihalocarbenes, 4, 1002–1004
ketocarbenoids, 4, 1034–1050
nitrogen and halogen, 7, 498
nitrogen and oxygen, 7, 488
nitrogen and sulfur, 7, 493
nitrogen nucleophiles, 4, 559–563
oxgen nucleophiles, 4, 552–559
reactive carbanions, 4, 69–130
two nitrogen atoms, 7, 484
alkoxymercuration–demercuration, 4, 309
alkylation Friedel–Crafts reaction, 3, 331
palladium(II) catalysis, 4, 571–580, 842
π-allylpalladium complexes from, 4, 587
amination, 4, 290–297; 7, 470
aminomercuration–demercuration, 4, 290
anodic oxidation, 7, 794
arene alkylation Friedel–Crafts reaction, 3, 304
arylation by palladium complexes, 4, 843–848
mechanism, 4, 843
regiochemistry, 4, 845
stereochmistry, 4, 845
asymmetric dihydroxylation, 7, 429
asymmetric hydrogenation chiral catalysts, 8, 459
homogeneous catalysis, 8, 463
2-azetidinones from, 5, 102–108
aziridines from, 7, 470
benzylation palladium complexes, 4, 842
bicyclic hydrochlorination, 4, 273
bicyclic oxides opening, 3, 734
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-bifunctionalization</td>
<td>7, 533</td>
</tr>
<tr>
<td>bishydroxylation</td>
<td>7, 867</td>
</tr>
<tr>
<td>bridged bicyclic</td>
<td></td>
</tr>
<tr>
<td>Pauson-Khand reaction</td>
<td>5, 1049–1051</td>
</tr>
<tr>
<td>bridgehead</td>
<td></td>
</tr>
</tbody>
</table>
cycloadditions | 5, 64 |
captodative | |
|radical addition reactions | 4, 758 |
carboalumination | 4, 887 |
carboboration | 4, 885 |
carboxcupration | 4, 895 |
carbollithiation | 4, 867–872 |
carbomagnesiation | 4, 873, 874–877 |
carbometallation | 4, 865–906 |
carbonation | |
palladium salt catalyst | 3, 1030 |
carbozincation | 4, 879, 880–883 |
|conjugate additions | |
catalyzed by Lewis acids | 4, 140 |
|conjugated | |
|hydrogenation | 8, 449, 452 |
Peterson alkenation | 1, 789 |
|transfer hydrogenation | 8, 453 |
coupling reactions | 3, 482 |
crossed, 3, 484 |
|with aryl compounds | 3, 492 |
|with carbene complexes | 5, 1084 |
|with heteroaryl compounds | 3, 497 |
cyclic | |
|epoxidation | 7, 361, 364, 376 |
|hydroboration | 8, 713 |
ring contraction | 7, 831 |
ring expansion | 7, 831 |
cyclization | |
zirconium-promoted | 5, 1164 |

[2 + 2] cycloadditions | 5, 63–79 |
cyclopropanation | 5, 1084 |
alkyl diazoacetate | 4, 1035 |
deuterium-labeled | 3, 867 |
dibromides | 6, 685 |
dicarboxylation | 4, 946–949 |
dichlorides | 6, 685 |
difunctional | |
coupling reactions with sp³ organometallics | 3, 448 |
dimerization | 3, 482 |
via 1,3-diradicals | 5, 63–67 |
divinyl ketones from | 5, 777 |
electrochemical oxidation | 7, 98 |
electron deficient | |
asymmetric nucleophilic addition | 4, 199–232 |
enreactions | 5, 2–6 |
epoxidation | 7, 372 |
epoxide reactions | 5, 1–25 |
epoxidation | 7, 358, 390 |

solid support | 7, 841 |
esterification | 4, 312 |
exocyclic | |
regioselective synthesis | 5, 1182 |
synthesis via retro Diels–Alder reactions | 5, 560 |
Friedel–Crafts reaction | 2, 708 |
functionalyzed | |
carbollithiation | 4, 869 |
carbomagnesiation | 4, 877 |
hydroformylation | 4, 922–927 |
fused bicyclic | |
Pauson–Khand reaction | 5, 1046–1049 |
halogen derivatives | 5, 327 |
haloxydrins | |
protection | 6, 685 |
hydroalumination | 8, 733–758 |
hydroboration | 7, 595; 8, 703–727 |
hydrobromination | 4, 279–287 |
hydrocarboxylation | 4, 932–946 |
hydrochlorination | 4, 272–278 |
stereochemistry | 4, 272 |
hydrogenation | 8, 421 |
apparent anti addition | 8, 427 |
association constants | 8, 425 |
catalyst hindrance | 8, 427 |
conformational analysis | 8, 429 |
haptophilicity | 8, 429 |
heterogeneous catalysis | 8, 417–442 |
homogeneous catalysis | 8, 443–463 |
intramolecular nonbonding interactions | 8, 428 |
ratio constants | 8, 444 |
stereochemistry | 8, 426 |
syn addition | 8, 426 |
hydroiodination | 4, 287 |
hydroisilylation | 8, 763–789 |
trichlorosilane | 7, 642 |
hydroxylation | |
anti | 7, 438 |
syn, enantioselective | 7, 441 |
Woodward’s procedure | 7, 444 |
hydroxymercuriation–demercuration | 4, 300 |
hydrozirconation | 4, 153; 8, 667–699 |
iminum ion cyclization | 2, 1023 |
internal oxidation | 7, 462 |
intramolecular carbomagnesiation | 4, 876 |

isomerization | |
hydroformylation | 4, 918 |
metal-activated | |
addition reactions | 4, 551–565 |
nucleophilic attack | 4, 551–568 |
metathesis | 5, 1115–1126 |
catalysts, 5, 1116 |
functionalization | 5, 1116 |
polymerization | 5, 1116 |
monocyclic | |
Pauson–Khand reaction | 5, 1046–1049 |
no directing group | |
epoxidations | 7, 375 |
one-carbon homologation | |
via Ramberg–Bäcklund rearrangement | 3, 862 |
oxidation | |
nitrogen addition | 7, 469–508 |
permanganate | 7, 444, 844 |
Wacker process | 7, 449 |
oxidative rearrangement, 7, 816, 828
solid support, 7, 845
peroxymercuration—demercuration, 4, 306
photoaddition reactions
with ynones, 5, 164
photosensitized oxidation, 7, 96
pinacol coupling reactions
with carbonyl compounds, 3, 598
polyfluorinated
cycloaddition reactions with ketenimines, 5, 113
polymerization, 5, 1115
protection, 6, 684
radical addition reactions, 4, 715–772
radical cyclizations, 4, 779
carbon-centered radicals, 4, 789
reactions with N-acyliminium ions
intramolecular, 2, 1062
reactions with alcohols, 4, 307
reactions with π-allylpalladium complexes
regioselectivity, 4, 644
reactions with arynes, 4, 510
reactions with carbon monoxide, 4, 913–949
reactions with chloromethyleniminium salts
Vilsmeier–Haack reaction, 2, 781
reactions with dialkylidithiophosphoric acids, 4, 317
reactions with dienes
transition metal catalysis, 4, 709–712
reactions with HX reagents, 4, 269–319
reactions with hydrogen peroxide, 4, 305, 306
reactions with ketocarbenes, 4, 1031–1064
reactions with ketenols
organosamarium reagents, 1, 268
reaction with Kolbe radicals, 3, 646
reaction with nitrile oxides, 5, 260
reduction
enzymes and microorganisms, 8, 205
noncatalytic chemical methods, 8, 471–487
reductive ozonolysis, 8, 398
remote carboxyl groups
synthesis, 3, 862
Ritter reaction, 6, 267
silicon-mediated formation
Peterson alkenes, 1, 782
stereochemistry
in coupling reactions, 3, 436
steroidal
hydroxylation, 7, 445
strained
reaction with π-allylpalladium complexes, 4, 602
substituted
hydroxylation, 8, 776
synthesis via retro Diels–Alder reaction, 5, 553–565
sulfur derivatives
Diels–Alder reactions, 5, 324–327
synthesis, 8, 959
alkenyldibromides, 3, 799
alkenyloboranes, 3, 795
α-alkylation of γ-substituted allyl phosphonates, 3, 202
alkylboranes, 3, 795
π-allylnickel halides, 3, 426
carboxylic acids, 3, 652
1,1-dibromoalkanes, deprotonation, 3, 202
sulfides or selenides, 3, 114
via alkynyl hydroboration/protonolysis, 8, 726
via carbonyl compounds, 1, 729–809
via deoxygenation of alcohols, 8, 822
via dissolving metal reductions, 8, 528
via elimination from diazo compounds, 6, 128
via β-hydroxyalkyl selenides, 1, 700, 721
via Julia coupling, 1, 804
via ketones, 8, 923–951
via metal carbenes complexes, 1, 807
via organoaluminum reagents, 1, 92
via organoboranes, 7, 603
via reaction of boron-stabilized carbanions with ketones, 1, 498
via reductive β-elimination of vicinal dibromides, 8, 797
via 2,3-sigmatropic rearrangement, 6, 873, 877
via vinyl halides, 8, 895–920
terminal
allylic oxidation, 7, 95
oxidation to methyl ketones, 7, 452
thioimidate synthesis, 6, 540
trans
synthesis, 8, 478
unactivated
photocycloaddition reactions, 5, 145–147
unfunctionalized
hydroformylation, 4, 919–922
unsymmetrical
Friedel–Crafts acylations, 2, 709
vinylation
stereospecific, 4, 852
vinyl substitution with palladium complexes, 4, 851–854
mechanism, 4, 851
1-Alkenes
hydrogenation
homogeneous catalysis, 8, 445
2-Alkenes
allylic oxidation, 7, 93
(E)-Alkenes
synthesis
via Horner–Wadsworth–Emmons reaction, 1, 762
via Julia coupling, 1, 794
(Z)-Alkenes
synthesis
via Horner–Wadsworth–Emmons reaction, 1, 763
Alkenes, 2-alkyl-4-hydroxy-k-butyl carbonates
cyclization, 4, 386
Alkenes, β-(alkylthio)-addition reactions, 4, 126
1-Alkenes, 1-alkynyl-2-halo-synthesis
via haloborane addition to alkynes, 4, 358
Alkenes, aryl-
oxidative rearrangement, 7, 828
Alkenes, 1,2-bis(trimethylsilyloxy)-synthesis
via acyloin condensation, 2, 601
Alkenes, ω-bromo-
synthesis, 3, 247
Alkenes, 1-bromo-1-(trimethylsilyl)-
cyclization, 1, 589
2-Alkenes, 2-chloro-1,1,1-trifluoro-
Oshima–Takai reaction, 1, 751
2-Alkenes, 1,4-diaminosynthesis, 7, 504
Alkenes, 1,1-diaryl-
synthesis, 3, 864
Alkenes, 1,2-dichloro-
formation of methyl esters, 7, 574
Alkenes, 1,2-dichloro-
Alkenes, 1,2-dihalo-
Alkenes, 1,2-diiodo-
via carboalumination, 4, 890
Alkenes, 1,1-diseleno-
reduction, 3, 106
Alkenes, 1,2-dibromo-
Alkenes, 2,3-dibromo-
Friedel-Crafts reaction, 2, 718
Alkenes, disubstituted
via Homer reaction, 1, 778
via tandem vicinal difunctionalization, 4, 250
Alkenes, fluoro-
synthesis, 3, 420
Alkenes, halo-
imidoyl halide synthesis, 6, 527
ortho acid synthesis, 6, 556
Alkenes, 1-halo-2-bromo-
via haloborane addition to alkenes, 4, 358
Alkenes, γ-hydroxy-
oxidative cleavage
synthesis of lactones, 7, 574
selective oxidation, 7, 454
Alkenes, α-hydroxy-
cyclization
palladium(II) catalysis, 4, 557
Alkenes, iodo-
synthesis, 7, 606
Alkenes, 3-methyl-5-hydroxy-
cyclizations
stereoselectivity, 4, 380
Alkenes, nitro-
conjugated
Diels-Alder reactions, 2, 325
synthesis, 6, 107
transformations, 2, 324
Diels-Alder reactions, 5, 320-322
hydrogenation, 8, 439
Michael acceptors, 4, 262
Michael additions, 4, 12, 18
chiral enolates, 4, 218
reduction, 8, 375
synthesis, 7, 493, 534
tandem vicinal difunctionalization, 4, 253
Alkenes, α-nitro-
addition reactions
with enolates, 4, 100
with organolithium compounds, 4, 77
with organomagnesium compounds, 4, 85
π-allylpalladium complexes from, 4, 589
Alkenyl iodides
Lewis acids, 4, 142
Henry reaction, 2, 334
synthesis
via addition to 2-nitroallyl pivalate, 4, 78
Alkenes, perfluoro-
reactions with amines, 6, 498
reaction with nitric oxide, 7, 488
Alkenes, perfluoroalcohol-
reactions with amines, 6, 498
Alkenes, phenyllithio-
synthesis
via 1-lithio-1-phenyllithioalkane-1-boronates, 1, 501
Alkenes, β-sulfonylnitro-
Diels–Alder reactions, 5, 320; 6, 161
Alkenes, tetrasubstituted
synthesis, 3, 864
via tandem vicinal difunctionalization, 4, 250
Alkenes, trisubstituted
Julia coupling, 1, 797
synthesis, 1, 797
from thiols and activated alkynes, 4, 50
via tandem vicinal difunctionalization, 4, 250
2-Alkenoic acid
deconjugated alkylation, 3, 51
6-Alkenoic acid
Kolbe electrolysis, 3, 640
2-Alkenoic acids, 2-acylamino-
synthesis
Erlenmeyer azlactone synthesis, 2, 405
2-Alkenoic acids, 2-alkyl-
methyl esters
synthesis via retro Diels–Alder reaction, 5, 553
2-Alkenolides, 2-sulfinyl-
conjugate additions, 4, 213
2-Alkenones
tandem vicinal difunctionalization, 4, 242
β-Alkenylamines
sulfenoamination, 4, 401
Alkenyl bromides
coupling reactions
with Grignard reagents and alkyl lithium reagents, 3, 437
Alkenyl chlorides
coupling reactions
with Grignard reagents, 3, 437
Alkenyl complexes
benzannulation, 5, 1100
Alkenyl groups
addition reactions
with alkenic π-systems, 4, 72-99
conjugate additions
catalyzed by Lewis acids, 4, 140-158
Alkenyl halides
coupling reactions with sp3 organometallics, 3, 436
reactions with ketones
organosamarium compounds, 1, 258
reaction with 1-alkynes, 3, 539
reaction with organocopper compounds, 3, 217
synthesis
via metal carbene complexes, 1, 807
tandem vicinal difunctionalizations, 4, 260
Alkenyl iodides
coupling reactions
with Grignard reagents, 3, 439
1-Alkenyllithiums

1-Alkenyllithiums, 1-seleno-
synthesis, 1, 666
1-Alkenyl metals, 1-seleno-
synthesis, 1, 644
Alkenyl pentafluorosilicates
coupling
butadiene synthesis, 3, 483
Alkenynes
hydroalumination
locoselectivity, 8, 742
1-Alken-3-ynes, 1-methoxy-
synthesis, 2, 89
Alkoxides
alkali metal anions
crystal structures, 1, 37
aromatic nucleophilic substitution, 4, 437
phosphonium ylide synthesis, 6, 174
phosphorylation, 6, 603
reaction with π-allylpalladium complexes
stereochemistry, 4, 622
tandem vicinal difunctionalization, 4, 257
Alkoxides, amino-
o-alkylated
hydroxylation, 7, 333
Alkoxides, α-amino-
lithiation
addition reactions, 1, 463
α-Alkoxaldimines
reaction with allyl organometallic compounds
chelation control, 2, 984, 988
β-Alkoxaldimines
reaction with allyl organometallic compounds
1,3-asymmetric induction, 2, 985, 988
α-Alkoxalkyl esters
carboxy-protecting groups, 6, 666
Alkoxamines, N-(homoallyl)-
synthesis
from aldoxime ethers, 2, 995
Alkoxy carbonylation
ketones, 2, 839
α-Alkoxy carbamates
synthesis, 2, 1086
Alkox groups
cyanide exchange
nitrile synthesis, 6, 237
Alkoxymercuration
demercuration
alkenes, 4, 309–312
oxidative demercuration, 7, 631, 632
Alkoxymethylation
α-alkoxycarbonyl acid chlorides
samarium diiodide, 1, 259
Alkoxy radicals
cyclization, 4, 812
fragmentation reactions, 4, 816, 817
Alkyl alcohols
bromination, 6, 209
chlorination
displacement of hydroxy group, 6, 204
fluorination, 6, 216
iodination, 6, 213
N-Alkylamines
acyclic
synthesis, 1, 376
Alkylamines, N-α-chloro-
acyliminium ions from, 2, 971
Alkylamine, β-(2- or 3-pyrrolyl)-
synthesis, 8, 376
Alkylamines, α-ferrocenyl-
stereoselective synthesis
Ugi reaction, 2, 1098
Alkyl anion synths
reagents, 2, 324
Alkylarsino compounds
halogenolysis, 3, 203
Alkylation
acyclic ketone enolates
extraannular chirality transfer, 3, 17
acyl anion equivalents
sulfur or selenium chirality derivatives, 3, 134
aldehydes
metal enolates, 3, 3
alkanes
Friedel–Crafts reaction, 3, 332
alkynes
Friedel–Crafts reaction, 3, 331
alkyl sulfonates, sultones and sulfonamides, 3, 179
alkynes
Friedel–Crafts reaction, 3, 332
alkynes, 3, 272
alkyl halides, 3, 272
epoxides, 3, 277
alkynyl carbanions, 3, 271–292
diene carbanions, 3, 256
amides, 6, 399
amines
alkyl halides, 6, 65
sulfonates, 6, 72
angular
1-decalone lithium l(9)-enolate, 3, 16
anomeric
glycoside synthesis, 6, 34
arenes, 4, 426
Friedel–Crafts reaction, 3, 298
polyfunctional alkylation agents, 3, 317
with alcohols, 3, 309
with alkenes, 3, 322
with alkynes, 3, 304
with alkyl halides, 3, 299
with epoxides, 3, 309
with esters, 3, 309
with ethers, 3, 309
with lactones, 3, 309
alkyl carbanions, 3, 259
axial
4-tert-butylyclohexanone, 3, 13
azides, 6, 76
Beckmann rearrangement, 6, 769
carbonyls
boron stabilized, 1, 495
heteroatom-stabilized, 3, 193–204
nitrogen-stabilized, 3, 65–82
nonstabilized, 3, 207–233
sulfur- and selenium-containing, 3, 85–181
carbonyl compound nitrogen derivatives
stereochemistry, 3, 28
Beckmann rearrangement, 6, 769
carbonyls
boron stabilized, 1, 495
heteroatom-stabilized, 3, 193–204
nitrogen-stabilized, 3, 65–82
nonstabilized, 3, 207–233
sulfur- and selenium-containing, 3, 85–181
carbonyl compound nitrogen derivatives
stereochemistry, 3, 28
Claisen condensation and, 2, 817
cyanohydrin ethers, 1, 552
cyanohydrins, 1, 550
α-(dialkylamino)nitriles, 1, 557
diastereoselective
Acyclic carboxylic acids, 3, 44
Acyclic enolates of carboxylic acid derivatives, 3, 42
Carboxylic acid enolates, 3, 39
β-Dicarbonyl compounds, 3, 54, 58
dienolates
α,β-unsaturated carboxylic acids, 3, 50
1,3-dithiane lithium derivatives, 1, 568
1,1-(dithio)allyl metals, 3, 131
1,1-(dithio)propargyl metals, 3, 131
enantioselective synthesis, 3, 35
enolates, 3, 1–58
stereochemistry, 3, 12
sterically hindered, 1, 3
enols, 3, 1–58
Equatorial
4-t-butylcyclohexanone, 3, 13
Friedel–Crafts, 3, 293–335
heteroaromatic carbanions, 3, 260
Intramolecular
tandem carbanionic addition, 4, 986
ketones
metal enolates, 3, 3
masked carboxylic acid anions
asymmetric syntheses, 3, 53
metal dienolates
α,β-unsaturated ketones, 3, 21
metal enolates
Carboxylic acid derivatives, 3, 39
α-Metalloalkyl selenoxides, 3, 157
α-Metalloalkyl sulfones, 3, 158
α-Metalloalkyl sulfoxides and selenoxides, 3, 147
1-Metallo-1,1-bis(dithio)alkanes
synthetic applications, 3, 121
α-Metalloorthoselenoformates, 3, 144
α-Metalloorthothioformates, 3, 144
α-Metallovinyl selenides, 3, 104
α-Metallovinyl selenoxides, 3, 157
α-Metallovinyl sulfoxides, 3, 104
α-Metallovinyl sulfone, 3, 173
Organometallic compounds
 palladium complexes, 4, 838
Phosphonate carbanions, 1, 563
Phosphonium ylides, 6, 182
SₐN₂ reaction process, 3, 257
α-Selenoalkyllithium, 3, 88
α-Selenoallyllithium, 3, 95
α-Selenobenzyl metal, 3, 94
α-Selenopropargylic lithium derivatives, 3, 104
Silyl enol ethers, 3, 25
sp² centers
epoxides, 3, 262
stabilized metal enolates, 3, 54
Sulfur ylides, 3, 178
Synthesis
saturated metal enolates, 3, 20
α-Thioalkyllithium, 3, 88
α-Thiobenzyl metal, 3, 94
α-Thiopropargylic lithium derivatives, 3, 104
Vinyl and aryl-lithium compounds, 3, 247
Vinyl carbanions, 3, 241–266
Alkyl halides, 3, 242
Heteroatom-substituted, 3, 252
Vinyl Grignard reagents, 3, 242
 α-Alkylation
Enhancement, 4, 260
Pummerer rearrangement
preparation of α-alkylated sulfides, 7, 199
O-Alkylation
amides
deprotection, 6, 672
anomeric
glycoside synthesis, 6, 54
Alkylation
Amination
aldehydes
alkyltinanium(IV) complexes, 1, 170
Alkylbenzylxyloamines
synthesis, 6, 112
Alkyl carbenoids
insertion reactions, 3, 1051
Alkyl 2-chloromethyl-4-nitrophenyl hydrogen phosphate
phosphorylation, 6, 608
Alkyl fluorides
Cleavage
metal–ammonia, 8, 530
Friedel–Crafts reactions, 3, 294
mixture with antimony fluoride
Friedel–Crafts reaction, intermediate, 3, 299
Primary
reduction with lithium aluminum hydride, 8, 803
reduction
dissolving metals, 8, 795
Secondary
synthesis via Ireland silyl ester enolate rearrangement, 5, 841
Alkyl fluorosulfonates, β-nitroperfluoro-synthesis, 7, 493
Alkyl groups
Addition reactions
with alkenic π-systems, 4, 72–99
Conjugate additions
catalyzed by Lewis acids, 4, 140–158
Alkyl halides
Alcohol synthesis, 6, 2
Alkylation
amine, 6, 65
arenes, 3, 299
sulfur– and selenium-stabilized carbanions, 3, 86
vinyl carbanions, 3, 242
Carbonylation
formation of esters, 3, 1028
catalytic hydrogenolysis, 8, 794
Coupling reactions
sodium metal, 3, 414
with sp² carbon centers, 3, 426
with sp² organometallics, 3, 464
Friedel–Crafts reactions
alkylating agents, 3, 294
α-functionalization, 4, 260
haloalkylation, 3, 118
Nitrile synthesis, 6, 226
Oxidation
dimethyl sulfide, 7, 291
reactions with π-allylnickel halides, 3, 424
reactions with organocopper reagents, 3, 215
Reduction
to alkanes, 8, 793–807
Reduction potentials, 8, 985
Secondary
Coupling reactions with sp² organometallics, 3, 466
Vinyl substitutions
Alkyl hydroperoxides

- Palladium complexes, 4, 842–856
- Alkyl hydroperoxides
- Epoxidation, 7, 375

Alkylidenation

- Alkyl-gem-dichromium reagents, 1, 205
- Carbonyl compounds, 5, 1122–1126
- Titanium metallacycles, 5, 1124

- Alkylidenation
- Sulfur oxidative removal, 3, 26

Alkylidene carbenes

- Insertion reactions, 3, 1049

Alkylidene carbenoids

- Insertion reactions, 3, 1050

Alkylidene transfer

- Cyclopropane synthesis, 4, 951–994
- Methylenation versus Tebbe reaction, 1, 749

Alkyl iodides, perfluoro-

- Reaction with alkenes
- Palladium complexes, 4, 842

Alkyl isocyanates

- 2-Azetidinones from, 5, 103

Alkyl metals, 1,1-bis(seleno)-

- Reactions with carbonyl compounds, 1, 723
- Reactions with enals, 1, 866, 867

Alkyl metals, α-seleno-

- Carbonyl compound homologation, 1, 724
- Functionalized reactions, 1, 723
- Reactions with carbonyl compounds, 1, 723
- Reactions with enals, 1, 683
- Reactions with enones
- Regiochemistry, 1, 682
- Synthesis, 1, 658, 666, 669
- Via metallation of selenides, 1, 635

Alkyl metals, α-selenoxy-

- Reactions with carbonyl compounds, 1, 723
- Reactions with enals, 1, 683

Alkyl metals, 1-silyl-1-seleno-

- Reactions with carbonyl compounds, 1, 723

Alkyl nitrates, β-bromo-

- Synthesis, 7, 533

Alkyl nitrite

- Redoxistant
- Wacker process, 7, 452

Alkyl radicals

- Heterocyclic formation
- Radical reactions, 4, 792
- Substituted carbocycle formation via cyclization, 4, 791

Alkyl radicals, dichloro-

- Radical cyclizations, 4, 792

Alkyl sulfides

- Reactions with π-allyl-palladium complexes, 4, 599

Alkyl sulfinites

- Reactions with organocopper reagents, 3, 215

Alkyl sulfonates

- Reaction with superoxides
- Alcohol inversion, 6, 22

Alkyl thiocyanates

- Trimerization, 5, 1154

Alkyl tosylates

- Coupling reactions
- With sp² organometallics, 3, 466

Alkyl triflates

- Alkylation
- Carbonyl phospine carbene complexes, 5, 1076

N-Alkyl-N-vinylnitrosomium ions
- Imidate synthesis
- Amide protection, 6, 672

Alkynes, ferrocenyl-

- Synthesis, 8, 950

Alkynes, vinyl-

- Hydrosilylation, 8, 772

Alkyne boron difluorides

- Reaction with oxiranes, 3, 279

Alkyne insertion

- Metal carbene complexes
- Cyclopropanation, 4, 980

Alkynes (see also specific compounds under Acetylene)

- Acetoxymercuration, 8, 850
- Activated conjugate additions catalyzed by Lewis acids, 4, 139–164
- Acylation
- Friedel–Crafts reaction, 2, 723
- Simple, 2, 723
- Acyloxymercuration, 4, 315

Addition reactions

- Benzene selenenyl chloride, 7, 521
- Carbon-centered radicals, 4, 735–765
- Carbon nucleophiles, 4, 571–583
- Dihalocarbenes, 4, 1005
- Ketocarbenoids, 4, 1050–1052
- Reactive carbanions, 4, 69–130
- Alkoxymercuration, 4, 312–316

Alkenes from hydroboration/protonolysis, 8, 726

Alkylation

- Synthesis, 3, 799

Alkylation

- Friedel–Crafts reaction, 3, 332
- Via cationic iron complexes, 4, 582
- Aminomercuration-demercuration, 4, 292
- Benzanannulation
- Functionality, 5, 1098
- Carboalumination, 4, 888
- Regioselective, 4, 890
- Carboration, 4, 884, 886
- Carbocupration, 4, 896–901
- Carbolithiation, 4, 872
- Carbomagnesiablation, 4, 877–879
- Carbometallation, 4, 262, 865–906
- Carbonylation
- Nickel tetracarbonyl catalyst, 3, 1027
- Carboazinacation, 4, 883
- Conjugate additions
- Lewis acid catalyzed, 4, 164
- Conjugated hydrosilylation, 8, 772
- Cope rearrangement, 5, 797
- Coupling with carbene complexes, 5, 1089
- Cyclic synthesis, 3, 553, 556
- Cyclizations
- Formaldinium ions, 2, 1029
- Nitrogen nucleophiles, 4, 411–413
- Zirconium-promoted, 5, 1164
- Cyclotrimerization
- Regioselectivity, 5, 1144–1151
- Disubstituted hydrosilylation, 8, 771
- Divinyl ketones from, 5, 777
<table>
<thead>
<tr>
<th>Entry</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocyclization, 5, 735–737</td>
<td></td>
</tr>
<tr>
<td>Electron deficient</td>
<td></td>
</tr>
<tr>
<td>Ene reactions, 5, 6–9</td>
<td></td>
</tr>
<tr>
<td>Stabilized nucleophiles and, 4, 1–58</td>
<td></td>
</tr>
<tr>
<td>Electrophilic addition</td>
<td></td>
</tr>
<tr>
<td>X–Y reagents, 4, 329–359</td>
<td></td>
</tr>
<tr>
<td>Electrophilic heteroatom cyclizations, 4, 393–397</td>
<td></td>
</tr>
<tr>
<td>Four-membered heterocyclic compounds from, 5, 116</td>
<td></td>
</tr>
<tr>
<td>Functionalized</td>
<td></td>
</tr>
<tr>
<td>Carboalumination, 4, 892</td>
<td></td>
</tr>
<tr>
<td>Carbomagnesiation, 4, 878</td>
<td></td>
</tr>
<tr>
<td>Carbozincation, 4, 884</td>
<td></td>
</tr>
<tr>
<td>Synthesis via retro Diels–Alder reaction, 5, 565</td>
<td></td>
</tr>
<tr>
<td>Heterocyclic</td>
<td></td>
</tr>
<tr>
<td>Coupling reactions with alkenyl bromides, 3, 539</td>
<td></td>
</tr>
<tr>
<td>Hydration, 4, 299</td>
<td></td>
</tr>
<tr>
<td>Hydroalumination, 8, 733–758</td>
<td></td>
</tr>
<tr>
<td>Substituent control, regiochemistry, 8, 750</td>
<td></td>
</tr>
<tr>
<td>Substituent effects, 8, 749</td>
<td></td>
</tr>
<tr>
<td>Hydroboration, 8, 703–727</td>
<td></td>
</tr>
<tr>
<td>Organopalladium catalysis, 3, 231</td>
<td></td>
</tr>
<tr>
<td>Hydrobromination, 4, 285</td>
<td></td>
</tr>
<tr>
<td>Hydrocarboxylation, 4, 932–946</td>
<td></td>
</tr>
<tr>
<td>Hydrochlorination, 4, 277</td>
<td></td>
</tr>
<tr>
<td>Hydroesterification</td>
<td></td>
</tr>
<tr>
<td>Formation of α,β-unsaturated esters, 3, 1030</td>
<td></td>
</tr>
<tr>
<td>Hydrofluorination, 4, 271</td>
<td></td>
</tr>
<tr>
<td>Hydroformylation, 4, 922</td>
<td></td>
</tr>
<tr>
<td>Hydrogenation</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous catalysis, 8, 417–442</td>
<td></td>
</tr>
<tr>
<td>Homogeneous catalysis, 8, 443–463</td>
<td></td>
</tr>
<tr>
<td>Mechanism, 8, 431</td>
<td></td>
</tr>
<tr>
<td>Regioselectivity, 8, 432</td>
<td></td>
</tr>
<tr>
<td>Stereoselectivity, 8, 432</td>
<td></td>
</tr>
<tr>
<td>Hydrogenation to cis-alkenes</td>
<td></td>
</tr>
<tr>
<td>Homogeneous catalysis, 8, 457</td>
<td></td>
</tr>
<tr>
<td>Hydrogenation to trans-alkenes</td>
<td></td>
</tr>
<tr>
<td>Homogeneous catalysis, 8, 458</td>
<td></td>
</tr>
<tr>
<td>Hydrogenation to saturated hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Homogeneous catalysis, 8, 456</td>
<td></td>
</tr>
<tr>
<td>Hydroiodination, 4, 288</td>
<td></td>
</tr>
<tr>
<td>Hydroisilylation, 8, 763–789</td>
<td></td>
</tr>
<tr>
<td>Chlorodimethylsilane, 7, 643</td>
<td></td>
</tr>
<tr>
<td>(Diethoxymethyl)silane, 7, 643</td>
<td></td>
</tr>
<tr>
<td>Hydroxylation, 7, 439</td>
<td></td>
</tr>
<tr>
<td>Hydrozirconation, 4, 153; 8, 667–699</td>
<td></td>
</tr>
<tr>
<td>Intermolecular addition</td>
<td></td>
</tr>
<tr>
<td>Carbon nucleophiles, 4, 41–46</td>
<td></td>
</tr>
<tr>
<td>Heteronucleophiles, 4, 47–53</td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>Pauson–Khand cycloadditions, 5, 1041</td>
<td></td>
</tr>
<tr>
<td>Intramolecular addition</td>
<td></td>
</tr>
<tr>
<td>Carbon nucleophiles, 4, 46</td>
<td></td>
</tr>
<tr>
<td>Heteronucleophiles, 4, 53</td>
<td></td>
</tr>
<tr>
<td>Metal-activated</td>
<td></td>
</tr>
<tr>
<td>Heteroatom nucleophilic addition, 4, 567</td>
<td></td>
</tr>
<tr>
<td>Nucleophilic attack, 4, 551–568</td>
<td></td>
</tr>
<tr>
<td>Metallation, 3, 271</td>
<td></td>
</tr>
<tr>
<td>Monosubstituted</td>
<td></td>
</tr>
<tr>
<td>Hydroisilylation, 8, 770</td>
<td></td>
</tr>
<tr>
<td>Nonfunctionalized</td>
<td></td>
</tr>
<tr>
<td>Carbozincation, 4, 883</td>
<td></td>
</tr>
<tr>
<td>Octacarboxyliccobalt complexes</td>
<td></td>
</tr>
<tr>
<td>Pauson–Khand reaction, 5, 1037</td>
<td></td>
</tr>
<tr>
<td>Oxidation</td>
<td></td>
</tr>
<tr>
<td>Solid support, 7, 844</td>
<td></td>
</tr>
<tr>
<td>Oxidative rearrangement</td>
<td></td>
</tr>
<tr>
<td>Pinacol coupling reactions with carboxyl compounds, 3, 602</td>
<td></td>
</tr>
<tr>
<td>Protection, 6, 684</td>
<td></td>
</tr>
<tr>
<td>Radical addition reactions, 4, 715–772</td>
<td></td>
</tr>
<tr>
<td>Radical cyclizations</td>
<td></td>
</tr>
<tr>
<td>Carbon-centered radicals, 4, 789</td>
<td></td>
</tr>
<tr>
<td>Reactions with N-acyliminium ions</td>
<td></td>
</tr>
<tr>
<td>Intramolecular, 2, 1062</td>
<td></td>
</tr>
<tr>
<td>Reactions with alcohols, 4, 309</td>
<td></td>
</tr>
<tr>
<td>Reactions with carbon monoxide, 4, 913–949</td>
<td></td>
</tr>
<tr>
<td>Reactions with carboxylic acids, 4, 313</td>
<td></td>
</tr>
<tr>
<td>Reactions with Fischer carbene complexes</td>
<td></td>
</tr>
<tr>
<td>Alkylation, 5, 1099</td>
<td></td>
</tr>
<tr>
<td>Solvents, 5, 1099</td>
<td></td>
</tr>
<tr>
<td>Reactions with HX reagents, 4, 269–319</td>
<td></td>
</tr>
<tr>
<td>Reactions with iminium ions, 2, 1028</td>
<td></td>
</tr>
<tr>
<td>Reactions with ketocarbenes, 4, 1031–1064</td>
<td></td>
</tr>
<tr>
<td>Reactions with ketyl radicals, 1, 268</td>
<td></td>
</tr>
<tr>
<td>Organosamarium compounds, 1, 268</td>
<td></td>
</tr>
<tr>
<td>Reaction with carbene complexes</td>
<td></td>
</tr>
<tr>
<td>Regiochemistry, 5, 1093</td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td></td>
</tr>
<tr>
<td>Diimide, 8, 477</td>
<td></td>
</tr>
<tr>
<td>Noncatalytic chemical methods, 8, 471–487</td>
<td></td>
</tr>
<tr>
<td>Semihydrogenation</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous catalysis, 8, 430</td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>Organoboranes, 3, 780</td>
<td></td>
</tr>
<tr>
<td>Organocopper compounds, 3, 217</td>
<td></td>
</tr>
<tr>
<td>Ramberg–Bäcklund rearrangement, 3, 883</td>
<td></td>
</tr>
<tr>
<td>Via aldehydes, 7, 620</td>
<td></td>
</tr>
<tr>
<td>Via Julia coupling, 1, 802, 805</td>
<td></td>
</tr>
<tr>
<td>Via oxidation of bispyrazones, 7, 742</td>
<td></td>
</tr>
<tr>
<td>Via 2,3-sigmatropic rearrangement, 6, 873</td>
<td></td>
</tr>
<tr>
<td>π-systems</td>
<td></td>
</tr>
<tr>
<td>Addition reactions, 4, 128</td>
<td></td>
</tr>
<tr>
<td>Nucleophile addition</td>
<td></td>
</tr>
<tr>
<td>Tandem vicinal difunctionalization, 4, 242, 249</td>
<td></td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>Coupling reactions, 3, 551</td>
<td></td>
</tr>
<tr>
<td>Ene reaction with formaldehyde, 2, 531</td>
<td></td>
</tr>
<tr>
<td>Hydroboration, 8, 708</td>
<td></td>
</tr>
<tr>
<td>Hydrogenation to alkenes, 8, 457</td>
<td></td>
</tr>
<tr>
<td>Hydrozirconation, 8, 684</td>
<td></td>
</tr>
<tr>
<td>Oxidative homocoupling, 3, 552</td>
<td></td>
</tr>
<tr>
<td>Reaction with sp2 carbon halides, 3, 530</td>
<td></td>
</tr>
<tr>
<td>Stereospecific synthesis, 3, 539</td>
<td></td>
</tr>
<tr>
<td>Synthesis, 3, 531</td>
<td></td>
</tr>
<tr>
<td>Trimerization</td>
<td></td>
</tr>
<tr>
<td>Pauson–Khand reaction, 5, 1038</td>
<td></td>
</tr>
<tr>
<td>Thiylation, 4, 317</td>
<td></td>
</tr>
<tr>
<td>Ylidic rearrangements, 3, 963</td>
<td></td>
</tr>
<tr>
<td>1-Alkynes</td>
<td></td>
</tr>
<tr>
<td>Hydroalumination</td>
<td></td>
</tr>
<tr>
<td>Asymmetrical diene synthesis, 3, 486</td>
<td></td>
</tr>
<tr>
<td>Hydrozirconation</td>
<td></td>
</tr>
<tr>
<td>Asymmetrical diene synthesis, 3, 486</td>
<td></td>
</tr>
<tr>
<td>Reaction with alkenyl halides, 3, 539</td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>From dichloromethyl lithiumum, 3, 202</td>
<td></td>
</tr>
<tr>
<td>Vinylation, 3, 521</td>
<td></td>
</tr>
<tr>
<td>4,5-Alkynes</td>
<td></td>
</tr>
<tr>
<td>Cyclization, 3, 344</td>
<td></td>
</tr>
<tr>
<td>6,7-Alkynes</td>
<td></td>
</tr>
</tbody>
</table>
cycloization
 selectivity, 3, 344
Alkynes, alkoxycarbonylation
 organocopper compounds, 3, 217
Alkynes, 1-alkoxy-
 acid anhydride synthesis, 6, 315
 ortho acid synthesis, 6, 556
Alkynes, amino-
 cyclization
 palladium(II) catalysis, 4, 567
Alkynes, 1-amino-
 reaction with nitriles, 6, 401
Alkynes, α-aminocarbonylation
 selectivity, 3, 344
Alkynes, aryl-
 conjugated
 one-pot synthesis, 3, 539
 hydrobromination, 4, 285
 one-pot synthesis, 3, 541
Alkynes, 1-azidocarbonylation
 failure, 6, 247
Alkynes, bromo-
 Chodkiewicz-Cadiot reaction, 3, 553
 reaction with trialkylaluminum, 3, 285
Alkynes, chloro-
 reaction with tertiary enolates, 3, 284
Alkynes, ω-cyano-
 cycloaddition with alkynes, 5, 1154
Alkynes, cyclopropyl-
 rearrangement, 5, 947
Alkynes, dialkyl-
 cyclization
 selectivity, 3, 344
 hydrogenation to trans-alkenes
 homogeneous catalysis, 8, 458
Alkynes, diaryl-
 hydrobromination, 4, 286
 hydrogenation to trans-alkenes
 homogeneous catalysis, 8, 458
Alkynes, dihydroxy-
 intramolecular oxypalladation, 4, 394
Alkynes, β,γ-dihydroxy-
 synthesis
 via Payne rearrangement, Lewis acids, 1, 343
Alkynes, halo-
 coupling reactions
 organometallic acetylides, 3, 553
 electrophilic substitution, 3, 284
Alkynes, 1-halo-
 hydroboration
 protonolysis, 8, 726
1-Alkynes, 1-halo-
 hydrobromination, 4, 286
Alkynes, ω-isocyanato-
 cycloaddition with silylated alkynes, 5, 1156
Alkynes, 1-nitro-2-(triaklylsilyl)-
 synthesis, 6, 109
Alkynes, phenyl-
 hydration, 4, 300
Alkynes, silyl-
 carbomagnesiation, 4, 879
Alkynes, silylstannylation
 reaction with alkenyl iodide, 3, 539
Alkynes, stannyl-
 reactions with steroidal aldehydes
 Cram selective, 1, 335
Alkynes, trifluoromethyl-
 ene reactions, 5, 7
Alkynes, trimethoxymethyl-
 synthesis, 6, 556
Alkynes, trimethylsilyleneprene reactions, 5, 23
Alkynes, 1-trimethylsilyl-
 carbonylation, 4, 884
Alkynes, trimethylsilylmethyl-
 synthesis, 3, 281
β-Alkynic alcohols
 synthesis
 regioselectivity, 2, 92
Alkynic chloride
 hydrobromination, 8, 898
Alkynides
 alkylation, 3, 272
 alkyl halides, 3, 272
 synthesis, 3, 272
Alkynoic acids
 hydrobromination, 4, 285
 α,β-Alkynic acids
 hydroboration
 protonolysis, 8, 726
Alkynones
 pyrolysis, 3, 1049
 silyl enol ethers
 cyclization, 5, 22
1-Alkyn-3-ones
 hydrobromination
 stereochemy, 4, 285
Alkynyl alcohols
 cyclofunctionalization, 4, 393
 divinyl ketones from
 cyclization, 5, 767-769
 synthesis
 via alkynylcerium reagents, 1, 243
Alkynylation
 oxiranes and oxetanes
 use of boron trifluoride, 1, 343
 vinyl organometallic reagents, 3, 521
Alkynyl complexes
 [3 + 2] cycloaddition reactions
 diazoalkanes, 5, 1070
Alkynyl groups
 addition reactions
 with alkenic π-systems, 4, 72-99
 conjugate additions
 catalyzed by Lewis acids, 4, 140-158
Alkynyl halides
 cross-coupling reactions
 organometallic reagents, 3, 522
 reactions with 1-alkenyl metals, 3, 529
 reaction with organocopper compounds, 3, 219
 tandem vicinal difunctionalizations, 4, 260
Alkynyl organometallic compounds
 [3 + 2] cycloaddition reactions, 5, 277
Alkene, 3,3-dialkyl-1-lithio-1-(phenylthio)-
 reaction with ketones, 2, 90
Alkene, 1,3-dimethyl(1,2-butyldimethylsilyl)-
 [3 + 2] cycloaddition reactions
 with cyclohexanecarbaldehyde, 5, 279
Alkene, α-lithio-α-methoxy-
reaction with potassium t-butoxide, 2, 88
Allene, 1-methyl-1-[(trimethylsilyl)],[3 + 2] cycloaddition reactions with methyl vinyl ketone, 5, 277
Allene, tetrachloro-
hydrochlorination, 4, 277
Allene, tetrafluoro-
hydrobromination, 4, 285
hydrochlorination, 4, 277
Allene, tetramethyl-
laser photolysis with benzo phenone, 5, 154
photocycloaddition reactions with acetone, 5, 167
Allene, trimethylsilyl-
[3 + 2] cycloaddition reactions with titanium tetrachloride catalyst, 5, 277
reaction with carbonyl compounds, 2, 84
Allene carbanions
Allene-l,3-dicarboxylic acids
zinc, 8, 563
Allenes
acyloxymercuration, 4, 315
addition reactions
carbon-centered radicals, 4, 765
selenium electrophiles, 7, 520
addition to 3,4-dimethylcyclohexenone photochemical cycloaddition, 5, 130
addition to octalone photochemical cycloaddition, 5, 130
alkoxymercuration, 4, 311
π-allylpalladium complexes from, 4, 587
aminmercuration, 4, 292
carbomagnesiation, 4, 885
carbomagnesiation, 4, 875
conjugated thiation, 4, 317
Cope rearrangement, 5, 797
cyclic synthesis via dihalocyclopropanes, 4, 1010
cyclizations
nitrogen nucleophiles, 4, 411-413
electrocyclization, 5, 734
electrophilic heteroatom cyclizations, 4, 393-397
e ne reactions, 5, 9
intramolecular, 5, 19
epoxides
rearrangement, 3, 741
exocyclic
synthesis, 2, 89
hetero
reactions with vinylidene phosphoranes, 6, 194
synthesis, 6, 867
hydration, 4, 299
hydroboration, 8, 708, 714, 720
hydrobromination, 4, 284
hydrochlorination, 4, 276
hydrogenation, 8, 434
hydrogenation to alkenes
homogeneous catalysis, 8, 450
hydroxylation-carbonylation
palladium(II) catalysis, 4, 558
mercury-catalyzed hydration, 4, 303
photocycloaddition reactions, 5, 133, 145
with carbonyl compounds, 5, 167
pinacol coupling reactions with carbonyl compounds, 3, 605
radical cyclization
carbon-centered radicals, 4, 789
reactions with alcohols, 4, 308
reactions with π-allylpalladium complexes, 4, 601
reactions with carboxylic acids, 4, 313
reactions with Fischer carbene complexes, 5, 1107
reduction diimide, 8, 477
synthesis, 4, 868
sp²–sp³ coupling, 3, 491
via α, β-alkynic ketones, 8, 357
via Doering–Moore–Skattebøl reaction, 4, 1009–1012
via 2,3-sigmatropic rearrangement, 6, 873
π-systems
nucleophile addition, 4, 53–58
tandem vicinal difunctionalization, 4, 253
vinylidene hydrobromination, 4, 285
ylic rearrangements, 3, 963
Allenes, α-amino-
aminocarboxylation
palladium(II) catalysis, 4, 562
Allenes, bromo-
coupling reactions
alkyl Grignard reagents, 3, 439
dimerization, 3, 491
reaction with alkenes, 3, 531
reaction with cyanocuprates, 3, 491
reaction with lithium dialkylcuprates, 3, 217
Allenes, cyanocarboxylation
via substituted 2-propynols, 6, 235
Allenes, dienyl-
electrocyclization, 5, 734
Allenes, iodo-
reaction with arylchlorozinc, 3, 491
Allenes, β-keto-
synthesis
via Claisen rearrangement, 5, 828
Allenes, methoxy-
deprotonation, 3, 256
Allenes, vinyl-
antaracene adduct
retro Diels–Alder reaction, 5, 589
electrocyclization, 5, 707
epoxidation
cyclopentenone synthesis, 5, 772
solvolysis
cyclopentenone synthesis, 5, 772–775
solvometallation
cyclopentenone synthesis, 5, 774
synthesis
via electrocyclization, 5, 708
Allenic acids
enzymic reduction
specificity, 8, 205
hydrobromination, 4, 285
Allenic alcohols
synthesis via samarium diiodide, 1, 257
Allenic alcohols, alkoxy-
solvolysis
Allenic alcohols

- **Synthesis** of cyclopentenone, 5, 774
- **Vinyl-epoxidation**
 - Cyclopentenone synthesis, 5, 773
- **Cumulative Subject Index**
- **Diels–Alder Reactions**, 5, 358
- **Allenic organometallic compounds**
 - Reactions with aldimines
 - Syn-anti selectivity, 2, 993
 - Reactions with imines, 2, 975–1004
- **Allenic phosphonates**
 - Alkenation to cumulatrienes, 6, 845
- **Allenic sulfoxides**
 - [4 + 3] cycloaddition reactions, nuclei, 6, 840
- **Allenoxides**
 - Reaction with organocopper reagents, 3, 223
- **Allenyl phosphoryl compounds**
 - Synthesis via rearrangement, 6, 844
- **Allenyl systems**
 - Paterno–Büchi reaction, 5, 165–168
- **Allethrolone**
 - Synthesis, 7, 795
 - Via Michael addition, 4, 10
- **Allobetulone, 2-diazo**
 - Photolysis, 3, 903
- **Alloclolicholactone**
 - Synthesis via photorearrangements, 5, 231
- **Allodunnione**
 - Synthesis, 3, 828
- **Allogeraniol**
 - Cyclization, 3, 345
- **α-Allokatnic acid**
 - Synthesis via intramolecular ene reaction, 5, 13
- **β-Allonolselenonamide, 2,5-anhydro-3,4,6-tri-O-benzoyl**
 - Synthesis, 6, 477
- **Allopumiliotoxin A**
 - Mannich reaction, 2, 1015
- **Allopumiliotoxin 323B**
 - Synthesis
 - Enantioselective, 2, 1028
- **L-Allose**
 - synthesis, 7, 402
- **Alloxan**
 - Rearrangement, 3, 822, 834
 - Labeling studies, 3, 823
- **Alloxanic acid**
 - Synthesis, 3, 822
- **Hydroformylation**, 4, 924
- **Allyl acetate, 2-(trimethylsilylmethyl)-**
 - Cycloaddition
 - Palladium catalysis, 4, 593
 - [4 + 3] cycloaddition reactions, 5, 598
- **Allyl acetates**
 - Allylic transposition
 - Palladium(II) catalysis, 4, 576
 - Cyclic ether synthesis, 6, 24
 - Diacylation, 4, 948
 - Electrolysis, 8, 976
 - Hydrogenolysis
 - Palladium-catalyzed, 6, 866
 - Oxidation
 - Palladium(II) catalysis, 4, 553
 - Reactions with carbonyl compounds
 - Samarium diiodide, 1, 256
 - Rearrangement
 - Oxygen–oxygen transposition, 6, 385
 - Palladium catalysis, 4, 596
 - Reduction, 8, 960
 - Substituted, 8, 960
 - Synthesis via alcohols, 6, 835
 - Transition metal catalyzed reactions, 6, 847
- **Allyl alcohol, 1,1-dimethyl-**
 - Asymmetric epoxidation, 7, 417
- **Allyl alcohol, 3,3-dimethyl-**
 - Asymmetric epoxidation, 7, 409
- **Allyl alcohol, 2-ethoxy-**
 - [4 + 3] cycloaddition reactions, 5, 597
- **Allyl alcohol, 2,4-dimethyl-**
 - [4 + 3] cycloaddition reactions, 5, 598
- **Allyl alcohol, stannyl-**
 - Asymmetric epoxidation, 7, 413
- **Allyl alcohol, 3-trimethylsilyl-**
 - Asymmetric epoxidation, 7, 413
- **Allyl alcohols**
 - Acyclic synthesis via retro Diels–Alder reaction, 5, 554
 - Addition reactions
 - Benzalacetone, 7, 520
 - Aldehydes, 4, 590
 - Arene alkylation
 - Friedel–Crafts reaction, 3, 322
 - Arylation via palladium catalysts, 4, 848
 - Asymmetric epoxidation, 7, 397
 - Asymmetric hydrogenation
 - Molecular sieves, 7, 396
 - Homogeneous catalysis, 8, 462
 - Carbolic thiuration, 4, 869
 - Chlorination
 - Displacement of hydroxy group, 6, 206
 - Cycloaddition reactions, 5, 261
 - [4 + 3] cycloaddition reactions, 5, 598
 - 1,3-diene synthesis, 6, 154
 - N,N-diisopropyl carbamates
 - Oxaallylic anions, 3, 196
 - (2,3E)-disubstituted
 - Asymmetric epoxidation, 7, 406
 - (2,3Z)-disubstituted
 - Asymmetric epoxidation, 7, 408
 - 1,1-disubstituted
 - Asymmetric epoxidation, 7, 417
 - 3,3-disubstituted
Allyl carbonates

asymmetric epoxidation, 7, 409
enzymic reduction
specificity, 8, 205
epimerization, 6, 839
epoxidation, 7, 370, 378, 391
halomethylsilyl ethers
radical cyclization, 7, 648
homogeneous hydrogenation
diastereoselectivity, 8, 447
homologous \(\beta,\gamma\)-unsaturated amide synthesis, 6, 853
hydrocarboxylation, 4, 941
hydroformylation, 4, 923
hydrogenolysis, 8, 956
hydroxylation, 7, 439
intramolecular hydrosilylation, 7, 645
(3Z)-monosubstituted asymmetric epoxidation, 7, 405
nitrile synthesis, 6, 234
optically active synthesis, 6, 839
oxidation, 7, 306, 307, 318
Collins reagent, 7, 258
-4-(dimethylamino)pyridinium chlorochromate, 7, 269
DMSO, 7, 296
solid support, 7, 841
oxidative rearrangement, 7, 821
photocycloaddition reactions
copper-catalyzed, 5, 147
rearrangement
oxidation, 6, 836
reduction
dissolving metals, 8, 971
(3E)-substituted asymmetric peroxidation, 7, 400
1,3-sigmatropic rearrangements
oxynion-accelerated, 5, 1002
1-substituted asymmetric epoxidation, 7, 409, 413
2-substituted asymmetric epoxidation, 7, 398
synthesis, 1, 708; 7, 84, 396
Knoevenagel reaction, 2, 374
steroselective, 6, 838
\(\beta\)-hydroxyalkyl selenides, 1, 721
via organocopper reagents, 6, 848
via oxidaion of allylstannanes, 7, 616
\(\alpha\)-selenoalkyl metals, 3, 91
sulfur- and selenium-stabilized carbanions, 3, 88
Allyl borates
\(\pi\)-allylpalladium complexes from, 4, 590
Allylation
aldehydes
asymmetric, 6, 865
carbonyl compounds
preparation of 1,4-dicarbonyl compounds, 7, 455
enolates
palladium-catalyzed regioselective, 3, 12
organometallic reagents
carbon-carbon bond forming reaction, 6, 847
\(\alpha\)-selenoalkyl metals, 3, 91
Allyl bromides
alkylation
cyclic carbene complexes, 5, 1076
hydrobromination, 4, 280
reduction
lithium aluminum hydride, 8, 965
Allyl carbanates
\(\pi\)-allylpalladium complexes from, 4, 589, 592
Claisen-type rearrangement
palladium(II) catalysis, 4, 564
metallated homoaldol reaction, 6, 863
Allyl carbonates
alcohol protection
cleavage, 6, 659
\(\pi\)-allylpalladium complexes from, 4, 589
palladium enolates
Allyl carbonates

Allylation, 4, 592
transition metal catalyzed reactions, 6, 847
Allyl carbonates, 2-(cyanomethyl)-
cycloaddition
palladium catalysis, 4, 593
Allyl carbonates, ethyl-2-(sulfonylmethyl)-
cycloaddition
palladium catalysis, 4, 593
Allyl carbonates, (methoxycarbonyl)methyl-
cycloaddition
palladium catalysis, 4, 593
Allyl cations
[4 + 3] cycloaddition reactions, 5, 601
β-heteroatom-substituted
[4 + 3] cycloaddition reactions, 5, 594
initiators
polyene cyclization, 3, 342
Allyl cations, 2-amin-
[4 + 3] cycloaddition reactions, 5, 597
Allyl cations, 2-methoxy-
[4 + 3] cycloaddition reactions, 5, 597
Allyl cations, 2-methyl-
[4 + 3] cycloaddition reactions, 5, 603
Allyl cations, 2-silylmethyl-
[4 + 3] cycloaddition reactions, 5, 598
Allyl cations, 2-(trimethylsilyloxy)-
[4 + 3] cycloaddition reactions, 5, 597, 606
Allyl cations, 2-trimethylsilylmethyl-
[4 + 3] cycloaddition reactions, 5, 598
Allyl chloride
hydroboration, 8, 713
hydrobromination, 4, 280
hydroiodination, 4, 288
Allyl chloride, 2-(trimethylsilyloxy)-
reaction with silver perchlorate
generation of oxallyl cations, 5, 597
Allyl chlorides, siloxy-
siloxyallyl cation generation
[4 + 3] cycloaddition reactions, 5, 606
π-Allyl complexes
reactions with nitrogen nucleophiles, 6, 85
Allyl compounds
hydrogenation
heterogeneous catalysis, 8, 439
metal complexes
nucleophilic addition, 4, 585–654
microbial oxidation, 7, 77
Allyl cyanide
synthesis
via allylic bromide, 6, 230
Allyl ester enolates
Claisen rearrangement, 6, 858
Allyl esters
amine-protecting group, 6, 640
carboxy-protecting groups, 6, 670
rearrangements
palladium(II) catalysis, 4, 563
regioselective oxidation, 7, 464
Allyl ethers
hydroformylation, 4, 923
isomerization
enol ether preparation, 2, 599
photocycloaddition reactions
copper-catalyzed, 5, 147
regioselective oxidation, 7, 464
Allyl hetero compounds
reduction
1,3-heteroatom–hydrogen transposition reaction, 6,
865
transformation reactions, 6, 853
Allylic alcohols, 1-(trimethylsilyl)-
rearrangement
formation of lithium homoenolates, 3, 197
Allylic alkylation
palladium-catalyzed, 6, 848, 849
nucleophiles, 4, 590–600
Allylic amides
synthesis
via Horner reaction, 1, 774
Allylic anions
1,4-addition reaction with conjugated enones, 6, 863
boron-substituted, 2, 56
halogen-substituted, 2, 77
heteroatom-stabilized, 2, 55–78
synthetic utility, 2, 55
heteroatom-substituted
homoenolate equivalents, 6, 833
homoenolate anion equivalent, 6, 862
nitrogen-substituted, 2, 60
N-nitroso-N-allyl-, 2, 61
1-oxo-
rearrangement, 2, 69
oxygen-substituted, 2, 66
phosphine-substituted, 2, 64
selenium-substituted, 2, 76
silicon-substituted, 2, 57
sulfur-substituted, 2, 71
reaction with electrophiles, 2, 73
Allylic electrophiles
reaction with organocopper compounds, 3, 220
Allylic halides
π-allylpalladium complexes from, 4, 588
arene haloalkylation
Friedel–Crafts reaction, 3, 321
Barbier-type reactions
organosamarium compounds, 1, 256
carbonylation
formation of aldehydes, 3, 1021
coupling reactions
with sp² carbon centers, 3, 428
with sp³ organometallics, 3, 467
generation of allyl cations
[4 + 3] cycloaddition reactions, 5, 597
haloalkylation, 3, 118
β-heteroatom-substituted
[4 + 3] cycloaddition reactions, 5, 597
hydrogenolysis, 8, 955–981
hydroxylation, 8, 775
β-keto esters
cyclization, 1, 265
reaction with ethyl diazoacetate, 3, 925
reaction with vinyltin compounds
organopalladium catalysis, 3, 232
1,5-Allyl hydrogen transfer
heptenyl radicals, 4, 786
Allylic hydroxylation
Δ⁴-steroids, 7, 77
Allylic iodides
reaction with peracids
preparation of alcohols, 6, 3
synthesis
Altholactones

via rearrangement of allylic alcohols, 6, 835

Allylic oxidation, 7, 83
allylic alcohols from, 7, 84
metallation, 7, 99
selenium dioxide
mechanism, 7, 85
α,β-unsaturated carbonyl compounds, 7, 99
with rearrangement, 7, 817

Allylic phosphate esters
reactions with carbonyl compounds
samarium diiodide, 1, 256

Allylic phosphine oxides
lithiated
γ-selective conjugate addition to cyclic enones, 6, 863

Allylic phosphonates
lithiated
γ-selective conjugate addition to cyclic enones, 6, 863
reduction
rearrangement, 6, 865

Allylic silanes
protodesilylation
double bond shift, 6, 865
Allylic substitution
carbon nucleophiles, 6, 847

Allylic sulfides
chlorination, 7, 209

Allylic sulfonyle carbanions
synthesis, 2, 76

Allylic sulfoxides
α-lithiation, 2, 74
monohapto, 2, 5
trihapto, 2, 5

Allylic transposition
d#echo="palladium(II) catalysis, 4, 563"

Allylimidates
π-allylpalladium complexes from, 4, 590
Claisen-type rearrangement
d-transitional catalysis, 4, 564

Allyl iodide
reaction with chlorosulfonyl isocyanate, 5, 105

Allylic thiol
dianions

Allyl nitro compounds
reduction, 8, 962

Allyl organometallic compounds
chiral
C(1) or C(4) stereocenters, 2, 38
conventional auxiliaries, 2, 33
enantioselective, 2, 33
reactions with achiral aldehydes, 2, 33–40
reactions with chiral C=X electrophiles, 2, 40–45
[3 + 2] cycloaddition reactions, 5, 272–277
reactions with aldehydes
1,3-asymmetric induction, 2, 986
reactions with α-alkoxyaldimines
chelation control, 2, 984, 988
reactions with β-alkoxyaldimines
1,3-asymmetric induction, 2, 985, 988
reactions with gem-amino ethers, 2, 1004
reactions with chiral C=N electrophiles
relative diastereoselectivity, 2, 32
reactions with glyoxylate aldimes
1,3-asymmetric induction, 2, 987
reactions with imines, 2, 975–1004
reviews, 2, 980
reactions with α-phenylaldimine
Cram selectivity, 2, 984
reactions with 8-phenylmethyl-N-methoxyminoacetate
diastereoselectivity, 2, 996
reactions with sulfinilines
Cram selectivity, 2, 998
type I
stericchemical integrity, 2, 5
uncatalyzed reactions
C=X electrophiles, 2, 1–49
N-Allyloxy carbonyl group
protecting group
amines, 6, 633, 640

Allyl phosphoryl compounds
synthesis
via rearrangement, 6, 844

Allyl rearrangement
functional group transformation, 6, 829–867
intermolecular, 6, 830
intramolecular, 6, 833
substitution reactions, 6, 830
tertiary halides, 6, 835

Allyl shifts
cyclohexadienones, 3, 809

Allyl sulfenate
allyl sulfide
transposition reaction, 6, 837

Allyl sulfoxides
propargyl sulfenate
transposition reaction, 6, 837

Allyl systems
C=C bond formation, 6, 862
isomerization
1,3-hydrogen–hydrogen transpositions, 6, 866

Allyl thiol
dianions
reactions with carbonyl compounds, 1, 826

Allyl transfer
d TRANSPADULLADO(0)-catalyzed
amine protection, 6, 640

Alnusone
synthesis, 3, 126, 505; 6, 134

Alpine borane
reaction with aldehydes, 7, 603

Alstonine, tetrahydro-
Knoevenagel reaction, 2, 373
<table>
<thead>
<tr>
<th>Alumina</th>
<th>Beckmann rearrangement, 6, 765 catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>carbonyl epoxidation, 1, 821</td>
</tr>
<tr>
<td></td>
<td>Knoevenagel reaction, 2, 344</td>
</tr>
<tr>
<td></td>
<td>solid support</td>
</tr>
<tr>
<td></td>
<td>chloral, 7, 841</td>
</tr>
<tr>
<td></td>
<td>oxidants, 7, 840</td>
</tr>
<tr>
<td>Aluminates, tetraalkyl-</td>
<td>coupling reactions</td>
</tr>
<tr>
<td></td>
<td>with acyl chlorides and acid anhydrides, 3, 463</td>
</tr>
<tr>
<td></td>
<td>reactions with chiral keto esters</td>
</tr>
<tr>
<td></td>
<td>stereoselectivity, 1, 87</td>
</tr>
<tr>
<td>Aluminum</td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td>epoxides, 8, 881</td>
</tr>
<tr>
<td></td>
<td>thioimidates, 8, 302</td>
</tr>
<tr>
<td>Aluminum, alkenyl-</td>
<td>alkylation, 3, 259</td>
</tr>
<tr>
<td></td>
<td>coupling reactions</td>
</tr>
<tr>
<td></td>
<td>with allylic chlorides, 3, 475</td>
</tr>
<tr>
<td></td>
<td>with aryl halides, 3, 495</td>
</tr>
<tr>
<td></td>
<td>with vinyl halides, 3, 486</td>
</tr>
<tr>
<td></td>
<td>in synthesis, 4, 893</td>
</tr>
<tr>
<td>Aluminum, allyl-</td>
<td>metallocene reactions</td>
</tr>
<tr>
<td></td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td>oxime mesylates, 6, 769</td>
</tr>
<tr>
<td>Aluminum, alkyl-</td>
<td>addition reactions</td>
</tr>
<tr>
<td></td>
<td>hydride donor</td>
</tr>
<tr>
<td></td>
<td>reduction of carboxyls, 8, 99</td>
</tr>
<tr>
<td>Aluminum, allylthioallyl-</td>
<td>reaction with allylic halides, 3, 99</td>
</tr>
<tr>
<td></td>
<td>synthesis, 8, 545</td>
</tr>
<tr>
<td>Aluminum, allyl-</td>
<td>metalloene reactions, 5, 31</td>
</tr>
<tr>
<td></td>
<td>enones, 8, 545</td>
</tr>
<tr>
<td>Aluminum, chlorodihydrido-</td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td>syn-anti selectivity, 2, 989</td>
</tr>
<tr>
<td></td>
<td>reaction with iminium salts, 2, 1000</td>
</tr>
<tr>
<td></td>
<td>synthesis, 2, 9</td>
</tr>
<tr>
<td>Aluminum, crotyldiethyl-</td>
<td>reaction with imines</td>
</tr>
<tr>
<td></td>
<td>1,4-addition, 2, 599</td>
</tr>
<tr>
<td></td>
<td>synthesis, 8, 758</td>
</tr>
<tr>
<td>Aluminum, dialkoxy-</td>
<td>chiral catalysts</td>
</tr>
<tr>
<td></td>
<td>Diehl–Alder reactions, 5, 376</td>
</tr>
<tr>
<td></td>
<td>enones, 8, 545</td>
</tr>
<tr>
<td>Aluminum, diethyl-</td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td>with conjugated ketones</td>
</tr>
<tr>
<td></td>
<td>crystal structure, 1, 301</td>
</tr>
<tr>
<td>Aluminum, dichloroethyl-</td>
<td>catalylist</td>
</tr>
<tr>
<td></td>
<td>Friedel–Crafts reaction, 2, 709</td>
</tr>
<tr>
<td>Aluminum, dichloromethyl-</td>
<td>catalylist</td>
</tr>
<tr>
<td></td>
<td>Diehl–Alder reactions, 5, 376</td>
</tr>
<tr>
<td>Aluminum, diethyl-</td>
<td>enolates</td>
</tr>
<tr>
<td></td>
<td>aldol reaction, stereoselective, 2, 315</td>
</tr>
<tr>
<td></td>
<td>regioselective synthesis, 2, 114</td>
</tr>
<tr>
<td></td>
<td>2,2,6,6-tetramethylpiperidide</td>
</tr>
<tr>
<td></td>
<td>aldol reaction, 2, 271</td>
</tr>
<tr>
<td></td>
<td>aluminum enolates, 2, 114</td>
</tr>
<tr>
<td>Aluminum, diethyl(1-hexynyl)-</td>
<td>alkylation</td>
</tr>
<tr>
<td></td>
<td>oxime mesylates, 6, 769</td>
</tr>
<tr>
<td>Aluminum, dimethylchloro-</td>
<td>aldo reaction</td>
</tr>
<tr>
<td></td>
<td>catalysis, 2, 269</td>
</tr>
<tr>
<td>Aluminum, dimethylphenylsilyl-</td>
<td>deoxygenation</td>
</tr>
<tr>
<td></td>
<td>epoxides, 8, 886</td>
</tr>
<tr>
<td>Aluminum, hydrodilisobutyl-</td>
<td>aluminum enolates</td>
</tr>
<tr>
<td></td>
<td>synthesis, 2, 114</td>
</tr>
<tr>
<td>Aluminum, propargyl-</td>
<td>reactions with aldimines, 2, 992</td>
</tr>
<tr>
<td></td>
<td>allylstannane reaction with acetics, 2, 578</td>
</tr>
<tr>
<td>Aluminum, sulfatobis(diethyl)-catalyst</td>
<td>allylstannane reaction with acetics, 2, 578</td>
</tr>
<tr>
<td></td>
<td>conjugate additions</td>
</tr>
<tr>
<td></td>
<td>α,β-unsaturated ketals, 4, 209</td>
</tr>
<tr>
<td></td>
<td>optically active</td>
</tr>
<tr>
<td></td>
<td>reduction of ketones, 8, 100</td>
</tr>
<tr>
<td>Aluminum, trialkynyl-</td>
<td>conjugate additions</td>
</tr>
<tr>
<td></td>
<td>α,β-enones, 4, 143</td>
</tr>
<tr>
<td>Aluminum, triethyl-</td>
<td>hydride donor</td>
</tr>
<tr>
<td></td>
<td>reduction of carbonyls, 8, 100</td>
</tr>
<tr>
<td></td>
<td>reaction of allylic anions with carbonyl compounds</td>
</tr>
<tr>
<td></td>
<td>regioselectivity, 2, 67</td>
</tr>
<tr>
<td></td>
<td>reaction with thioallyl anions</td>
</tr>
<tr>
<td></td>
<td>α-selectivity, 2, 71</td>
</tr>
<tr>
<td>Aluminum, tris(2-methylbutyl)-hydride donor</td>
<td>reduction of carbonyls, 8, 100</td>
</tr>
<tr>
<td></td>
<td>unsaturated ketones, 8, 558, 564</td>
</tr>
<tr>
<td></td>
<td>synthesis, 8, 735</td>
</tr>
<tr>
<td>Aluminum, trimethyl-</td>
<td>aldo reactions, 2, 269</td>
</tr>
<tr>
<td></td>
<td>Beckmann reactions, 7, 697</td>
</tr>
<tr>
<td></td>
<td>complex with benzophenone, 1, 78</td>
</tr>
<tr>
<td></td>
<td>conjugate additions</td>
</tr>
<tr>
<td></td>
<td>α,β-enones, 4, 140</td>
</tr>
<tr>
<td></td>
<td>coupling reactions</td>
</tr>
<tr>
<td></td>
<td>with difunctional alkenes, 3, 449</td>
</tr>
<tr>
<td></td>
<td>reaction with benzophenone</td>
</tr>
<tr>
<td></td>
<td>role of Lewis acid, 1, 325</td>
</tr>
<tr>
<td></td>
<td>reaction with 2,6-di-r-butyl-4-alkyphenol, 1, 78</td>
</tr>
<tr>
<td>Aluminum, tris(2-methylbutyl)-</td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td>unsaturated ketones, 8, 564</td>
</tr>
<tr>
<td>Aluminum, tris(trimethylsilyl)-</td>
<td>reactions with acyclic enones</td>
</tr>
<tr>
<td></td>
<td>site selectivity, 1, 83</td>
</tr>
<tr>
<td></td>
<td>reactions with α-allylpalladium complexes</td>
</tr>
<tr>
<td></td>
<td>regioselectivity, 4, 642</td>
</tr>
</tbody>
</table>
Cumulative Subject Index

Aluminum oxide

435

Aluminum, vinyl-
stereochemistry, 4, 625
reaction with vinylloxiranes, 5, 936
Aluminum alkoxide
phosphorylation, 6, 603
Aluminum alkyne, ethyl-
reaction with 3,4-epoxycyclopentene, 3, 279
Aluminum alkynides
alkylation, 3, 274
Aluminum amalgam
desulfurization, 8, 844
reduction
aliphatic nitro compounds, 8, 374
carbonyl compounds, 8, 116
enones, 8, 525
reductive cleavage
α-alkylthio ketone, 8, 994
reductive dimerization
unsaturated carbonyl compounds, 8, 532
Aluminum amine, diethyl-
Aluminum amides
Aluminum bisphenoxides, methyl-
oxirane ring-opening, 3, 770
reactions with esters, 1, 93
Claisen rearrangement
catalysis, 8, 850
Aluminum bromide
catalyst
Friedel–Crafts reaction, 2, 735, 741
Aluminum catalyst
Diels–Alder reaction
absolute stereochemistry, 2, 685
Aluminum chloride
Beckmann rearrangement, 6, 770
catalyst
Friedel–Crafts reaction, 2, 709, 735
hydroisilylation, 8, 765
Friedel–Crafts alkylation
catalyst, 3, 294
propylene oxide, 3, 769
lithium aluminum hydride
alkyl halide reduction, 8, 803
epoxide reduction, 8, 875
oxidative cleavage of alkenes
with ethanethiol, 7, 588
Aluminum chloride, dialkyl-
conjugate additions
α,β-enones, 4, 140
Aluminum chloride, diethyl-
Beckmann rearrangement, 6, 768
Aluminum compounds
aldo reactions, 2, 239, 268
Claisen rearrangement
catalysis, 5, 850
Lewis acid complexes
structure, 1, 287
nitrile synthesis, 6, 241
Aluminum cyanide, diethyl-
conjugate additions
Lewis acid catalyzed, 4, 162
Aluminum 2,6-di-i-butyl-4-methylphenoxide,
diisobutyl-
reduction
enones, 8, 545
Aluminum dichloride, alkoxy-
catalyst
Diels–Alder reaction, 2, 663
Aluminum olefins
aldol reactions
from chiral acyliron complexes, 2, 239
synthesis, 2, 114
Aluminum hydrazide, dimethyl-
reactions with esters
carboxylic acid hydrazides, 1, 93
Aluminum hydride, bis(diisopropylamino)-
reduction
enones, 8, 543
Aluminum hydride, bis(4-methyl-1-piperazinyl)-
reduction
amides, 8, 272
Aluminum hydride, bis(N-methylpiperidine)-
reduction
esters, 8, 266
Aluminum hydride, di-i-butoxy-
reduction
enones, 8, 543
Aluminum hydride, diisobutyl- (DIBAL-H)
hydride donor, 8, 100
hydroalumination, 8, 736
reaction with 1-alkynylsilanes, 8, 734
reduction
acetals, 8, 214
amides, 8, 272
carbonyl compounds, 8, 20, 315
carboxylic acids, 8, 238, 260
enones, 8, 16, 544
epoxides, 8, 880
esters, 8, 244, 266
imines, 8, 36
keto sulfides, 8, 12
lactones, 8, 269
oximes, 6, 769
pyridines, 8, 584
unsaturated carbonyl compounds, 8, 543
Aluminum hydride, diisopropoxy-
reduction
enones, 8, 543
Aluminum hydride, tri-i-alkoxy-
reduction
aldehydes, 8, 17
Aluminum hydrides
reduction
pyridines, 8, 583
pyridinium salts, 8, 587
unsaturated carbonyl compounds, 8, 541, 543
sources, 8, 736
Aluminum hydrides, alkoxo-
reduction
carbonyl compounds, 8, 2
quinones, 8, 19
Aluminum iodide, diethyl-
Beckmann rearrangement, 6, 767
Aluminum isopropoxide
crotonaldehyde reduction
in isopropyl alcohol, 8, 88
epoxide ring opening, 3, 770
Aluminum oxide
Aluminum phenoxide

Cumulative Subject Index 436

Aldol reactions
 self-condensation, 2, 268
catalyst
 Knoevenagel reaction, 2, 359
Aluminum phenoxide
catalyst
 Friedel–Crafts reaction, 3, 296
 Dowex resin bound
catalyst, Friedel–Crafts reaction, 3, 297
Aluminum phenoxide, diisobutyl-
 aldol reaction catalyst, 2, 166
Aluminum phosphate
catalyst
 Knoevenagel reaction, 2, 345, 359
Aluminum reagents
 organopalladium catalysis, 3, 230
Aluminum selenide
reaction with nitriles, 6, 477
Aluminum selenolate
reaction with esters, 6, 466
Aluminum selenomethylate, dimethyl-
 reaction with oxime sulfonates, 6, 768
Aluminum thiolates, dialkyl-
 Friedel-Crafts reaction, 3, 297
Aluminum tribromide
catalyst
 Friedel–Crafts reaction, 3, 295
Aluminum tri-t-butoxide
oxidation
 secondary alcohols, 7, 323
Aluminum trichloride
catalyst
 Friedel–Crafts reaction, 3, 295
 graphite-intercalated, catalyst
 Friedel–Crafts reaction, 3, 298
tetramethylurea complex
crystal structure, 1, 301
Amadori rearrangement, 6, 789
Amalgams
 C—P bond cleavage, 8, 863
Amaryllidaceae alkaloids
 synthesis
 Mannich reaction, 2, 1032, 1042
 use of imine anions, 2, 480
 via Diels–Alder reactions, 5, 323
Amberlite IR-112
catalyst
 Friedel–Crafts reaction, 3, 296
Amidation
 alkenes, 4, 292
Amide acetics
 azavinlogs
 2-alkoxy-2-dialkylaminocarbonitrile synthesis, 6, 573
 ortho acid synthesis, 6, 561
 spirocyclic
 synthesis, 6, 568
 synthesis, 6, 566
Amide chlorides
 chlorination, 6, 499
 self-condensation, 6, 499
Amide fluorides
 synthesis, 6, 496
Amide group
 O-alkylation
deprotection, 6, 642
Amide halides
 amide acetal synthesis, 6, 566
 synthesis, 6, 495
 tris(dialkylamino)alkane synthesis, 6, 579, 580
Amides
 acetalization, 6, 569
 activated
 macrolactonization, 6, 373
 acylation, 6, 504, 542
 addition reactions
 alkenes, 4, 559
 adducts
 acylating reagents, 6, 487
 carbonic acids, 6, 491
 carboxylic acid derivatives, 6, 493
 sulfur compounds, 6, 490
 alkali metal anions
 crystal structures, 1, 37
 alkoxyxylmeninimum salt synthesis, 6, 501
 alkylation, 6, 399
 α-alkenic
 bridged azabicyclic systems, 2, 89
 amidine synthesis, 6, 543
 amidinium salt synthesis, 6, 517
 aminal ester synthesis, 6, 575
 anodic oxidation, 7, 804
 aromatic
 Birch reduction, 8, 507
 arylation, 6, 399
 asymmetric hydroxylation, 7, 183
 α-brorno-
 Reformatsky reaction, 2, 292
 chiral
 asymmetric aldol reactions, 2, 231
 conjugate additions, 4, 202
 cyclic
 deprotonation, 3, 66
 tandem vicinal difunctionalization, 4, 249
 dehydrogenation
 copper(II) bromide, 7, 144
 deprotonation, 3, 65
 α-deprotonation, 1, 476
 enolates
 addition reactions, 4, 106–111
 arylation, 4, 466
 stereoselectivity, 2, 211
 β-halo-α,β-unsaturated
 addition reactions, 4, 125
 homologous β,γ-unsaturated
 from allylic alcohols, 6, 853
 α-hydroxylation, 7, 183
 imidoyl halide synthesis, 6, 523
 lithiation
 addition reactions, 1, 464
 lithium enolates
 crystal structures, 1, 30
 methylenation
 Tebbe reaction, 1, 748
 Tebbe reagent, 5, 1124
 microbial hydroxylation, 7, 59
 nucleophilic addition to π-allylpalladium complexes
 regioselectivity, 4, 639
 oxidation
 electrochemical, 2, 1051
 N-phenyl-β-bromo-α,β-unsaturated
 synthesis via haloborane addition to alkenes, 4, 358
Cumulative Subject Index

Amidinium salts

protecting groups, 6, 672
reactions with alkenes, 4, 292–295
reactions with π-allylpalladium complexes, 4, 598
stereochemistry, 4, 623
reactions with organocopper complexes, 1, 124
reaction with benzophenone dianion
organoytterbium compounds, 1, 280
reduction, 8, 248, 293
metal hydrides, 8, 269
sulfenylation, 7, 125
synthesis, 6, 381–417
carbonylation, 3, 1034
via hydration of alkynes, 4, 300
via hydroformylation, 4, 941
via ketones, 7, 694
via Ritter reaction, 6, 261
tandem vicinal difunctionalization, 4, 246–249
tertiary
dehydrogenation, 7, 122, 144
tin enolates
synthesis, 2, 116
tris(dialky1amino)alkane synthesis, 6, 579
unsaturated
lithiation, 1, 480
α,β-unsaturated
chelated, Diels–Alder reactions, 5, 365–367
Diels–Alder reactions, 5, 360–365, 464
stereoselective conjugate reduction, 8, 537
tandem vicinal difunctionalization, 4, 257
γ,δ-unsaturated
stereoselective synthesis via Claisen rearrangement, 5, 828
Vilsmeier–Haack reaction, 2, 786
vinyllogous
reduction, 8, 55
synthesis, Eschenmoser coupling reaction, 2, 865, 867
Amides, acyclic
tandem vicinal difunctionalization, 4, 247–249
Amides, N-alkyl-
chlorination, 6, 208
Amides, α-alkyl-β-keto
reduction, 8, 11
Amides, alkylic
tandem vicinal difunctionalization, 4, 249
Amides, N-allyl-
hydroformylation, 4, 926
Amides, α-amino-
synthesis
Lewis acid catalysis, 1, 349
Amides, bis(trimethylsilyl)-
crystal structures, 1, 37
Amides, t-butyl-
reduction
metal hydrides, 8, 271
Amides, dehydro-
synthesis
Erlenmeyer azlactone synthesis, 2, 406
Amides, 2,2-dialkoxyl-
dehydration, 6, 566
Amides, N,N-dialkyl-
deprotonation
with lithium dialkylamides, 3, 45
Amides, dialkyl-
reduction
aluminate syntheses, 6, 272
Amides, dimethyl-
reduction
metal hydrides, 8, 271
Amides, N-halo-
radical reactions
alkenes, 7, 503
Amides, hydroxy
γ-lactone synthesis, 6, 353
Amides, β-hydroxy-
synthesis
via desulfurization, 1, 523
Amides, N-(1-hydroxyalkyl)-
synthesis, 2, 1049
Amides, α-keto-
symmetric hydrogenation, 8, 153
Amides, β-keto-
cyclization reactions
organosamarium compounds, 1, 263
intermolecular pinacolic coupling reactions
organosamarium compounds, 1, 271
Amides, β-keto-2-[2-(trimethylsilyl)methyl]-
cycloaddition reactions, 5, 247
Amides, methoxy-
arylation
reactivity, 2, 1053
Amides, N-methoxy-N-methyl-
acetylation with, 1, 399
synthesis
via acid chlorides, 1, 399
Amides, N-methyl-
lenium
Diels–Alder reactions, 5, 501
Amides, N-methyl-N-methyl-
enium cations
Diels–Alder reactions, 5, 501
Amides, trimethylsilyl-
oxiran ring opening, 6, 91
Amides, vinyl-
hydroformylation, 4, 926
Amides, vinyllogous
reaction with oxonium salts, 6, 502
synthesis
Mannich reaction, 2, 903
via Beckmann reaction, 7, 697
Amide thioacetals
synthesis, 6, 568
Amidines
alkylation, 6, 552
reduction, 8, 302
synthesis, 6, 542; 7, 476
via alkynes, 7, 494
via reduction of amidoximes, 8, 394
thiolysis, 6, 430
tris(dialky1amino)alkane synthesis, 6, 579
Amidines, α-amino-
synthesis, 6, 555
Amidines, α-keto-
synthesis, 6, 556
Amidines, methylthio-
aklylation, 3, 88
Amidinium salts
amide acetal synthesis, 6, 568
amidine synthesis, 6, 543
aminal ester synthesis, 6, 575
2,2-bis(dialky1amino)carbonitrile synthesis, 6, 578
synthesis, 6, 512
tris(dialky1amino)alkane synthesis, 6, 580
Amidinium salts, azavinlylogous
Amidinium salts

- synthesis, 6, 522
- Amidinium salts, vinylogous
 - synthesis, 6, 522

Amidalkylation
- comparison with aminoalkylation, 2, 971
- electrochemical, 7, 804

α-Amidoalkylation
- amides, 1, 371

Amidohydrolases
- phthaloyl group removal

Amidomercuriation, 8, 854
- alkenes, 4, 741
- demercuration
- alkenes, 4, 294

Amidrazones
- acyl anion equivalents, 6, 783

Amidoseelenation
- alkenes, 7, 495, 523
- Ritter reaction, 6, 289

1-Amido-2-sulfenyl compounds
- synthesis, 7, 494

Amidoximes
- reduction

Amidyl radicals

Amiial esters
- synthesis of amidines, 8, 394

Alkylid radicals
- cyclizations, 4, 812

Alamatryl halides
- sulfonates, 6, 72
- amidine synthesis, 6, 543
- amidinium salt synthesis, 6, 513

Amial reaction
- alkenes, 4, 290–297
- amines
 - primary, 7, 741
 - secondary, 7, 746
- electrophilic, 6, 119
- hydrazine synthesis, 6, 118

Amine nucleophiles
- nucleophilic addition to α-alkylpalladium complexes
 - regioselectivity, 4, 638–640
 - stereochemistry, 4, 622–624

Amine oxalates
- Mannich reaction, 2, 896

Amine oxides
- asymmetric epoxidation
 - kinetic resolution, 7, 423
- deoxygenation, 8, 390

Meisenheimer rearrangement, 6, 843
- oxidation with
 - halides, 7, 663
 - polymers
 - alkyl iodide oxidation, 7, 663

Amine N-oxides
- deprotonation
 - azomethine ylide generation, 4, 1089

Amines
- acylation, 6, 382
- addition reactions
 - alkenes, 4, 559
- aliphatic
 - anodic oxidation, 7, 803
secondary, chiral
 aldol reaction, chiral auxiliary, 2, 234
solvents for reduction
dissolving metals, 8, 113
synthesis, 8, 374
 via carboxylic acid degradation, 6, 795
 via carboxylic acids, 8, 235–254
 via enzyme reduction of imines, 8, 204
 via imine reduction, 8, 25–74
 via oximes, oxime ethers and oxime esters, 8, 64
 via reduction of azides and triazines, 8, 383
 via reduction of hydroxylamines, 8, 394
 via reductive cleavage, 8, 383
 via substitution processes, 6, 65–98
synthons
 alkylation, 6, 65
tertiary
catalyst, Knoevenagel reaction, 2, 343
 Reimer–Tiemann reaction, 2, 772
synthesis, 7, 607
thioacylation, 6, 420
 O-alkyl thiocarboxylates, 6, 420
 carbon disulfide, 6, 428
dithiocarboxylates, 6, 423
 3H-1,2-dithiol-3-ones, 6, 421
thioacyl chlorides, 6, 422
thioamides, 6, 424
thioketenes, 6, 426
thiophosgene, 6, 423
Amines, allylic tertiary reduction
dissolving metals, 8, 971
Amines, N-(arylthiomethyl)-synthesis
 via tertiary amine precursors, 1, 370
Amines, bis(methoxymethyl)-reduction
to dimethylamines, 8, 27
Amines, N,N-bis(trimethylsilyl)-desilylation
to primary amines, 1, 369
Amines, N-((cyanomethyl)-
 N-methyleneamines from, 2, 941
Amines, di-alkyl-
synthesis, 7, 737
Amines, α,α′-dichloro-
synthesis, 6, 495
Amines, α,α′-difluoro-
synthesis, 6, 495
Amines, halo-
 reaction with alkenes, 7, 471
Amines, N-halo-
 radical cyclizations, 4, 812
Amines, homoallylic alkylation
 palladium(II) catalysis, 4, 573
Amines, β-hydroxy-
 asymmetric epoxidation
 kinetic resolution, 7, 423
Amines, N-methylene-
 reactions with organometallic compounds, 1, 361
Amines, perchloryl-
synthesis
 via chlorination of secondary amines, 7, 747
Amines, perfluoro-N-bromo-
 addition reactions
alkenes, 7, 500
Amines, β-phenoxycarbonyl-
synthesis, 7, 490
Aminium cation radicals
 Diels–Alder reactions, 5, 520
Aminium ions
 synthesis
 via oxidation of secondary amines, 7, 745
 via oxidation of tertiary amines, 7, 749
α-Amino acid chlorides, N-(trifluoroacetyl)-
 Friedel–Crafts reaction
 bimolecular aromatic, 2, 740
Amino acids
 acylating agents, 1, 413
 asymmetric synthesis, 3, 53
 reductive cleavage of hydrazines, 8, 388
 use of 2,5-diketopiperazines, 2, 498
 via azides, 6, 77
deamination, 8, 831
 enantioselective synthesis
 reaction of imines with allyl organometallic compounds, 2, 986
 fluorinated
 synthesis via hydroformylation, 4, 927
 N-methylation
 retrograde Diels–Alder reaction, 5, 552
 Strecker synthesis, 1, 460
 synthesis, 1, 373
 stereoselective, 8, 647
 via Ireland silyl ester enolate rearrangement, 5, 841
 via Lewis acid catalysis, 1, 349
 via reduction of keto acids, 8, 386
 thioacylation, 6, 424
 O-methyl thiocarboxylates, 6, 420
 unsaturated fluorinated
 hydrogenolysis, 8, 896
α-Amino acids
 N-acylated
 electrochemical oxidation, 2, 1051
 asymmetric aldol cyclizations, 2, 167
 asymmetric hydrogenation
 modifying reagents, 8, 150
 asymmetric synthesis
 from α-keto acids, 8, 145
 Ugi reaction, 2, 1098
deamination–substitution
 preparation of chiral alcohols, 6, 3
 esters
 deamination–substitution, 6, 4
 imines, alkylation, 3, 46
 β-hydroxy-
 optically pure, 2, 254
 synthesis, 8, 144; 3, 796
 N-acyliminium ions, 2, 1075
 glycine cation equivalents, 2, 1074
 oxazolones, 2, 396
 Ugi reaction, 2, 1095
β-Amino acids
 synthesis
 Mannich reaction, 2, 916, 922
 from 2-methylloxazoline, 2, 492
α-Amino acids, acyl-
 cyclodehydration, 2, 403
Amino acids, N-acyl-
 synthesis
 cobalt-catalyzed carboxylation, 3, 1027
Amino acids, N-tert-butoxycarbonyl-N-ethylation, 6, 71
Amino acids, dehydro-enantioselective catalytic hydrogenation
 Monsanto procedure, 2, 233
 reduction, 2, 406
 synthesis, 7, 122
 Erlenmeyer azlactone synthesis, 2, 406
\(\alpha\)-Amino acids, \(\gamma\)-hydroxy-
synthesis, 7, 490
\(\alpha\)-Amino acids, \(\text{N-}\text{hydroxy-}
esters, 6, 113
 via oxime ethers, 1, 386
\(\alpha\)-Amino acids, \(\text{syn-}\beta\)-hydroxy-
enantioselective aldol reaction
 chiral titanium enolates, 2, 309
\(\alpha\)-Amino acids, \(\beta,\gamma\)-unsaturated
synthesis, 3, 117
Aminoacyl anions
 reactions with electrophiles
carbonylation reaction, 3, 1017
Amino alcohols
 diazotization, 1, 846
 lithium aluminum hydride modifiers, 8, 168
 resolution, 7, 493
 synthesis
 via cyclization of allylic substrates, 4, 406
 via reduction of cyclohexene oxide, 8, 383
 vicinal
 synthesis, 6, 715
Amino alcohols, alkynic
divinyl ketones from
cyclization, 5, 769
Amino alcohols, dialkyl-
lithium aluminum hydride modifier, 8, 164
Amino alcohols, monoalkyl-
lithium aluminum hydride modifiers, 8, 168
Aminalkylation
 arylamines
 Mannich reaction, 2, 961
 carbocyclic compounds
 Mannich reaction, 2, 961
 phenols
 Mannich reaction, 2, 956
\(\alpha\)-Aminalkylation
 synthesis, 2, 953
\(\text{ipto-}\)Aminalkylation–destannylation, 2, 962
Aminocarbonylation
 alkenes
 palladium(II) catalysis, 4, 561
Amino-Claisen rearrangement
 \(N\)-allyl ketene \(N,O\)-acetals, 6, 861
Amino cycloits
 synthesis, 7, 712
\(\beta\)-Amino esters
 synthesis
 from chiral silyl ketene acetics, 2, 638
\(\alpha\)-Amino esters, \(O\)-benzyl-\(N\)-hydroxy-
synthesis, 6, 114
Amino ethers
 chiral auxiliary
 aldol reaction, 2, 233
\(\text{gem-}\)Amino ethers
 reactions with allyl organometallic compounds, 2, 1003, 1004
 reactions with crotyl organometallic compounds
 dependence of product type on metal, 2, 1005
 reactions with propargyl organometallic compounds
 dependence of product type on metal, 2, 1005
\(\text{gem-}\)Amino ethers, \(N\)-(trimethylsilyl)-
 reactions with allyl organometallic compounds, 2, 1003
\(\text{gem-}\)Amino ethers, \(N\)-(trimethylsilyl)-
 reactions with allyl organometallic compounds, 2, 1003
\(\alpha\)-Amino ketones
 diazotization
 synthesis of \(\alpha\)-diazo ketones, 3, 890
Aminomercuration
demercuration
 alkenes, 4, 290–292
Aminomercuration–oxidation, 7, 638
Aminomethylation
 Grignard reagents, 3, 258
Aminonitrenes
 synthesis
 via oxidation of 1,1-disubstituted hydrazines, 7, 742
Aminopalladation
 aziridine synthesis, 7, 474
Amino polyls
 synthesis
 stereoselective, 8, 647
Amino radicals
 cyclizations, 4, 795
\(\alpha\)-Amino radicals
 \(\omega\)-unsaturated
 reductive cyclization, 1, 275
Amino sugars
 synthesis, 7, 712; 8, 388
 stereoselective, 8, 647
 via intramolecular Diels–Alder reaction, 5, 425
 via palladium catalysis, 4, 598
Aminosulfonylations
 alkenes, 7, 493
Aminotelluration
 alkenes, 4, 343
Aminyl radicals
 cyclizations, 4, 811
 metal complexes
 cyclizations, 4, 812
 synthesis
 via oxidation of anilines, 7, 739
 via secondary amines, 7, 745
Amminium radicals
 cations
 cyclizations, 4, 812
Ammonia
 alkali metal reductions
 benzylc compounds, 8, 971
 carbonyl compounds, 8, 308
 catalyst
 Knoevenagel reaction, 2, 343
dissolving metal reductions
 added proton source, 8, 112
 chemoselectivity, 8, 113
 no added proton source, 8, 112
Ammonium acetate
 catalyst
 Knoevenagel reaction, 2, 343
Ammonium acetate, ethylenedi-
cumulative subject index

ammonium trifluoroacetate
catalyst
knoevenagel reaction, 2, 343
ammonium azides, tetra-n-butyl-
reaction with epoxides
ring opening, 6, 91
ammonium borohydride, tetraalkyl-
triazolyl ketone reduction, 8, 13
ammonium bromide, phenacylbenzyldimethyl-
Stevens rearrangement, 3, 913
ammonium carboxylates
dehydration, 6, 382
ammonium cation, tetraalkyl-
electreduction
mediator, 8, 132
ammonium chloride
Claisen rearrangement
catalysis, 5, 850
zinc
nitro compound reduction, 8, 366
ammonium chloride, dibenzyldimethyl-
photolysis
Ritter reaction, 6, 280
ammonium chlorochromate, benzyltriethyl-
oxidation
alcohols, 7, 283
ammonium chlorochromate, benzyltrimethyl-
oxidation
alcohols, 7, 283
ammonium chlorochromate, tetra-n-butyl-
oxidation
alcohols, 7, 283
ammonium chlorochromate, trimethyl-
oxidation
alcohols, 7, 283
ammonium chromate
resin support
alcohol oxidation, 7, 280
ammonium compounds, p-iodophenyltrimethyl-
Sarn reactions, 4, 460
ammonium cyanide, tetrabutyl-
catalyst
benzoin condensation, 1, 543
ammonium cyanide, triethyl-
nitrile synthesis, 6, 234
ammonium cyanoborohydride, tetrabutyl-
reduction
enones, 8, 538
ammonium cyanoborohydrides, tetraalkyl-
reductive amination
nonpolar solvents, 8, 54
ammonium dichromate
oxidation
solid support, 7, 845
ammonium dichromate, bis(tetrabutyl)-
oxidation
alcohols, 7, 286
ammonium enolates
enantioselective aldol reaction
gold catalysis, 2, 317
ammonium fluoride, benzyltrimethyl-
catalyst
allylsilane reactions with aldehydes, 2, 571
ammonium fluoride, r-butyl-
catalyst
allylsilane reactions with aldehydes, 2, 571
ammonium fluoride, tetrabutyl-
catalyst
enol silyl reaction with aldehydes, 2, 633
fluorination
alkyl alcohol derivatives, 6, 219
ammonium fluoride, tetra-n-butyl-
Henry reaction
silyl nitronates, 2, 335
Henry reaction, high pressure
catalyst, 2, 329
ammonium formate
hydride donor
carbonyl compound reduction, 8, 320
reductive alkylolation of amines, 8, 84
reduction
hydride transfer, 8, 84
ammonium formate, trialkyl-
hydrogen donor, 8, 557
ammonium halides, benzyltrimethyl(trimethyl-
silylmethyl)-
desilylation, 4, 430
ammonium hydroxide, benzyltrimethyl-
alcohol
piperonal with N-crotonylpiperidine, 2, 153
ammonium hydroxyde, tetaethyl-
hydroxylation
tetrasubstituted alkenes, 2, 17
ammonium iodide, (iodomethyl)trimethyl-
Eschenmoser's salt from, 2, 899
ammonium molybdate
oxidation
secondary alcohols, 7, 320
ammonium permanganate, benzyltrimethyl-
oxidation
amines, 6, 402
ethers, 7, 236
ammonium permanganate, benzyltrimethyl-
akane oxidation, 7, 12
ammonium permethenate, tetra-n-propyl-
oxidation
primary alcohols, 7, 311
ammonium persulfate
alkene hydroxylation, 7, 447
ammonium radical cations, alkyl-
akane oxidation, 7, 17
ammonium salts
reduction
dissolving metals, 8, 828
synthesis
via substitution processes, 6, 65–98
ammonium salts, allylalkyl-
reaction with Grignard reagents, 3, 246
ammonium salts, tetraalkyl-
intermolecular pinacol coupling reactions, 3, 568
ammonium salts, trialkyl-
reaction with activated alkynes, 4, 49
ammonium tetrabromooxomolybdate, benzyltrimethyl-
oxidation
secondary alcohols, 7, 321
ammonium tetrafluoroborate, N-sulfinyltrimethyl-
aldehyde, trimethylsilyleniminium salt synthesis, 6, 512
ammonium triacetoxyborohydride, tetra-n-butyl-
selective aldehyde reduction, 8, 16
ammonium triacetoxyborohydride, tetramethyl-
ketone reduction, 8, 9
ammonium trifluoroacetate, dibenzyldimethyl-
alcohol reaction
Ammonium ylides

regioselective, 2, 156
Ammonium ylides, allylic rearrangements, 6, 854
Ammonium ylides, cyclic 2,3-sigmatropic rearrangements, 6, 855
Ammonolysis aryl halides, 4, 434
Amoxycillin synthesis 2-arylglycines, 3, 303
Amphetamine hydroxylation, 8, 146 synthesis, 7, 502
Amphimedine synthesis organopalladium catalysts, 3, 232
Amipril synthesis use of aldol reaction, 2, 195 via cuprate 1,2-addition, 1, 126 via Horner–Wadsworth–Emmons reaction, 1, 772 via Wittig reaction, 1, 763
Amiprilin synthesis 2-arylglycines, 3, 303 α-Amyrin acetate allylic oxidation, 7, 112
Anacyclin synthesis, 3, 558
Anatoxin a enantioselective synthesis Mannich reaction, 2, 1012 synthesis, 2, 1069; 8, 604 Eschenmoser coupling reaction, 2, 879 Mannich reaction, 2, 1012 via acylation of precursor, 1, 403 via dibromocyclopropyl compounds, 4, 1023
Anbadons Knoevenagel reaction, 2, 346
Ancistrocladine synthesis, 3, 506; 6, 738
Ancistrocladidine synthesis, 6, 738
Androstadienedione rearrangement, 3, 804, 810 1,4-Androstadiene-3,17-dione hydroxylation, 8, 685 homogeneous catalysis, 8, 452
Androstadienone, 4-methyl-rearrangement, 3, 805 5α-Androstane, 3β-acetoxy-reduction lithium aluminum hydride, 8, 345
Androstane, 3-acetyl-3-bromo-synthesis via 17β-hydroxy-5α-androstan-3-one, 1, 530
Androstane-2,17-dione synthesis ene reaction, 2, 552
Androstane-3,17-dione carbonyl group protection, 6, 675 reactions with organometallic reagents regioselectivity, 1, 152 5α-Androstanes microbial hydroxylation, 7, 72
Androstanone selenol esters synthesis, 6, 462
Androstan-11-one reduction dissolving metals, 8, 118
Androstan-17-one reduction dissolving metals, 8, 122 5α-Androstan-3-one microbial hydroxylation, 7, 69
5-Androstan-17-one microbial hydroxylation, 7, 71, 73
5-Androstan-17-one, 12,12-difluoro-microbial hydroxylation, 7, 73
5α-Androstan-3-one, 16β-hydroxy-microbial hydroxylation, 7, 71
Androstenedione enzymatic reduction, 8, 561
Androstene-3,17-dione boron trifluoride complex NMR, 1, 293
Androst-4-ene-3,17-dione microbial hydroxylation, 7, 74 9α,10β-Androst-4-ene-3,17-dione microbial hydroxylation, 7, 71
9β,10α-Androst-4-ene-3,17-dione microbial hydroxylation, 7, 71
Androsten-3-ol-17-one hydroxylation, 7, 11
Androstenone epoxide rearrangement, 3, 738
5-Androsten-16-one reduction dissolving metals, 8, 122
5-Androsten-17-one, 3β-acetoxy-reduction, 8, 937
5β-Androst-9(11)-en-12-one, 3α,17β-diacetoxy-11-hydroxy-rearrangement, 3, 833
Androst-5-en-17-one, 18,3β-dihydroxy-synthesis, 7, 73
4-Androsten-3-one, 17β-hydroxy-reduction, 8, 935
Anemonin synthesis, 7, 619
Angelican synthesis, 5, 1096, 1099 regioselective, 5, 1094
Anguidine synthesis ene reaction, 2, 550
Angustidine synthesis Mannich reaction, 2, 913
Angustine synthesis Mannich reaction, 2, 913
Angustine, 13β,14-dihydro-synthesis Mannich reaction, 2, 913
Anhydrides acylation, 1, 423 thiols, 6, 443 acyl transfer ester synthesis, 6, 327
Cyclic
 reduction, 8, 291
macrolactonization, 6, 369
methylation
 Tebbe reagent, 5, 1124
mixed
 acylation, 6, 328
 reduction, 8, 239
to aldehydes, 8, 291
Tebbe reaction, 1, 743
thioacetylation
 alcohols and phenols, 6, 449
Vilsmeier–Haack reaction, 2, 792

Anilides
 metallation
 addition reactions, 1, 463
Anilides, N-alkyl-
 α,β-unsaturated
 photoinduced cyclization, 4, 477
Anilides, N-methyl-
 reduction
 metal hydrides, 8, 270, 272
Aniline, N-acyl-o-chloro-
 addition reactions, 4, 534
Aniline, N-allyl-
 oxamination, 7, 489
Aniline, benzylidene-
 reaction with crotyl organometallic compounds
 syn–anti selectivity, 2, 991
 reaction with silyl ketene acetals
 stereoselectivity, 2, 638
Aniline, N-benzylidene-
 reactions with organometallic compounds, 1, 361
 reactions with sulfynyl-stabilized carbanions, 1, 515
Aniline, bromohydrogenation, 8, 907
Aniline, 4-n-butylnitro-
 synthesis, 4, 433
Aniline, N,N-diethyl-
 thexylborane complex
 hydroboration, 8, 709
Aniline, N,N-dimethyl-
 Birch reduction
 dissolving metals, 8, 498
 reaction with formaldehyde
 Mannich reaction, 2, 961
 Rosenmund reduction, 8, 287
Aniline, 2,3-dinitro-
 reaction with piperidine, 4, 423
Aniline, N-diphenylmethylenec-
 reaction with organometallic reagents, 2, 975
Aniline, N-ethyl-
 lithium aluminum hydride modifier, 8, 166
Aniline, N-methyl-
 thiobenzoylation, 6, 424
Aniline, p-nitro-
 N-alkylation, 6, 66
 synthesis, 6, 110
Aniline, 2-nitroso-
 synthesis
 via oxidation of o-phenylenediamine, 7, 737
Aniline, pentachloro-
 oxidation
 sodium hypochlorite, 7, 738
Aniline, N-sulfanyl-
 [3 + 2] cycloaddition reactions
 with η1-butynyliron complexes, 5, 277
Aniline, 2,4,6-trimethyl-
 synthesis
 via SN1 reaction, 4, 472
Aniline derivatives
 formylation, 3, 969
Aniline pivalamides
 ortho lithiation
 addition reactions, 1, 464
Anilines
 N-alkylation, 6, 66
 isopropylation
 Friedel–Crafts reaction, 3, 302
 meta metallation
 addition reactions, 1, 463
 ortho alkylation, 4, 430
 synthesis, 4, 434; 8, 367
tertiary
 hydride donors, 8, 98
Anilines, o-alkynyl-
 synthesis, 3, 543
Anilines, o-allyl-
 N-substituted
 carbonylation, 3, 1038
Anilines, azido-
 synthesis
 via phthaloyl intermediate, 6, 255
Anion exchange reactions
 amide halide synthesis, 6, 500
Anion exchange resins
 aldol reaction, 2, 138
 chromic acid
 alcohol oxidation, 7, 280
Anisaldehyde
 reduction
 boranes, 8, 316
Anisatin
 synthesis, 7, 242
Anisic acids
 Birch reduction
 dissolving metals, 8, 501
Anisole
 meta-acylation, 4, 532
 Friedel–Crafts alkylation, 3, 300
 oxidative coupling, 3, 669
 photocycloaddition reactions
 with vinylene carbonate, 5, 653
Anisole, p-chloro-
 hydrogenolysis, 8, 906
Anisole, (m-cyanoalkyl)-
 metal complexes
 addition–protonation reactions, 4, 543
Anisole, dihydro-
 reactions with iron carboxyls, 4, 665
Anisole, 2,4-dimethyl-
 amidolkylation, 2, 971
Anisole, 2,6-dimethyl-
 benzylaetion, 3, 300
Anisole, p-fluoro-
 catalytic hydrogenation, 8, 903
Anisole, p-iodo-
 reaction with phenylselenides, 4, 454
Anisole, o-lithio-
Anisole

acylation, 1, 404
Anisole, 2-methoxythio-
metallated
alkylation, 3, 135
Anisole, 2-phenyl-
synthesis
via benzene, 4, 510
Anisole, trimethylsilylmethylthio-
alkylation, 3, 137
metallated
alkylation, 3, 135
Anisoles
Birch reduction
dissolving metals, 8, 493
electrochemical reduction, 8, 517
reductive silylation, 8, 518
Anisomycin
synthesis, 3, 77; 8, 605
Eschenmoser coupling reaction, 2, 889
Annulation
intramolecular Barbier process
samarium diiodide, 1, 262
Michael ring closure, 4, 121, 260
[4 + 2] Annulation
oxanion-accelerated
vinylcyclobutane rearrangement, 5, 1020
α,α’-Annulation
bicyclic ketoester synthesis, 4, 8
Annulations
two-alkyne, 5, 1102
[3 + 2] Annulations
allenylsilanes, 1, 596
[10] Annulene
disrotatory ring closure, 5, 716
synthesis
via [6 + 4] cycloaddition, 5, 623
[12] Annulene
electrocyclization, 5, 717
[14] Annulene
synthesis
Knoevenagel reaction, 2, 377
[16] Annulene
disrotatory ring closure, 5, 716
Annulenes
synthesis, 3, 594
Annulenes, dehydro-
synthesis, 3, 556
[13] Annulonenone, 6,8-bis(dihydro)-
synthesis
Knoevenagel reaction, 2, 376
Annulonenones
synthesis
aldol reaction, 2, 152
Anodic α-acetoxylation
ketones, 7, 798
Anodic hydroxylation
aromatic compounds, 7, 800
Anodic α-methoxylation
ketones, 7, 798
Anodic oxidation
alkanes, 7, 793
benzylic position
aromatic compounds, 7, 801
1,2-diols, 7, 707
double mediatory systems, 7, 809
electrochemical, 7, 790
heteromediatory systems, 7, 808
homomediatory systems, 7, 808
mediators, 7, 807
unsaturated compounds, 7, 794
Ansamycin
occurrence, 2, 1
Antamanide
lithium salt complexes
crystal structure, 1, 300
Antamanide, perhydro-
metallic complexes
lithium salt complexes
crystal structure, 1, 300
Antheridic acid
synthesis, 7, 90
Antheridiogen-An
synthesis
via vinylcyclopropane rearrangement, 5, 1014
via vinylcyclopropane thermolysis, 4, 1048
Antheridiogens
synthesis
via cyclofunctionalization of cycloalkene, 4, 373
Anthracene, 9-bromo-
charge-transfer osmylation, 7, 864
Anthracene, 9-cyano-
phocycloaddition reactions
cycloheptatriene, 5, 636
2,5-dimethyl-2,4-hexadiene, 5, 636
Anthracene, 9,10-dibromo-
charge-transfer osmylation, 7, 864
Anthracene, 9,10-dihydro-
synthesis
Friedel-Crafts reaction, 2, 761.
Anthracene, 9,10-dimethyl-
Diels–Alder reactions, 5, 71
acyl nitroso compounds, 5, 419
tetracyanoethylene, 5, 76
Anthracene, 9-methyl-
hydrogenation
homogeneous catalysis, 8, 455
Anthracene, 9-nitro-
charge-transfer osmylation, 7, 864
Anthracene, 9-trifluoroacetyl-
homogeneous catalysis, 8, 455
Anthracene hydride
reaction with chalcone, 8, 563
Anthracenes
anodic oxidation, 7, 799
Ritter reaction, 6, 282
Birch reduction
dissolving metals, 8, 497
charge-transfer osmylation, 7, 864
[4 + 3] cycloaddition reactions, 5, 608
Diels–Alder reactions
benzenes, 5, 383
Lewis acid promoted, 5, 339
selenocarbonyl dienophiles, 5, 442
hydrogenation, 8, 438
homogeneous catalysis, 8, 454, 455
osmium tetroxide complex
time-resolved spectra, 7, 865
ozonization
[4 + 3] cycloadditions, 4, 1075
photocycloaddition reactions
2,5-dimethyl-2,3-hexadiene, 5, 636
photolyses, 5, 637
radical cation
absorption spectrum, 7, 865
reaction with tetracyanoethylene
thermochemistry, 5, 76
retrograde Diels–Alder reactions, 5, 552
thermal osmylation, 7, 863
Vilsmeier–Haack reaction, 2, 779

Anthracyclines
synthesis, 5, 1098; 7, 341
Dieckmann reaction, 2, 824
Friedel–Crafts reaction, 2, 761, 762
via benzocyclobutene ring opening, 5, 693
via Diels–Alder reactions, 5, 327, 375, 393
via Michael addition, 4, 14, 27

Anthracyclines, demethoxy-
synthesis
via Diels–Alder reaction, 5, 338

Anthrycyclinone, 11-deoxy-
synthesis
via protected acetaldehyde cyanohydrin, 1, 554

Anthrycyclinones
synthesis, 7, 345
via annulation of arynes, 1, 554
via Diels–Alder reaction, 5, 384
via oxyanion-accelerated rearrangement, 5, 1022

Anthramycin
synthesis, 3, 487
palladium-catalyzed carboxylation, 3, 1038
via directed lithiation, 1, 469

Anthranyl acid, N-(3-trifluoromethylphenyl)-
Friedel–Crafts reaction, 2, 759

Anthranyl acids
benzene from via diazotization
benzocyclobutene synthesis, 5, 692
synthesis
via Hofmann reaction, 6, 802

Anthranylohydroxamic acid
Lossen reaction, 6, 824

Antranol
retro Diels–Alder reaction, 5, 564

Anthraquinoine, bis(bromomethyl)-
Diels–Alder reactions, 5, 394
9,10-Anthraquinone, 1,4-dihydroxy-5-methoxy-
Friedel–Crafts reaction, 2, 762

Antraquinones
biomimetic synthesis, 2, 176
charge-transfer osmylation, 7, 864
reaction with allylzinc bromide, 1, 218
reduction
silanes, 8, 318
synthesis, 7, 341
Friedel–Crafts reaction, 2, 754
via annulation of arynes, 1, 554
via arene–metal complexes, 4, 546
via arynes, 4, 497
via benzocyclobutene ring opening, 5, 693
via [2 + 2 + 2] cycloadditions, 5, 1148
via Michael addition, 4, 27

Anthrasteroids
synthesis, 7, 833

Anthrone
synthesis, 2, 173
9-Anthrone, 10-arylmethylene-
reduction, 8, 950
9-Anthrylmethyl esters
carboxy-protecting groups
photolysis, 6, 668
Antibiotic A 23187 — see Calcinycin
Antibiotic CC-1066
synthesis
via cyclopropanation, 4, 1043

Antibiotics
synthesis
Eschenmoser coupling reaction, 2, 887

Antibiotic X-206
synthesis
via higher order cuprate, 1, 130

Antibiotic X-296
synthesis, 7, 245

Anti Cram–Felkin stereochemical control
Diels–Alder reactions, 2, 677

Antidepressants
synthesis, 7, 397

Antimonic acid, fluoro-
catalyst
Friedel–Crafts reaction, 3, 297

Antimony, alkylbis(phenylthio)-
synthesis, 7, 728

Antimony compounds, crotyl-
type
reactions with aldehydes, 2, 24
Antimony pentachloride
activator
DMSO oxidation of alcohols, 7, 299
catalyst
Friedel–Crafts reaction, 2, 714
reaction with alkenes, 7, 530

Antimony trifluoride
fluorination, 6, 220
mixture with alkyl fluoride
Friedel–Crafts reaction, intermediate, 3, 299

Antimycin A3
synthesis
via activated amides, 6, 373
via macro lactonization, 6, 369

Antirhine
synthesis
via Baeyer–Villiger reaction, 7, 682

Antofine
synthesis
via selective ortho lithiation, 1, 466

Aobamine
synthesis, 1, 564

Aphidicolin
synthesis, 3, 717; 7, 633; 8, 946
epoxide ring opening, 3, 752
rearrangement of allylic epoxides, 3, 762
via conjugate addition, 4, 215

β-1-Apiofuranoside
asymmetric synthesis
via photocycloaddition, 5, 185

Apiose
synthesis
via Paterno–Büchi reaction, 5, 158

Aplasmomycin
synthesis
via organocuprates, 4, 176
via oxalate acylation, 1, 425

Aplysiatoxin
synthesis, 3, 126, 168; 7, 246
Aplysiatoxin, debromo-
Cumulative Subject Index

Aplysin, synthesis, 3, 126; 7, 246
Aplysin
synthesis, 3, 783
Apocamphane-1-carboxylic acid
decarboxylation, 7, 732
Apogossypol
hexamethyl ether
synthesis, 3, 665
Apomiytomycin
synthesis
Eschenmoser coupling reaction, 2, 888
Apopinene, 2-ethyl-
hydroboration, 8, 722
Aporphines
11-substituted
synthesis via arynes, 4, 513
synthesis, 3, 507
via arynes, 4, 504
via Diels–Alder reaction, 5, 384
via photocyclization, 5, 724
Aquillochin
synthesis, 3, 691
Arabinol
synthesis, 7, 645
Arabinose
selective monoacetylation
enzymatic, 6, 340
synthesis, 8, 292
Arabinose, 2,5-anhydro-
Knoevenagel reaction, 2, 385
β-L-Arabinoside, methyl 3,4-O-benzylidene-
reduction, 8, 226
Arachidonate acid
eicosanoid metabolites
synthesis, 3, 217
lipoxigenase metabolites
synthesis, 7, 712
synthesis, 7, 731
via (Z)-selective alkenation, 1, 758
Arachidonic acid, 3-dehydro-
synthesis, 3, 250
Arachidonic acid, 5,6-dehydro-
synthesis, 3, 247
Arene–alkene photocycloaddition reactions
[3 + 2] and [5 + 2], 5, 645–671
exciplex pathway, 5, 649
mechanism, 5, 648–654
Arenecarbaldehydes
Baeyer–Villiger reaction, 7, 684
Arenecarboxdithioates, 2-dialkylaminoethyl
synthesis
via ethyl arenecarboxdithioates, 6, 454
Arenecarboxdithioates, vinyl
thioarylation
thiooxoester synthesis, 6, 450
transesterification, 6, 454
Arenecarbonitriles
synthesis, 4, 457
via Sn1 reaction, 4, 471
Arenecarboxdithioates, O-ethyl
synthesis
via imidates, 6, 452
Arenecarboxdithioates, S-phenyl esters
synthesis, 6, 441
Arenediazocyanide
Diels–Alder reactions, 5, 428

Arenenediamonium salts
carbonylation, 3, 1026
generation
radical addition reactions, 4, 757
hydrogenolysis, 8, 916
radical cyclizations, 4, 804
vinylation
palladium complexes, 4, 835, 842, 856
Arenes oxidases
microbial hydroxylation, 7, 78
Arenes
acylation, 6, 445
alkylation
Friedel–Crafts reaction, 3, 298
amination, 7, 10
[4 + 3] cycloaddition reactions, 5, 608
τ-cyclohexadienyl complexes
addition reactions, 4, 531–547
dithiocarboxylation, 6, 456
electron deficient
nucleophilic addition, substitution by, 4, 423–447
Friedel–Crafts acylation
via thiol esters, 6, 445
Mannich reaction, 2, 1016
metal complexes
cine–tele substitution, 4, 527
cyclization, 4, 524
nucleophilic addition reactions, 4, 517–547
nucleophilic substitution, 4, 521–531
synthesis, 4, 519–521
nitrile synthesis, 6, 240
osmylation
charge transfer, 7, 865
electron transfer, 7, 866
polyhalogenated
diaryne equivalents, 4, 496
radical cations
electrophilic aromatic substitution, 7, 870
time-resolved spectra, 7, 864
regiospecific alkylation
Friedel–Crafts reaction, 3, 303
synthesis
via aryl halides, 8, 895–920
thioacylation, 6, 453
vinyl substitutions
palladium complexes, 4, 835–837
Arenes, alkoxycarbonylation
phycycloaddition reactions, 5, 652
Arenes, alkyl-
phycycloaddition reactions, 5, 652
Arenes, bromo-
carbonylation
palladium catalysts, 3, 1018
Arenes, methoxy-
oxidative demethylation, 7, 346, 350
Arenes, methyl-
intramolecular isomerization
Friedel–Crafts reaction, 3, 328
Arenes, nitro-
addition reactions
with organomagnesium compounds, 4, 85
Arenes, thiocyanate-
synthesis, 4, 443
Arenesulfenyl sulfamates
synthesis
via oxosulfenylation of alkenes, 4, 335
Arenesulfonamides, N,N-dichloro-
reactions with alkenes, 7, 498
Arenesulfonyl halides
addition reactions
alkenes, 7, 518
Arenesulfonylhydrazones
Bamford–Stevens reaction, 6, 776
synthesis, 8, 940
Arenethioates, S-(2-oxoalkyl)
synthesis
via acylation of dipole-stabilized carbanions, 6, 446
Arenethiosulfenyl chlorides
Argentilactone
Arginine acid
reaction with alkenes, 7, 516
Arginilactone
Argonorin
Aristeromycin
Aristolactone
Aristololine
Aristoteline
Arnotianamide, methyl-
synthesis
Arnotinin
Arnomadrene
synthesis, 3, 390
Aromatic compounds
activated
thioimidate synthesis, 6, 540
anodic oxidation, 7, 799
hydrogenation
homogeneous catalysis, 8, 453
radical addition reactions, 4, 766–770
reactions with chloromethyltriminium-based salts
Vilsmeier–Haack reaction, 2, 779
reaction with ketocarbenes, 4, 1031–1064
reduction
Benkeser reduction, 8, 516
Birch reduction, 8, 490
dissolving metals, 8, 489–519
electrochemical methods, 8, 517
photochemical methods, 8, 517
reductive silylations, 8, 517
synthesis
via 2,3-sigmatropic rearrangement, 6, 873
Aromatic compounds, fluoro-
synthesis, 4, 445
Aromatic compounds, nitro
irradiation, 7, 43
Aromatic compounds, vinyl-
hydroformylation, 4, 932
regioselectivity, 4, 919
Aromatic halides
reactions with ketones
organosamarium compounds, 1, 258
Aromatic hydrocarbons
hydrogenation
heterogeneous catalysis, 8, 436
mechanism, 8, 437
stereochimetry, 8, 437
structure–reactivity, 8, 436
nuclear hydroxylation
microbial, 7, 78
Aromaticin
synthesis, 7, 313
\(\sigma \)-Aromaticity
cyclopropanes, 5, 900
Aromatic substitution
electrochemically induced, 4, 453
electron-transfer, 7, 872
Aromatin
synthesis, 1, 566; 7, 313
via Cope–Claisen rearrangement, 5, 886
Aromatization
alkanes, 7, 6
photochemical
cyclohexadienones, 3, 813
quinones, 7, 136
steroids
microbial, 7, 67
Aroyl chlorides
acyloin coupling reaction, 3, 617
Aroyl cyanides
synthesis
via phase transfer catalysis, 6, 317
Arsabenzaldehyde
Knoevenagel reaction, 2, 369
Arsenic ylides
cyclopropanation, 4, 987
Arsenides
S\textsubscript{RN1} reactions, 4, 474
Arsine, triphenyln-
platinum complex
in hydrocarboxylation, 4, 939
Arsonium ylides
epoxidation, 1, 825
reaction with carbonyl compounds
formation of alkenes and epoxides, 3, 203
synthesis, 1, 825
Artemannin B
synthesis
Mannich reaction, 2, 517
Artemisia ketone
synthesis, 3, 869
Friedel–Crafts acylation of allylsilanes, 2, 716
use of ylidic rearrangements, 3, 964
via sequential dialkylation, 1, 557
Artemisinin
synthesis
via Paterno–Büchi reaction, 5, 155
Arthrobacter simplex
dehydrogenation, 7, 145
Arylamide ions
arylation, 4, 470
Arylamine, N-nitrosoacyl-
Arylamines

Cumulative Subject Index 448

rearrangement
aryl generation, 4, 487

Arylamines
aminolkylation
Mannich reaction, 2, 961
aromatic nucleophilic substitution, 4, 433
synthesis
via $S_{N}1$ reaction, 4, 472
vinylation
palladium complexes, 4, 856

Aryl anions
aryne generation, 4, 486-488

Arylation
amides, 6, 399
carbon nucleophilies, 4, 429
intramolecular homolytic, 4, 476
organomercury compounds
diamond complexes, 4, 838

α-Arylation
metal enolates
regioselectivity, 3, 12
Pummerer rearrangement
preparation of α-arylated sulfides, 7, 199

Aryl bromides
hydrogenolysis, 8, 906

Aryl carbamions
alkylation, 3, 259

Aryl chlorides
hydrogenolysis, 8, 904
vinyl substitutions
diamond complexes, 4, 835

Aryl complexes
benzannulation, 5, 1100

Aryl compounds
coupling reactions, 3, 499
crossed, 3, 501
intramolecular, 3, 505
with alkenes, 3, 492
deriimerization, 3, 499

Aryl compounds, allyl-
chiral
synthesis, 3, 246

Aryl cyanates
synthesis
via phenols, 8, 912

Aryl cyanides
synthesis, 6, 241

Aryl fluorides
hydrogenolysis, 8, 903

Aryl groups
addition reactions
with alkenic π-systems, 4, 72-99
conjugate additions
catalyzed by Lewis acids, 4, 140-158

Aryl halides
ammonolysis, 4, 434
carbonylation
diamond catalysts, 3, 1021
cross-coupling reactions
diamondometallic reagents, 3, 522
deprotonation
aryl generation, 4, 486
nitrile synthesis, 6, 231
reaction with organocopper compounds, 3, 219
reaction with phenoxides, 4, 469
reduction, 8, 895-920

synthesis, 7, 340
vinyl substitutions
diamond complexes, 4, 842-856

Acrylic oxidation, 7, 329

Aryl iodides
hydrogenolysis, 8, 908

Aryl isocyanates
2-azetidinones from, 5, 103

Aryloxy radicals
oxidative coupling, 3, 660
Aryl phosphates
coupling reactions
with sp^3 organometallics, 3, 455
reaction with alkylaluminum, 3, 492

Aryl radicals
coupling with cyanides, 4, 471
cyclizations, 4, 796-798
nucleophilic coupling, 4, 451-480

Aryl scrambling
radical nucleophilic substitution, 4, 454

Aryl sulfides
hydrogenolysis, 8, 914
Aryl sulfinites
vinyl substitutions
diamond complexes, 4, 856

Arylsulfonyl chlorides
vinyl substitutions
diamond complexes, 4, 835, 856

2-Arylsulfonylethyl carbonate
alcohol protection
cleavage, 6, 659

Aryl triflates
carbonylation
formation of esters, 3, 1029
coupling reactions
with sp^3 organometallics, 3, 455
with vinylstannane, 3, 495
cross-coupling reactions
with terminal alkynes, 3, 531
reaction with cyanocuprates, 3, 219
reduction, 8, 933

Aryne, oxazolinyl-
reaction with alkylolithiums, 4, 494

Arynes
chemoselectivity, 4, 492
Diels-Alder reaction, 4, 512
1,3-dipolar additions, 4, 512
generation, 4, 485-490
metal complexes, 4, 485
nucleophilic addition, 4, 491-513
regioselectivity, 4, 492-495
nucleophilic coupling, 4, 483-513
reaction with ambident anions, 4, 492
soft acids, 4, 491
soft electrophiles, 4, 484
zirconium complexes, 4, 485

Arynic substitution
in synthesis, 4, 495-513

Asatone
synthesis, 3, 697

Asatone, bisdemethoxy-
synthesis, 3, 697

Ascorbic acid
intermolecular redox reactions
via enediols, 8, 88

Aspartame
esters, 6, 324
synthesis, 6, 384
enzymatic, 6, 399
in UV light, 6, 402
Aspartamine
synthesis, 3, 543
Aspartate proteases
peptide synthesis, 6, 395
Aspartic acid
lithium aluminum hydride modifiers, 8, 168
synthesis via reductive amination, 8, 144
Asperdil
synthesis, 7, 647
via chromium(II) ion mediation, 1, 187
Aspergillus awamori
hydrocarbon hydroxylation, 7, 59
Aspergillus niger
hydrocarbon hydroxylation, 7, 62
reduction
unsaturated carbonyl compounds, 8, 558
(±)-Asperlin
synthesis
stereocontrolled, 2, 94
Aspicilin
synthesis
via enone reduction, 8, 545
via macrocactonization, 6, 373
Aspidodispermine, deoxy-
synthesis, 7, 175
Aspidosperma alkaloids
synthesis
iminium ion–arene cyclization, 2, 1022
Mannich reactions, 2, 1043
via annulation, 5, 1100
via cyclohexadienyl complexes, 4, 680
Aspidosperma alkaloids, deethyl-
synthesis via retro Diels–Alder reactions, 5, 581
Aspidospermidine, 6,7-dehydro-
synthesis via Diels–Alder reaction, 5, 372
Aspidospermidine, 16-methoxy-1,2,6,7-tetrahydro-
synthesis
Mannich reactions, 2, 1043
Aspidospermine
synthesis
via cyclohexadienyl complexes, 4, 679
via diene protection, 6, 690
Aspidospermine alkaloids
synthesis, 6, 754
Aristoloxin
synthesis
via photocycloaddition, 5, 172
Asteriscanolide
synthesis via [4 + 4] cycladdition, 5, 641
Asteromerin A
synthesis, 7, 243
Asymmetric catalysts
Darzens glycidic ester condensation, 2, 435
Asymmetric dihydroxylation
alkenes, 7, 429
Asymmetric epoxidation
absolute configuration, 7, 391
alcohol-free dichloromethane, 7, 394
catalysis
routen: titanium complexes, 7, 422
catalyst preparation, 7, 394
competing side reactions, 7, 394
concentration, 7, 394
diastereoselectivity, 7, 397
enantiofacial selectivity, 7, 397
enantioslectivity, 7, 391
mechanism, 7, 395
methods, 7, 425
molecular sieves, 7, 396
oxidant, 7, 394
solvent, 7, 394
stoichiometry
routen: catalytic reaction, 7, 393
ratio of titanium to tartrate, 7, 393
1-substituted allyl alcohols
kinetics, 7, 411
substrate structure, 7, 397
titanium tartrate catalysis
mechanism, 7, 420
Asymmetric hydrogenation
alkenes
homogeneous catalysis, 8, 459
enamides
homogeneous catalysis, 8, 460
Asymmetric hydroxylation
ketones, 7, 162
Asymmetric synthesis
[3 + 2] cycloaddition reactions, 5, 305
double
allyl organometallics, 2, 40–45
enol ethers, 2, 629–657
matched double
allyl organometallics, 2, 41
mismatched double
allyl organometallics, 2, 41
Atherosperminine
synthesis, 3, 586
Atisine
synthesis via Michael addition, 4, 30
Atisirgan-15-one
synthesis, 3, 715
Atom transfer reactions
radical addition reactions, 4, 751–758
radical cyclizations, 4, 801–805, 824
radicals, 4, 726
Atractyligenin
synthesis via cyclopropane ring opening, 4, 1044
Atrolactic acid
preparation of chiral reagent
asymmetric synthesis, 2, 224
synthesis, 3, 829
Atromentin
synthesis, 3, 828
Attaipugite
solid support
oxidants, 7, 845
Aucubigenone
synthesis via Pauson–Khand reaction, 5, 1062
Aurapte, 3,6-epoxy-
synthesis, 7, 406
Auraptenol
Aurentiacin

oxidative rearrangement, 7, 823
Aurentiacin
synthesis
Friedel–Crafts reaction, 2, 735, 760
Autoxidation
alkanes, 7, 10
dienes, 7, 861
zirconium compounds
mechanism, 8, 691
Avenaciolide
synthesis
via photocycloaddition, 5, 171
Avermectin A₁₈
synthesis, 2, 577; 7, 237
via heteronucleophile addition, 4, 34
Avermectin A₂₈
allylic oxidation, 7, 93
Avermectin B₁₈
selective hydrobromination, 4, 356
Avermectin B₁₈
synthesis
via acylation of alkynide, 1, 419
Avermectins
synthesis, 1, 569; 7, 300
Diels–Alder reaction, 2, 701
via Julia coupling, 1, 797, 801, 802
via organoaluminum reagents, 1, 103
via organostannane acylation, 1, 447
Azaacetals
reduction, 8, 228
to ethers, 8, 211–232
Azaadamantane
synthesis
via Ritter reaction, 6, 284
Azaadiol
synthesis, 7, 638
Azaalkenes
synthesis
via benzoin condensation, 1, 545
Azaallyl enolates
crystal structures, 1, 28
Azaallyllithium reagents
silylation
preparation from hydrazones, 2, 507
Azaallyl metal reagents
carboxylic acids
1,2-additions, 2, 516
formation
from hydrazones, 2, 506
from hydrazones
structure, 2, 507
1-Azaallyl system
synthesis
via protonation–deprotonation, 6, 722
Azaallyltitanium reagents
preparation
from hydrazones, 2, 507
Azaamion-accelerated rearrangements
small rings, 5, 1000–1004
Azaanthranols
synthesis
Friedel–Crafts reaction, 2, 759
Azaaromatic compounds, aminosynthesis, 4, 434
Azabicyclic alkaloids
synthesis
chiral, 1, 558
Azabicyclic systems
bridged α-allenic amides
synthesis, 2, 89
2-Azabicyclo[2.2.2]alkenes
flash vapor pyrolysis, 5, 576
Azabicyclohexene
synthesis
via nitrile ylide cycloaddition, 4, 1083
2-Azabicyclo[3.1.0]hex-3-enes
synthesis
via ketocarbenoids and pyrroles, 4, 1061
2-Azabicyclo[3.3.1]nonane
synthesis
Dieckmann reaction, 2, 819
9-Azabicyclo[4.2.1]nonane
synthesis
Mannich reaction, 2, 1012
Azabicyclo[3.3.1]nonanes
synthesis
Mannich reaction, 2, 1024
via intramolecular Ritter reaction, 6, 278
3-Azabicyclo[3.3.1]nonane
synthesis
via Ritter reaction, 6, 284
Azabicyclo[3.2.1]octane
synthesis, 8, 124
3-Azabicyclo[3.3.0]octane
synthesis
via intramolecular Ritter reaction, 6, 273
1-Azabicyclo[2.2.2]octan-3-one
lithium enolate
aldol reaction with benzaldehyde, 2, 198
8-Azabicyclo[3.2.1]oct-6-ene
Pauson–Khand reaction, 5, 1051
2-Aza-1,3-butadiene
cycloaddition reactions, 6, 757
1-Aza-1,3-butadiene, N-acyl-
Diels–Alder reactions, 5, 473
1-Aza-1,3-butadiene, 2-r-butylidimethylsiloxo-
Diels–Alder reactions, 5, 473
1-Aza-1,3-butadiene, N-phenylsulfonyl-
Diels–Alder reactions, 5, 474
1-Aza-1,3-butadiene, 2-trimethylsiloxy-
Diels–Alder reactions, 5, 473
1-Aza-1,3-butadiene, 3-trimethylsiloxy-
Diels–Alder reactions, 5, 478
Azabutadienes
Diels–Alder reactions, 5, 470–491
synthesis
via photocycloaddition, 5, 161
1-Azabutadienes
cycloaddition reactions, 6, 757
1-Aza-1,3-butadienes
Diels–Alder reactions, 5, 473–480
2-Aza-1,3-butadienes
Diels–Alder reactions, 5, 480–484
hetero
Diels–Alder reactions, 5, 485
2-Aza-1,3-butadienes, 1,3-bis(μ-butylidimethylsiloxo)-
Diels–Alder reactions, 5, 480
Aza-Cope rearrangement, 5, 877
cationic, 2, 1072, 1077
palladium(II) catalysis, 4, 563–565
3-Aza-Cope rearrangement, 6, 860
Azacyclic systems
Cumulative Subject Index

Azepines

synthesis
via Ireland rearrangement, 5, 843

2-Azaazacycloalkanones
reductive elimination, 8, 926
Azacycloheptane, 2,2-disubstituted
synthesis
from allyl organometallic compounds, 2, 995
Azacycloheptanes
synthesis
acyloin coupling reaction, 3, 629
1-Azacyclohexan-3-one
Wolff–Kishner reduction, 8, 926
1-Azacyclohexene
synthesis
via intramolecular Ritter reaction, 6, 278
Azacycloptane, tetramethylidisilyl-
in N-tetrazol-5-yl-β-lactam synthesis, 2, 920
Azacycloprenes
synthesis
via oxidation of β-stannyl phenylhydrazones, 7, 628
Azadienes

cationic
Diels–Alder reactions, 5, 492–501
five-membered ring heteroaromatic
Diels–Alder reactions, 5, 491
heteroaromatic
Diels–Alder reactions, 5, 411, 491–492
reactions with organometallic compounds, 1, 382
six-membered ring heteroaromatic
Diels–Alder reactions, 5, 491
1-Azadienes
isomerization, 6, 721
reaction with Grignard reagents, 6, 721
2-Azadienes
imine anions from
reactions, 2, 479
reactions with organometallic compounds, 1, 383
synthesis
via geminal disubstitution, 6, 722
via isomerization of 1-azadienes, 6, 721
2-Aza-1,3-dienes
synthesis
via retro Diels–Alder reactions, 5, 559
Aza-di-π-methane rearrangements
photoisomerizations, 5, 201, 220
Azadiradione
synthesis, 7, 634
Azadispiro ketocyclic hydroxamic acids
oxines
synthesis, 2, 329
Azazaenolates
addition reactions
with alkenic π-systems, 4, 99–113
chiral
conjugate additions, 4, 221–226
Azafulvene
dimer
dilithiation, 1, 473
Azafulvarenes
intramolecular cyclization, 5, 414
4-Azaheptanedioic acid, 2,4-dimethyl-
dimethyl ester
Dieckmann reaction, 2, 811
Azaheteroaromatic compounds, 2-methyl-
reactions
with aldehydes, 2, 495
Azahexenyl radicals
cyclizations, 4, 811
4-Azaazinones
synthesis
via Sn1 reaction, 4, 478
Azaketals
reduction, 8, 228
Azalomycin B — see Elaiophylin
1-Aza-2-oxabicyclo[2.2.1]heptane

synthesis
via nitrene cyclization, 4, 1115
7-Aza-8-oxabicyclo[4.2.1]nonanes
bridged
synthesis via nitrene cyclization, 4, 1114
1-Aza-8-oxabicyclo[3.2.1]octane

synthesis
via nitrene cyclization, 4, 1115
1-Aza-1-oxa-di-π-methane rearrangements
photoisomerizations, 5, 202
3-Aza[10]paracyclophane
synthesis
acyloin coupling reaction, 3, 629
2-Aza-1,3-pentadiene, 1-phenyl-
Diels–Alder reactions, 5, 480
2-Azapentadienyl anion
reaction with carbonyl compounds
regioselectivity, 2, 64
2-Azapropenium salts, 3-chloro-
synthesis, 6, 517
Azaprostaglandins
synthesis, 8, 944
9-Azaprostaglandins
skeleton of, synthesis
Dieckmann reaction, 2, 823
Aza-o-quinodimethane
cycloadDITION reactions, 6, 757
1-Aza-4-silacyclohexane, N-aryl-
synthesis
via aminomercuration of allylic substrate, 4, 405
Azaspirocycles
synthesis
via cyclohexadienyl complexes, 4, 679
via palladium catalysis, 4, 598
Azafulvenyl
alkenes, 4, 332
2-Azasulfides
synthesis
from alkenes, 4, 337
1-Azatrienes
electrocyclic ring closure, 5, 741
Azaelic acid
Kolbe electrolysis, 3, 640
Azepeine, dihydro-
synthesis
via intermolecular addition, 4, 48
Azepeine, N-ethoxycarbonyl-
cycloadDITION reactions
dienes, 5, 634
Azepeine, N-methoxycarbonyl-
synthesis, 7, 507
Azepeine, perhydro-
formamidines
alkylation, 3, 72
Azepeines
acylation
Azepines

via tricarbonyliron complex, 4, 707

synthesis
via cyclobutene ring expansion, 5, 687
via heteronucleophile addition, 4, 36

Azepines, 2,3-dihydro-
synthesis
via cyclobutene ring expansion, 5, 687

Azepines, N-substituted
dimerization
via [6 + 4] cycloaddition, 5, 634

Azeapinone

synthesis
pinacol rearrangement, 3, 729

Azetidine-2,4-diones

synthesis
rhodium-catalyzed carbyonlation, 3, 1037

Azetidine hydrazones

synthesis, 5, 110

Azetidines, N-alkoxy-
synthesis,

Azetidines, 2-imino-
synthesis
via ketenimines, 5, 113

Azetidinethiones

synthesis
via azetidinium salts, 5, 110

2-Azetidinethiones

synthesis
via imines and thioke tones, 5, 115

Azetidinimines

synthesis
via azetidinium salts, 5, 110

2-Azetidinimine salts

synthesis
via keteninium salts, 5, 108–113

Azetidinone, 4-acetoxy-
acid-induced reaction, 2, 1059
chiral
reaction with silyl ketene acylals, 2, 647
reaction with allylsilane, 2, 1060
reaction with enol silanes
Lewis acid mediated, 2, 635
reaction with tin(II) enol ethers
chiral synthesis, 2, 611

synthesis, 3, 651

Azetidinone, 3-acyloxy-
synthesis, 2, 1084

Azetidinone, 4-allynyl-
cyclization, 2, 1061

Azetidinone, 3-amino-
synthesis, 2, 941

Azetidinone, diaryl-
lithium enolates
aldol reactions, 2, 212

2-Azetidinone, 3-(1-hydroxyethyl)-
synthesis, 7, 647

Azetidinones

synthesis, 6, 759

2-Azetidinones

α-amidoalkylation, 1, 372

synthesis
via enolates and imines, 5, 100–102
via isocyanates, 5, 102–108
via ketenes and carbonyls, 5, 90–100

via lithium phenylethynolate cycloaddition, 5, 116

2-Azetidinones, 4-(phenylthio)-
synthesis
via Pummerer rearrangement, 7, 201

Azetidinones, vinyl-
cycloaddition reactions, 5, 257

Azetines

synthesis
via retro Diels–Alder reactions, 5, 581

Azetinones
Diels–Alder reactions, 5, 407

Azides

alkyl
amine synthesis, 6, 76
alkylation, 6, 76
azide transfer reactions, 6, 256
Beckmann reaction, 7, 696
cyclizations, 4, 1157–1159
nitrogen exchange reactions, 6, 254
nucleophilic addition to π-allylpalladium complexes, 4, 598
regioselectivity, 4, 640
oxidation, 7, 752
protecting group
amines, 6, 633
reactions with alkenes, 4, 295–297
1,3-dipolar cycloadditions, 4, 1099–1101
reduction
synthesis of secondary amines, 8, 386
reductive alkylation
synthesis of secondary amines, 8, 386
reductive cleavage
synthesis of amines, 8, 383
synthesis, 6, 245
via nitrosation of hydrazines and hydrazides, 7, 744
via oxygen exchange reactions, 6, 252
via sulfur exchange reactions, 6, 252

Azides, acyl
Curtius reaction, 6, 797
rearrangement, 3, 908
synthesis, 6, 249

Azides, alkoxy carbonyl
reactions, 7, 477

Azides, alkyl
synthesis, 6, 245

Azides, arylsulfonyl
reactions with alkenes, 7, 483

Azides, aroyl
synthesis
via aroyl chlorides, 6, 251

Azides, aroyl
reactions with organoboranes, 7, 607
synthesis, 6, 248

Azides, carbamoyl
synthesis, 6, 251

Azides, cycloalkenyl
cyclizations, 4, 1158

Azides, 1,2-dichloro
synthesis, 7, 507

Azides, diethylphosphoryl
reaction with norbornene, 7, 483

Azides, α,β-epoxyacyl
synthesis
via acid halides, 6, 249

Azides, ethoxycarbonyl
nitriles from, 7, 478
Azides, guanyl
synthesis, 6, 252

Azides, imidoyl
synthesis
via imidoyl halides, 6, 252

Azides, 2-idoalkyl
aziridine synthesis, 7, 474
reactions with organoboranes, 7, 607

Azides, phenyl
reaction with octafluorosobutene, 6, 500

Azides, phenylselenenyl
reactions with alkenes, 7, 496, 522

Azides, propargylic
synthesis, 6, 247

Azides, thioacetyl
synthesis, 6, 251

Azides, trimethylsilyl
azide synthesis, 7, 607
reactions with organoboranes, 7, 588

Azides, vinyl
synthesis
via 2-azido halides, 6, 247

Azidoalkenes
acyclic-bridged
cyclizations, 4, 1158
aryl-bridged
cyclizations, 4, 1157
cyclizations, 4, 1157
open-chain
cyclizations, 4, 1157

Azidoalkynes
cyclizations, 4, 1158

4-Azidobutryl esters
amine protection, 6, 646

Azido groups
amine protection, 6, 646

Azidomercuration
demercuration
alkenes, 4, 297

Azidoelimination
alkenes, 7, 496
cyclohexadiene, 7, 506

Azido sphingosine glycosylation method, 6, 53

Azines
Vilsmeier–Haack reaction, 2, 792

Azines, α-cyano-
synthesis, 6, 241

Aziridine, 1-acyl-
reactions with lithium aluminum hydride, 6, 98
reaction with organolithium compounds, 6, 94

1-Aziridine, 2-amino-
synthesis, 7, 877

Aziridine, 1-arylsulfonyl-
reactions with dimethylsulfoxonium methylide, 6, 97

Aziridine, dienyl-
radical opening, 5, 938
rearrangement
transition metal catalyzed, 5, 938

Aziridine, 1-(diphenylacetyl)-
synthesis, 6, 94

Aziridine, divinyl-
rearrangement, 5, 948

Aziridine, 1-ethoxycarbonyl-
reactions with lithium amides, 6, 94
thermal rearrangement, 6, 98
Aziridines

Cumulative Subject Index

Aziridines

via N-aminolactams, 7, 744
via bromine azide addition to alkene, 4, 349
via ketoximes, 1, 387
via lithiohalo methyl phenyl sulfoxides, 1, 526
via nitrones, 1, 836
thallated
ring opening, 7, 491
Aziridines, N-acyl-
synthesis, 7, 477
Aziridines, N-acylamino-
synthesis, 7, 482
Aziridines, N-alkenyl-
synthesis, 7, 474
Aziridines, N-alkyl-
synthesis, 7, 474
Aziridines, 2-amino-
synthesis, 7, 476
Aziridines, N-amino-
de decomposition, 7, 482
synthesis, 7, 480
Aziridines, N-aryl-
synthesis, 2, 429; 7, 476
Aziridines, aryloxsulfonyl-
synthesis, 7, 484
Aziridines, N-arylsulfinyl-
synthesis, 7, 483
Aziridines, 2-chloro-
synthesis, 7, 479
Aziridines, N-chloro-
synthesis, 7, 474
Aziridines, N-cyano-
synthesis, 7, 477, 479
Aziridines, 2,2-dihalo-
synthesis, 6, 498
Aziridines, N-heteroaryl-
synthesis, 7, 476
Aziridines, imidoyl-
synthesis, 7, 479
Aziridines, 5-(—)-2-methyl-
synthesis, 7, 473
Aziridines, 2-phenyl-
reaction with alkenes, 7, 498
Aziridines, 2-phenylsulfonyl-
synthesis
via aromatic imines, 1, 835
Aziridines, N-phosphonyl-
synthesis, 7, 480
Aziridines, N-phthalimido-
cleavage, 7, 482
ring opening, 7, 487, 493
Aziridines, substituted
preparation
Darzens glycidic ester condensation, 2, 428
Aziridines, N-sulfenyl-
synthesis, 7, 483
Aziridines, sulfonfyl-
synthesis, 7, 477
Aziridines, 1,2,3-triphenyl-
ozonolysis, 7, 474
Aziridines, vinyl-
photochemical rearrangements, 5, 938
rearrangements, 5, 909, 937
synthesis
reaction of allyllithium with aldimines, 2, 982
reaction of chloro(methyl)allyllithium with imines, 2, 982
Aziridinium salts
synthesis
via diazoalkanes, 1, 836
2H-Azirine
Neber reaction, 6, 786
Azirine, 2-aryl-
carbonylation
formation of isocyanates, 3, 1039
2H-Azirine, 2-phenyl-
reaction with enolates, 2, 942
Azirines
carbonylation
formation of bicyclic β-lactams, 3, 1036
cycloaddition reactions
fulvenes, 5, 630
Diels–Alder reactions, 5, 413
reaction with arynes, 4, 510
rearrangement
stereochemistry, 5, 948
synthesis, 7, 506
Azirines, aryl-
photolysis
nitrile ylides from, 4, 1081
Aziactones — see Oxazolones
Azoolanes
denitrogenation, 5, 205
Azoolkenes
Diels–Alder reactions, 5, 486
Azobenzene
reduction
synthesis of hydrobenzenes, 8, 382
Azobenzene, 4,4’-dinitro-
synthesis, 8, 370
Azobisisobutyronitrile
radical initiator, 4, 725
Azocines, 1,2-dihydro-
synthesis
via cyclobutene ring expansion, 5, 687
Azocinone
synthesis
Thorpe reactions, 2, 851
Azo compounds
acyclic
Diels–Alder reactions, 5, 428
cyclic
Diels–Alder reactions, 5, 429
Diels–Alder reactions, 5, 426
oxidation
synthesis of azoxy compounds, 7, 750
radical initiators, 4, 725
reduction
synthesis of hydrazo compounds, 8, 382
reductive cleavage
synthesis of amines, 8, 383
synthesis, 8, 364
via primary arylamines, 7, 738
Azo compounds, α-carbonyl-
synthesis
via oxidation of arylhydrazones of aldehydes, 7, 747
Azodicarboxylates
Diels–Alder reactions, 5, 486
Azodicarboxylic acids
diethyl ester
alcohol inversion, 6, 22
amino alcohol cyclization, 6, 74
Azulenone

intramolecular cycloadditions, 4, 1139–1141
Azomethinylide
synthesis, 6, 572
Azoxybenzene
reaction with dihalocarbenes, 6, 498
reduction
synthesis of hydrobenzenes, 8, 382
Azoxybenzene, 2,2'-dicyano
synthesis, 8, 365
Azoxybenzene, 3,3'-diiodo-
reduction, 8, 365
Azoxybenzene, 3-trifluoromethyl-
synthesis, 8, 364
Azoxy compounds
doxygenation, 8, 390
reduction
synthesis of hydrazo compounds, 8, 382
reductive cleavage
synthesis of amines, 8, 383
synthesis, 8, 364
via oxidation of azo compounds, 7, 750
via oxidation of primary amines, 7, 736
Azulene, dichloro-
synthesis
via dihalocyclopropyl compounds, 4, 1017
Azulene, 1,3-dimethyl-
synthesis
via [3 + 2] cycloaddition reactions, 5, 285
Azulene, hexahydro-
synthesis
via palladium-ene reaction, 5, 50
Azulene, cis-4-keto-
synthesis
via cycloaddition reactions, 5, 274
Azulene, 2-methylene-6-oxo-2,6-dihydro-
synthesis
Knoevenagel reaction, 2, 366
Azulene, perhydro-
synthesis
via carbonyl ylides, 4, 1093
via [4 + 3] cycloaddition reactions, 5, 598
Azulenes
[3 + 2] annihilations, 1, 603
synthesis, 2, 85
via σ-alkyliron complexes, 4, 579
via [3 + 2] cycloaddition reactions, 5, 285
via [6 + 4] cycloaddition reactions, 5, 626, 629
via electrolycyclization, 5, 744
via ketocarbenoid reaction with benzenes, 4, 1052
via ketocarbenoids, 4, 1055
Vilsmeier–Haack reaction, 2, 780
Azulenes, hydro-
synthesis, 3, 394
transannular ene reaction, 2, 553
via Cope rearrangement, 5, 803, 810
via cycloaddition reactions, 5, 274
via [6 + 4] cycloaddition reactions, 5, 626, 629
Azulonone, hydro-
aldol cyclization, 2, 169
synthesis
ene reaction, 2, 552
Azulonone, oxidopherhydro-
synthesis
via [4 + 3] cycloaddition, 5, 609
Bachrachotoxin
synthesis, 7, 105

Bacillus putrefaciens
reduction
unsaturated carbonyl compounds, 8, 558

Bacillus sphaericus
dehydrogenation, 7, 145
Back electron transfer
electron-transfer oxidation, 7, 852

Bactobolin
synthesis, 1, 404
via dichloromethylcerium reagent, 1, 238

Baeyer–Villiger reaction, 7, 671–686
buffers, 7, 674
catalysts, 7, 674
substrate effects, 7, 673
chemoselectivity, 7, 675
compared to Beckmann reaction, 7, 690
conformation, 7, 673
electronic factors, 7, 673
mechanism, 7, 671
peroxy acid
substrate effects, 7, 673
radical scavengers, 7, 674
reaction methods, 7, 674
regioselectivity, 7, 673, 676
side reactions, 7, 685
β-silicon atom
regiochemistry, 7, 673
stereochemistry, 7, 672
stereoelectronic requirements, 7, 672
stereic factors, 7, 673

Baiyunol
synthesis, 1, 568

Baker’s yeast
reduction
carbonyl compounds, 8, 184
unsaturated carbonyl compounds, 8, 560

Baker–Venkataraman synthesis
intramolecular acyl transfer, 2, 845

Bakkenolide
synthesis, 3, 939
Bakkenolide A
synthesis
via 2,3-sigmatropic rearrangement, 6, 854

Baldulin
synthesis, 1, 564

Baldwin’s rules
intramolecular addition
heteronucleophiles, 4, 37–41
Mannich reaction, 2, 1024, 1034
polyene cyclization, 3, 344

Balz–Schiemann reaction
fluorination, 6, 220

Bamford–Stevens reaction, 6, 776
aprotic, 6, 777; 8, 941
protic, 6, 776; 8, 943
sulfonhydrolyzedrazino decomposition, 4, 954

Barbaralene
synthesis
via [4 + 3] cycloadDITION, 5, 612

Barbaralene
synthesis
via cyclopropanation, 4, 1041

Barbier–Grignard type addition
allylic halides
carbonyl compounds, 1, 177

Barbier-type reactions
intermolecular
organosamarium compounds, 1, 256
iron(III) salt catalysts
organosamarium compounds, 1, 257
organosamarium compounds, 1, 255
ytterbium diiodide, 1, 278

Barbiturates, alkyldene-
addition reactions
with organozinc compounds, 4, 95

Barbituric acid
Knoevenagel reaction, 2, 352, 357
Barbituric acid, 5-arylidene-1,3-dimethyl-
oxidation
thiols, 7, 761

Barbituric acid, N,N-dimethyl-
allyl transfer
amine protection, 6, 641
Knoevenagel reaction, 2, 357
Michael reaction, 2, 352

Barium
reduction
ammonia, 8, 113

Barium manganate
oxidation
diols, 7, 318
primary alcohols, 7, 307

Barrelenones
photorearrangement, 5, 229

Barton reaction, 7, 9
intramolecular functionalization, 7, 41
thiohydroxamate esters
radical addition reactions, 4, 747–750
radical cyclizations, 4, 799, 824

Bastadin
synthesis, 7, 337
9-BBN (see 9-Borabicyclo[3.3.1]nonane)

Büchi rearrangement
2,3-sigmatropic rearrangement, 6, 834, 853

Beauveria sulfurescens
hydrocarbon hydroxylation, 7, 58, 59
reduction
unsaturated carbonyl compounds, 8, 558

Beckmann reaction, 7, 689–701
addition reactions, 7, 695
fragmentation, 6, 1066; 7, 698
intramolecular, 7, 697
mechanism, 7, 690
stereochemistry, 7, 690

Beckmann rearrangement, 6, 763, 773; 7, 690
alkylation, 6, 769
amidc synthesis, 6, 404

456
Benzaldehydes, 2-bromo-
dimerization, 3, 501
Benzaldehyde, 4-bromo-
synthesis
carbonylation, 3, 1021
Benzaldehyde, 4-r-butyl-
tin(IV) chloride complex
crystal structure, 1, 303
NMR, 1, 294
Benzaldehyde, 2-carboxy-
reduction
hydrogen transfer, 8, 320
Benzaldehyde, 4-chloro-
reaction with diethylzinc, 1, 216
Benzaldehyde, 2,4-dichloro-
synthesis
Vilsmeier–Haack reaction, 2, 786
Benzaldehyde, 4-dimethylamino-
dichlorodiphenyltin complex
crystal structure, 1, 305
reduction
boranes, 8, 316
Benzaldehyde, 3,5-dinitro-
synthesis
via acyl halide reduction, 8, 263
Benzaldehyde, o-fluoro-
Perkin reaction, 2, 401
Benzaldehyde, hydroxy-
electropinacolization, 3, 568
synthesis
Reimer–Tiemann reaction, 2, 771
Benzaldehyde, nitro-
Reformatsky reaction, 2, 285
Benzaldehyde, 4-nitro-
reactions with boron-stabilized carbanions
synthesis of alkenes, 1, 499
synthesis, 8, 291
via acyl halide reduction, 8, 263
Benzaldehyde, 3-phenoxy-
cyanohydrin
benzoin condensation, 1, 546
Benzaldehyde imine, N-trichlorovinyl-
Benzaldehyde, Nfl-allylbenzyl-
Benzaldehyde, Nfl-dimethyl-
Benzaldehydes
Benzaldehyde, 2-hydroxy-
synthesis, 7, 333
Benzaldehyde, 2-methoxy-
Benzaldehyde, o-amin-
benzine-protecting groups, 6, 643
Benzamide, N,N-allylbenzyl-
Wittig rearrangement, 3, 979
Benzamide, N,N-dimethyl-
reduction, 8, 249
Wolff–Kishner reaction, 1, 303
Benzamide, 2-hydroxy-
synthesis, 7, 333
Benzamide, 2-methoxy-
reduction
Benzamide
Benzamides
Benzaldehydes
Benzaldehyde, 2-bromo-
dimerization, 3, 501
Benzaldehyde, 4-bromo-
synthesis
carbonylation, 3, 1021
Benzaldehyde, 4-r-butyl-
tin(IV) chloride complex
crystal structure, 1, 303
NMR, 1, 294
Benzaldehyde, 2-carboxy-
reduction
hydrogen transfer, 8, 320
Benzaldehyde, 4-chloro-
reaction with diethylzinc, 1, 216
Benzaldehyde, 2,4-dichloro-
synthesis
Vilsmeier–Haack reaction, 2, 786
Benzaldehyde, 4-dimethylamino-
dichlorodiphenyltin complex
crystal structure, 1, 305
reduction
boranes, 8, 316
Benzaldehyde, 3,5-dinitro-
synthesis
via acyl halide reduction, 8, 263
Benzaldehyde, o-fluoro-
Perkin reaction, 2, 401
Benzaldehyde, hydroxy-
electropinacolization, 3, 568
synthesis
Reimer–Tiemann reaction, 2, 771
Benzaldehyde, nitro-
Reformatsky reaction, 2, 285
Benzaldehyde, 4-nitro-
reactions with boron-stabilized carbanions
synthesis of alkenes, 1, 499
synthesis, 8, 291
via acyl halide reduction, 8, 263
Benzaldehyde, 3-phenoxy-
cyanohydrin
benzoin condensation, 1, 546
Benzaldehyde imine, N-trichlorovinyl-
Benzaldehyde, Nfl-allylbenzyl-
Benzaldehyde, Nfl-dimethyl-
Benzaldehydes
Benzaldehyde, 2-hydroxy-
synthesis, 7, 333
Benzaldehyde, 2-methoxy-
Benzaldehyde, o-amin-
benzine-protecting groups, 6, 643
Benzamide, N,N-allylbenzyl-
Wittig rearrangement, 3, 979
Benzamide, N,N-dimethyl-
reduction, 8, 249
Wolff–Kishner reaction, 1, 303
Benzamide, 2-hydroxy-
synthesis, 7, 333
Benzamide, 2-methoxy-
reduction
Benzamide
Benzamides
Benzaldehydes
Benzaldehyde, 2-bromo-
dimerization, 3, 501
Benzaldehyde, 4-bromo-
synthesis
carbonylation, 3, 1021
Benzaldehyde, 4-r-butyl-
tin(IV) chloride complex
crystal structure, 1, 303
NMR, 1, 294
Benzaldehyde, 2-carboxy-
reduction
hydrogen transfer, 8, 320
Benzaldehyde, 4-chloro-
reaction with diethylzinc, 1, 216
Benzaldehyde, 2,4-dichloro-
synthesis
Vilsmeier–Haack reaction, 2, 786
Benzaldehyde, 4-dimethylamino-
dichlorodiphenyltin complex
crystal structure, 1, 305
reduction
boranes, 8, 316
Benzaldehyde, 3,5-dinitro-
synthesis
via acyl halide reduction, 8, 263
Benzaldehyde, o-fluoro-
Perkin reaction, 2, 401
Benzaldehyde, hydroxy-
electropinacolization, 3, 568
synthesis
Reimer–Tiemann reaction, 2, 771
Benzaldehyde, nitro-
Reformatsky reaction, 2, 285
Benzaldehyde, 4-nitro-
reactions with boron-stabilized carbanions
synthesis of alkenes, 1, 499
synthesis, 8, 291
via acyl halide reduction, 8, 263
Benzaldehyde, 3-phenoxy-
cyanohydrin
benzoin condensation, 1, 546
Benzaldehyde imine, N-trichlorovinyl-
Benzaldehyde, Nfl-allylbenzyl-
Benzaldehyde, Nfl-dimethyl-
Benzaldehydes
Benzaldehyde, 2-hydroxy-
synthesis, 7, 333
Benzaldehyde, 2-methoxy-
Benzaldehyde, o-amin-
benzine-protecting groups, 6, 643
Benzamide, N,N-allylbenzyl-
Wittig rearrangement, 3, 979
Benzamide, N,N-dimethyl-
reduction, 8, 249
Wolff–Kishner reaction, 1, 303
Benzamide, 2-hydroxy-
synthesis, 7, 333
Benzamide, 2-methoxy-
reduction
Benzamide
Benzamides
Benzannulation

Dissolving metals, 8, 507

Lithiation

Addition reactions, 1, 464

Metalation

Addition reactions, 1, 466

Benzannulation

Alkynes

Functionality, 5, 1098

Aminohexatrienes, 5, 720

Aryl versus alkyl complexes, 5, 1100

Carbone complexes, 5, 1098

(3 + 2 + 1) cycloadditions, 5, 1093

Diels–Alder reactions

Tandem, 5, 1099

Benz(a)anthracene, 7-acetoxy-hydrogenolysis, 8, 911

Benz(a)anthracene, 7,12-diacetoxy-hydrogenolysis, 8, 911

Benz(a)anthracene, 7-methoxy-hydrogenolysis, 8, 910

Benzazepines

Synthesis, 4, 446

Via cyclobutene ring expansion, 5, 687

Via S_{RN}1 reaction, 4, 479

Benzazocinone

Synthesis

Friedel–Crafts reaction, 2, 753

Benzenes

Alkylation via Pummerer rearrangement

Dimethyl sulfoxide, 7, 200

Anodic oxidation, 7, 800

Charge-transfer osmylation, 7, 864

Charge transfer transition energy

EDA complexes, 7, 870

Formylation

Dichloromethyl alkyl ethers, 2, 750

Gattermann–Koch reaction, 2, 749

Hydrogenation

Heterogeneous catalysis, 8, 436

Homogeneous catalysis, 8, 453

One nucleofuge

S_{RN}1 reactions, 4, 459

Reaction with rhenium

Metal vapor synthesis, 7, 4

Reductive silylation, 8, 517

Solvent

Radical reactions, 4, 721

Thermal osmylation, 7, 863

Two nucleofuges

S_{RN}1 reactions, 4, 459

Benzenes, alkyl-nitration, 6, 110

Oxidative degradation

Microbial, 7, 57

Synthesis via alkyl radical addition, 7, 732

Transalkylation

Friedel–Crafts reaction, 3, 327

Benzenes, allyl-addition reactions

Nitrogen and halogen, 7, 498

Synthesis

Vinyl carbonium alkylolation, 3, 242

Benzenes, o-bis(chloromethyl)-tetrahydrofuran complex

Crystal structure, 1, 16

Benzenes, bis(dialkylamino)-aromatic nucleophilic substitution, 4, 429

Benzenes, p-bis(phenylthio)-synthesis, 4, 460

Benzenes, bis(trifluoroacetoxy)iodo-Hofmann reaction, 6, 796

Oxidative rearrangement

Aliphatic amides, 6, 803

Benzenes, 1,4-bis(trimethylstannyl)-reaction with N,N,N-dimethylmethyleneiminium chloride, 2, 962

Benzenes, bromo-reaction with phenoxides, 4, 469

Reduction, 8, 907

Dissolving metals, 8, 526

Benzenes, 1-bromo-2-chloro-hydrogenolysis, 8, 911

Benzenes, 1-bromo-4-chloro-hydrogenolysis, 8, 911

Benzenes, 4-t-butoxy nitro-synthesis, 4, 437

Benzenes, chloro-hydrogenolysis, 8, 906

Synthesis via dichlorocarbene, 4, 1017

Benzenes, 5-chloro-2,4-dimethoxynitro-reduction, 8, 367

Benzenes, 1-chloro-2,4-dinitro-sulfodechlorination, 4, 443

Benzenes, m-chloroiodo-S_{RN}1 reactions, 4, 460

Benzenes, cyano-phocycloaddition reactions, 5, 652

Benzenes, dibromo-monoalkylation

With primary alkyl Grignard reagents or benzylic halides, 3, 457

Benzenes, 1,2-dibromo-S_{RN}1 reactions, 4, 460

Benzenes, 1,4-dibromo-carbonylation

Selective, 3, 1026

Benzenes, 1,2-di-t-butyl-hydrogenation

Heterogeneous catalysis, 8, 438

Isomerization

Friedel–Crafts reaction, 3, 327

Benzenes, 1,4-di-t-butyl-hydrogenation

High pressure, 8, 438

Benzenes, dichlorodialkylation

Coupling reactions with primary alkyl Grignard reagents, 3, 450

Monoalkylation

With primary alkyl Grignard reagents, 3, 457

Benzenes, m-diethynyl-polymerization, 3, 557

Benzenes, 2,6-difluoronitroso-synthesis via oxidation of 2,6-difluoroaniline, 7, 737

Benzenes, 1,3-dimethoxy-Mannich reaction, 2, 961

Use in Houben–Hoesch synthesis, 2, 748

Benzenes, 1,3-dimethyl-
Cumulative Subject Index

Benzene

alkylation with 2,5-dichloro-2,5-dimethylhexane
Friedel–Crafts reaction, 3, 318

Benzene, 1,2-dinitro-
reductive coupling, 8, 370

Benzene, 1,3-dinitro-
coupling, 8, 369

Benzene, 1,4-dinitro-
reduction, 8, 366
reductive coupling, 8, 370

Benzene, ethyl-
hydroperoxide
propylene oxide synthesis, 7, 375
microbial hydroxylation, 7, 76
synthesis
Friedel–Crafts reaction, 3, 304

Benzene, ethylenedioxy-
Birch reduction
dissolving metals, 8, 514

Benzene, halo-
nitration, 6, 111

Benzene, hexacyano-
synthesis
via 2,4,6-trifluorotricyanobenzene, 6, 232

Benzene, hexaethyl-
synthesis
Friedel–Crafts reaction, 3, 301

Benzene, hexamethyl-
EDA complex
with maleic anhydride, 7, 856

Benzene, 2-hydroxy-3-methoxy-1-(methylsulfanyl)acetyl-
Pummerer rearrangement
intramolecular participation by hydroxy groups, 7, 202

Benzene, hydroxy(tosyl oxy)iodo-
Hofmann rearrangement, 6, 805
oxidative rearrangement, 7, 833
α-tosyloxy ketone synthesis, 7, 155

Benzene, iodode-
reaction with nonanal
chromium(II) chloride catalysis, 1, 193

Benzene, 2-iodonitro-
Ullmann reaction, 3, 499

Benzene, iodosyl-
alkane oxidation, 7, 11
diacetate
α-hydroxylation, 7, 179
oxidative decarboxylation, 7, 722
reaction with carboxylic acids and iodine, 7, 723
diazidation, 7, 488
Hofmann rearrangement, 6, 806
α-hydroxylation
erones, 7, 179
ketones, 7, 155
reaction with silyl enol ethers, 7, 166

Benzene, isopropyl-
synthesis
Friedel–Crafts reaction, 3, 304

Benzene, o-mercaptanitro-
in peptide synthesis, 3, 302

Benzene, 1,2-methylenedioxy-
oxidative trimerization, 3, 669

Benzene, nitro-
amination, 4, 436
reaction with lithium phenolate, 7, 334
reaction with organometallic reagents, 7, 331

Benzene, nitroso-
Diels–Alder reactions
with 1,2-dihydropyridine, 5, 418

Benzene, pentafluoro-
hydrogenolysis, 8, 904

Benzene, pentafluorobromo-
reduction, 8, 907

Benzene, pentamethyl-
radical cation
side chain methylation, 7, 871
thalation, 7, 872

Benzene, n-pentyl-
synthesis, 3, 415

Benzene, polyalkyl-
transalkylation
Friedel–Crafts reaction, 3, 327

Benzene, 2-propenyl-
rearrangement, 7, 828

Benzene, n-propyl-
synthesis, 3, 415

Benzene, 1,2,4,5-tetrahydro-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1146

Benzene, 1,3,5-trialkyl-
radically crowded
electron-transfer oxidation, 7, 869

Benzene, 1,3,5-tri- monoalkylation
with primary alkyl Grignard reagents or
benzylzinc halides, 3, 457

Benzene, 1,2,3,4-tetraphenyl-5,6-diethyl-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1146

Benzene, 1,3,5-tri-r-butyl-
hydrogenation
heterogeneous catalysis, 8, 438
via [2 + 2 + 2] cycloaddition, 5, 1148

Benzene, trifloro-
dialklylation
coupling reactions with primary alkyl Grignard
reagents, 3, 450
monoalkylation
with primary alkyl Grignard reagents, 3, 457

Benzene, trifluoromethyl-
photocycloaddition reactions, 5, 652

Benzene, 3-trifluoromethyl nitro-
reduction, 8, 364

Benzene, 1,3,5-triformal-
synthesis
Vilsmeier–Haack reaction, 2, 786

Benzene, trisopropyl-
formylation
Gattermann–Koch reaction, 2, 749

Benzene, 1,2,3-trimethoxy-
hydrogenolysis, 8, 910

Benzene, 1,3,5-trimethoxy-
Mannich reaction, 2, 961

Benzene, 1,2,4-trimethyl-
reaction with isoprene
Friedel–Crafts reaction, 3, 322
Benzene, 1-(trimethylsilyl)-2-methoxy-3-(2-hexenyl)metal complexes
reactions, 4, 539
Benzene, 1,2,4-trinitro-coupling, 8, 370
Benzene, 1,3,5-trinitro-coupling, 8, 369
Benzene, 1,2,4-triphenyl-synthesis
via [2 + 2 + 2] cycloaddition, 5, 1148
Benzene, 1,3,5-triphenyl-synthesis
via [2 + 2 + 2] cycloaddition, 5, 1148
Benzene, tria(dialkylamino)-
aromatic nucleophilic substitution, 4, 429
Benzenecarboxylic acid, α-methyl-4-(2-thienylcarbonyl)-synthesis
hydroformylation, 4, 932
Benzenediacyclic acids
synthesis
Perkin reaction, 2, 399
Benzenediazonium-2-carboxylates
dyne precursors, 4, 487
Benzenediazonium fluoroborate, 4-methoxy-reduction, 8, 917
Benzenedi chloride, iodo-
acyl halide synthesis
via aldehydes, 6, 308
Benzenediimide
synthesis
via reduction of benzenediazonium cation, 8, 383
Benzenes-1,2-diselenol
synthesis, 6, 464
Benzenes
[4 + 3] cycloaddition reactions, 5, 608
derivatives
synthesis via retro Diels–Alder reaction, 5, 571–573
Diels–Alder reactions
benzenes, 5, 383
irradiation
fulvene generation, 5, 646
photocycloaddition reactions
dienes, 5, 636
furans, 5, 637
vinyl acetates, 5, 667
reactions with ketocarbonoids, 4, 1052–1058
synthesis
via cyclotrimerization of alkynes, 5, 1144–1151
Benzeneselenamide
synthesis, 6, 476
Benzeneselenamide, N,N-diethyl-
use in selenenylation, 7, 131
Benzeneselenenyl bromide
reaction with lithium enolates, 7, 129
selenenylation, 7, 131
Benzeneselenenyl chloride
addition reactions
alkenes, 7, 520
allylic alcohols, 7, 520
chlorocyclohexene, 7, 520
reaction with alkynes, 7, 534
reaction with lithium enolates, 7, 129
selenenylation, 7, 131
Benzeneselenenyl iodide
reaction with dienes, 7, 505
Benzeneselenenyl trichloride
selenenylation, 7, 135
Benzeneselenenic acid
oxidation, 7, 674
reaction with N-acetylhydrazines, 6, 467
selenenylation, 7, 132
Benzeneselenenic anhydride
α-hydroxylation
enones, 7, 175
ketones, 7, 158
oxidation, 7, 132
quinone synthesis, 7, 355
Benzeneselenenyli chloride
dehydrogenation, 7, 135
Benzeneselenenocarboxamide
deoxygentation
epoxides, 8, 887
Benzenesulfinamidem, 2,4-dinitro-
oxidation
synthesis of aziridines, 7, 744
Benzenesulfonyl chloride
carbocyclization
1,4-dienes, 7, 517
reactions with alkenes, 7, 516
reactions with dienes, 7, 516
reaction with 3,4,6-tri-O-benzyl-D-glucal, 6, 60
Benzenesulfonyl chloride, 2,4-dinitro-
reactions with alkenes, 7, 516
Benzenesulfinic acid, 2-amino-
aryl precursors, 4, 488
Benzenesulfinic acid, trimethyl-2,4,6-trinitro-
alkylation by, 3, 16
Benzenesulfonyl azide, ρ-carboxydiazotransfer reaction, 4, 1033
Benzenesulfonyl azide, n-dodecyl-
diazotransfer reaction, 4, 1033
Benzenesulfonyl chloride
acid chloride synthesis, 6, 304
Beckmann rearrangement, 6, 764; 7, 699
Benzenesulfonyl hydrazide
decomposition
diimide from, 8, 472
Benzenesulfonylhydrazide, 2,4,6-trisopropyl-
Bamford–Stevens reaction, 6, 778
Benzenetellurinyl acetate
reactions with alkenes, 7, 497
Benzenetellurinyl acetate
synthesis, 7, 774; 8, 370
Benzenethiol
reactions with nitriles, 6, 511
Benzenethiolate
Michael addition
4-t-butyl-1-cyanocyclohexene, 6, 140
reaction with carvone, 6, 141
Benzenetrifluoroacetate
synthesis, 7, 657
Benzenes-2,4,6-tricarbaldehyde
synthesis, 7, 678
Vilsmeier–Haack reaction, 2, 785
Benzenium ion, γ-butyl-
stoability, 3, 301
Benzenoid hydrocarbons
Birch reduction
dissolving metals, 8, 493
Benzenesulfonyl azide, ρ-acetamido-
diazotransfer reaction, 4, 1033
Cumulative Subject Index

Benzhydrol
synthesis
via benzophenone and ytterbium, 1, 279

Benzhydrylamine, 4,4'-dimethoxy-
reactions with π-allylpalladium complexes, 4, 598
stereochemistry, 4, 623

Benzil
aldol reaction with aliphatic ketones, 2, 142
hydrogenation
cobalt catalysts, 8, 154
Knoevenagel reaction, 2, 367
monooxime
hydrogenation, 8, 148, 149
photolysis
with 1-t-butylthio-1-propyne, 5, 163
reaction with organometallic reagents, 1, 153
rearrangements, 3, 821–836
nonhydroxylic solvents, 3, 824
reaction conditions, 3, 825
reduction
metal ions, 8, 116
synthesis
via oxidative rearrangement, 7, 829

Benzil, decafluoro-
rearrangement, 3, 825

Benzilic acid
esters
rearrangements, 3, 823
pharmacological activity, 3, 826
rearrangements, 3, 821–836
chemistry, 3, 825
labeling studies, 3, 822
mechanism, 3, 822, 824
migratory aptitudes, 3, 822
reaction conditions, 3, 825
Ritter reaction
with benzonitrile, 6, 276
synthesis
reaction conditions, 3, 825

Benzoimidazates, 2-alloxy-
methylated
epoxidation, 1, 829

Benzoimidazole, 1-methyl-
quinuamary salts
benzoin condensation, catalysis, 1, 543

Benzoimidazole, 2-methylthio-
reaction with Grignard reagents, 3, 461

Benzoimidazole, 1-(phenylthiomethyl)-
lithiation, 1, 471

Benzoimidazoles
microbial hydroxylation, 7, 79
reaction with chloroform, 6, 579
reduction, 8, 638

Benzoimidazoline
reduction
hydride transfer, 8, 291

Benzoimidazolin-2-one
reaction with crotonic acid, 3, 306

Benzoimidazolium salts
synthesis
via carboxylic acids, 8, 277

Benzen-1-ol, 2-nitro-
synthesis
Henry reaction, 2, 329

Benzo[fl]indole, tetrahydro-
synthesis

Benzisoxazoles
reductive cleavage, 8, 649
reduction, 8, 649
synthesis, 4, 439; 8, 649
via oxidation of primary aromatic amines, 7, 739

2,1-Benzisoxazoles, 3-amino-
synthesis, 4, 436

1,2-Benzisoxazoles, 3-phenyl-
synthesis, 4, 439

5-Benzisoxazolylmethoxy carbonyl group
amine-protecting group
cleavage, 6, 639

Benzoates
alcohol protection
carbohydrates, 6, 657
reduction
stannanes, 8, 824
to 1,4-dihydrobenzoates, 3, 613
Benzoates, α-keto-
reduction
stannanes, 8, 824

Benzoazepinethione
synthesis
Friedel–Crafts reaction, 2, 765

Benzoazepine
synthesis
Friedel–Crafts reaction, 2, 765
palladium-catalyzed carbonylation, 3, 1038

Benzobarrelene
photoisomerization, 5, 198
substituted
photoisomerizations, 5, 210

Benzobarrelene, tetrachloro-
synthesis
via Diels–Alder reaction, 5, 383

Benzobarrelenone
photorearrangement, 5, 229

Benzobicyclo[3.2.1]octanone, bromo-
Favorskii rearrangement, 3, 853

Benzocarbazoles
lithiation
addition reactions, 1, 463
synthesis
via thermolysis, 5, 725

Benzo[c]cinnoline dioxide
synthesis, 8, 364

Benzocyclobutanes
synthesis, 3, 161
Parham-type cyclization, 3, 251

Benzocyclobutanol
synthesis, 3, 265

Benzocyclobutanols, 1-vinyl-
1,3-rearrangements, 5, 1022

Benzocyclobutene
electrocyclization, 5, 721
synthesis
via arynes, 4, 500
via thermolysis of benzothiophene dioxides, 5, 693

Benzocyclobutene, 1-acetoxy-1-methyl-
thermolysis, 5, 681

Benzocyclobutene, trans-1-acetoxy-2-phenyl-
ring opening, 5, 682
synthesis
via thermolysis of benzothiophene dioxides, 5, 693

Benzocyclobutene, 1-acetyl-
Benzocyclobutene

Cumulative Subject Index

isomerization, 5, 681
Benzocyclobutene, trans-1-alkoxy-2-phenyl-
ring opening, 5, 682
Benzocyclobutene, 1,2-dimethoxy-
ring opening, 5, 683
Benzocyclobutene, diphenyl-
one-electron transfer, 5, 77
Benzocyclobutene, 7,8-diphenyl-
Diels–Alder reactions, 5, 391
Benzocyclobutene, [(methoxycarbonyl)amino]-
cycloaddition reactions
fulvenes, 5, 627
Benzocyclobutene, 1-methoxy-1-phenyl-
ring opening
anthracene synthesis, 5, 694
Benzocyclobutene, trans-1-methoxy-2-phenyl-
ring opening, 5, 682
Benzocyclobutene, 3-methyl
synthesis
via benzyne, 5, 692
Benzocyclobutene, 6-methyl-
synthesis
via benzyne, 5, 692
Benzocyclobutene, 7-methyl-
Diels–Alder reactions, 5, 391
Benzocyclobutene, 1-phenyl-
ring opening, 5, 682
Benzocyclobutene, 1-vinyl-
-isomerization, 5, 680
Benzocyclobutene carboxylic acid
esters
synthesis via benzyne cyclization, 5, 692
Benzocyclobutene-1,2-dione, 3-hydroxy-5-methyl-
synthesis
cycloaddition, 5, 693
Benzocyclobutenediones
cycloaddition reactions
metal catalyzed, 5, 1202
Diels–Alder reactions, 5, 395
Benzocyclobutenone-1,2-diones
anthraquinones from, 5, 690
Benzocyclobutenes
cycloaddition reactions
fulvenes, 5, 627
electrocyclic ring opening, 5, 1032, 1151
α-quinodimethane precursors, 5, 691–694
Diels–Alder reactions, 5, 386
synthesis, 5, 692
via [2 + 2 + 2] cycloadditions, 5, 1148, 1149
thermolysis, 5, 1031
Benzocyclobutenen-7-ol, 7-phenyl-
Diels–Alder reactions, 5, 388
Benzocyclobutenols
synthesis
via benzyne, 5, 692
via intramolecular cyclization, 5, 692
Benzocyclobutenols, 1-alkyl-1-cyano-
ring opening
morphism synthesis, 5, 694
Benzocyclobutenols, trans-2-aryl-
synthesis
via benzyne cyclization, 5, 692
Benzocyclobutenen-1-one, 3,6-dimethoxy-
synthesis
via benzyne, 5, 692
Benzocyclobutenones
α-quinodimethane precursors
Diels–Alder reactions, 5, 388
synthesis
via benzyne, 5, 692
Benzocyclobutenyl carbamate
Diels–Alder reactions, 5, 390
Benzocycloheptenone
reduction
stereoselectivity, 8, 6
Benzocyclohexenes
synthesis
via [2 + 2 + 2] cycloadditions, 5, 1149
Benzocyclooctadienes
synthesis
via intramolecular ene reactions, 5, 20
Benzocyclooctatetraene
tricarbonyliron complexes
reaction with tetracyanoethylene, 4, 710
Benzocyclooctenone
synthesis
Friedel–Crafts reaction, 2, 753
Benzocyclopentenes
synthesis
via [2 + 2 + 2] cycloadditions, 5, 1149
Benzocyclopentene
synthesis
cycloaddition reactions
metal catalyzed, 5, 1199
via dihalocyclopropyl compounds, 4, 1015
Benzo-diazepine
synthesis
via nitrile imine cyclization, 4, 1151
1H-1,5-Benzodiazepine, 4-formyl-2,2-dimethyl-
-oxidative cleavage
potassium permanganate, 7, 559
1,3,2-Benzodioxaborole
hydroboration, 8, 719
1,3,2-Benzodioxaphosphole, 2,2,2-trifluoro-
acid halide synthesis, 6, 302
1,3,2-Benzodioxaphosphole, 2,2,2-trichloro-
acid chloride synthesis, 6, 307
acid halide synthesis, 6, 302
Benzodipyrrrole
reduction
borohydrides, 8, 618
Benzo-dithiolenes
reduction, 8, 659
Benzo-1,3-dithiolene-2-thiones
reduction
DIBAL, 8, 661
Benzo(j)fluoranthene, 8-methyl-
synthesis
Friedel–Crafts cycloalkylation, 3, 325
Benzo-fluorene
synthesis
via thermolysis, 5, 721
Benzo-fluorenone
hydrogenation
palladium catalyst, 8, 319
synthesis
Friedel–Crafts reaction, 2, 757
Benzo-furan, 2-alkylsulfonfonyl-
synthesis
Knoevenagel reaction, 2, 363
Benzo-fluran, benzoyl-
synthesis
Benzo[b]furans
- electrochemical reduction, 8, 628
- reduction, 8, 624
- 2-substituted derivatives
 - Vilsmeier–Haack reaction, 2, 780
 - synthesis
 - via intramolecular organochromium reaction, 1, 188
Benzo[c]furans
- reduction, 8, 626
Benzo[1]furans
- synthesis
 - via oxidation of primary aromatic amines, 7, 739
Benzoic acid
- methyl ester
 - acylation of boron-stabilized carbanions, 2, 244
- thallation, 4, 841
Benzoic acid, alkyl-
- synthesis
 - via benzyne, 4, 510
- Birch reduction
dissolving metals, 8, 500
Benzoic acid, aryl-
- Birch reduction
dissolving metals, 8, 500
Benzoic acid, 2-t-butyl-
- hydrogenation
heterogeneous catalysis, 8, 438
Benzoic acid, 4-(4'-chlorobutyl)-
- intramolecular reductive alkylation
dissolving metals, 8, 505
Benzoic acid, p-cyano-
- methyl ester
 - photolysis with diphenylacetylene, 5, 163
Benzoic acid, 2,5-diethylbenzoyle-
Friedel–Crafts reaction, 2, 761
Benzoic acid, dihydro-
- dianions
 - conjugate addition reactions, 4, 111
 - synthesis
 - via reductive alkylation, 8, 500
Benzoic acid, 2,5-dihydroxy-4-methoxy-
- synthesis, 7, 340
Benzoic acid, 2,4-dihydroxy-6-methyl-
- methyl ester
 - synthesis, 2, 821
Benzoic acid, 4,6-dimethoxy-2-(4′-methoxybenzyl)-
Friedel–Crafts reaction, 2, 761
Benzoic acid, 2,4-dimethoxy-6-(2′-naphthyl)-
Friedel–Crafts reaction, 2, 757
Benzoic acid, 4-fluoro-
- hydrogenolysis, 8, 903
Benzoic acid, hydroxy-
- alklylation, 6, 2
Benzoic acid, 4-isopropyl-
- Birch reduction
dissolving metals, 8, 500
Benzoic acid, mercapto-
- synthesis, 4, 444
Benzoic acid, 2-methoxy-
- Birch reduction
dissolving metals, 8, 502
Benzoic acid, 3-methoxy-
- Birch reduction
dissolving metals, 8, 501
Benzoic acid, p-nitro-
Benzoic acid

Cumulative Subject Index

- ethyl ester
 - Claisen condensation, 2, 798
- Benzoic acid, pentafluoro-
 - hydrogenolysis, 8, 901
- Benzoic acid, 2-phenyl-
 - Birch reduction
 - dissolving metals, 8, 504
- Benzoic acid, poly(alkylthio)-
 - synthesis, 4, 441
- Benzoic acid, poly(methylthio)-
 - synthesis, 4, 441
- Benzoic acid, 2,3,4,5-tetrafluoro-
 - synthesis
 - via carbonation of bis(pentafluorophenyl)ytterbium, 1, 277
- Benzoic acid, tetrahydro-
 - synthesis
 - via Birch reduction, 8, 500
- Benzoic acid, 2,4,6-trisopropyl-
 - alkyl esters
 - metallation, 3, 194
- Benzoic acid anhydride
 - synthesis
 - via 4-benzylpyridine, 6, 310
- Benzoic esters, dihydro-
 - reactions with iron carbonyls, 4, 666
- Benzoin
 - oxidation
 - solid support, 7, 846
 - oxime
 - hydrogenation, 8, 148
- Benzoin, deoxy-
 - reaction with α-selenoalkyllithium, 1, 675
- Benzoin, 2,4-dihydroxydeoxy-
 - Vilsmeyer-Haack reaction, 2, 790
- Benzoin, threeo-hydro-
 - synthesis, 7, 441
- Benzoin condensation, 1, 541–579
 - catalysts, 1, 543
 - electrophiles, 1, 544
- Benzomorphans
 - asymmetric synthesis
 - hydrogenation, 8, 461
- Benzomorpholines
 - synthesis, 8, 654
- Benzonitrile
 - acylation
 - synthesis of acetophenone, 1, 498
 - photochemical cycloadditions
 - alkenes, 5, 161
 - 4-alkoxy-
 - synthesis, 4, 438
 - Benzonitrile, 4-chloro-
 - electrochemically induced S_{N1} reactions, 4, 469
 - reaction with phenoxides, 4, 469
 - Benzonitrile, 4-methyl-
 - hydrogenation, 8, 252
- Benzonitrile, 4-nitro-
 - oxime
 - 1,3-dipolar cycloadditions, 4, 1072
 - synthesis
 - via oxidation of 4-aminobenzonitrile, 7, 737
- Benzonitrile oxide
 - cycloaddition reactions
 - fulvenes, 5, 630
 - tropones, 5, 626
 - reaction with (α-oxallyl)silane, 5, 262
- Benzonitrile oxide, 4-nitro-
 - reaction with 3,4,4-trimethyl-1-pentene, 5, 262
- Benzonitrilehydroxfluoro-2-propanide
 - reaction with methyl acrylate, 4, 1081
- Benzonitril-2-propanide
 - reaction with methyl acrylate, 4, 1081
- Benzonorbormadiene, 1,2-bis(trimethylsilyl)-
 - photoisomerization, 5, 204
- Benzonorbormadiene, 1,2-dimethyl-
 - photoisomerization, 5, 204
- Benzonorbormadiene, 6-methoxy-
 - bridgehead-substituted
 - photoisomerization, 5, 204
- Benzonorbormadiene, 1-methoxy-4-substituted
 - photoisomerization, 5, 203
- Benzonorbormadiene oxide
 - reduction
 - lithium triethylborohydride, 8, 875
- Benzonorbormadienes
 - deuteriated
 - photoisomerization, 5, 204
 - photoisomerization, 5, 197, 203, 205
 - stoichiometric complexes
 - with β-cyclodextrin, 5, 210
 - substituted
 - photoisomerizations, 5, 210
- 9-Benzonornorbornenes
 - reduction
 - stereoselectivity, 8, 5
- Benzonorcaradiene
 - synthesis
 - via photoisomerization, 5, 212
- Benzo[c]phenanthrenes
 - synthesis
 - via electrocyclization, 5, 720
- Benzo[c]phenanthridine
 - synthesis
 - via arynes, 4, 505
 - via S_{N1} reaction, 4, 479
- Benzo[c]phenanthridones
 - synthesis
 - via S_{N1} reaction, 4, 479
- Benzo[k]phenanthridones
 - synthesis
 - via photolysis, 5, 728
- Benzophenone
 - anil
 - reactions with Grignard reagents, 1, 383
 - complex with trimethylaluminum, 1, 78
 - electroreduction
 - chromium chloride, 8, 133
 - hydrazine
 - reduction, Cram modification, 8, 335
 - reduction, Henbest modification, 8, 336
 - ketone dianion
 - reactions with esters and amides, 1, 280
 - oxime
 - Beckmann rearrangement, 7, 692
 - oxime, O-acyl
 - carboxyl radicals from, 7, 719
 - photolysis, 7, 720
 - photolysis
 - with 2-methylbut-1-en-3-yne, 5, 164
 - with cis-1,4-polyisoprene, 5, 161
 - reactions with boron stabilized carbanions, 1, 498
Cumulative Subject Index

reactions with dialkoxyborvl stabilized carbanions, 1, 501
reactions with diethylzinc, 1, 216
reactions with trimethylaluminum role of Lewis acid, 1, 325
reaction with 2-buten oxide formation, 5, 152
reduction
boranes, 8, 316
dissolving metals, 8, 115, 308
ionic hydrogenation, 8, 319
Wolff-Kishner reduction, 8, 338
steroid esters
photolyses, 7, 43
synthesis
carbonylation of phenyllithium, 3, 1017
Benzoephonone, 2-bromo-reduction
hydrogen iodide, 8, 323
Benzoephene, 4-bromo-reaction with phenoxides, 4, 469
Benzoephene, dillithio-
crystal structure, 1, 25
Benzoephene, 4,4'-dimethoxy-reduction
ionic hydrogenation, 8, 319
Benzoephene, 4-phenyl-
photolysis, 5, 154
Benzoephene, 2,3,4'-trihydroxy-
oxidative coupling
mechanism, 3, 661
Benzoephene-4-carboxylic
acid
dodecyl ester
photoinsertion, 7, 42
Benzpinacol
oxidative cleavage, 7, 707
2-Benzopyran-3-one
cycloaddition reactions
tropones, 5, 618
Benzopyrans, dihydro-
synthesis
via benzo cyclobutenes, 5, 691
Benzopyrazine
electrochemical reduction, 8, 643
Benz[de]pyrene
dihydridol
synthesis, 7, 333
Benz[e]pyrene, 11,12-dihydro-
functionalization
with N-bromoadetamide, 4, 356
Benzopyrrolidazine, dimethyl-
synthesis, 2, 1039
Benzopyrryllium salts
synthesis
Vilsmeier–Haack reaction, 2, 790
1,4-Benzoquinone, 2-alkyl-
synthesis, 7, 930
1,4-Benzoquinone, 2-alkyl-3-(2-pyridyliothio)-
synthesis, 7, 930
1,4-Benzoquinone, 5,6-dichloro-2,3-dicyano-
ether group removal
alcohol protection, 6, 652
Benzooquinone, 2,3-dichloro-2,6-dicyano-
phenolic coupling, 3, 661
Benzooquinone, 2,3-dichloro-5,6-dicyano-
debenzylation
benzyl ethers, 7, 244
dehydrogenation, 7, 135
1,4-Benzoquinone, 2,6-dihydroxy-
benzilic rearrangement, 3, 829
1,4-Benzoquinone, hydroxy-
rearrangements, 3, 828
Benzooquinone, 2,3,5,6-tetracyano-
hydride transfer
with dihydroacridine, 8, 93
Benzooquinones
laser photolysis
with tetramethylallene, 5, 154
reoxidant
Wacker process, 7, 451
synthesis
via cyclobutene ring opening, 5, 690
via metal-catalyzed cycloaddition, 5, 1202
1,4-Benzooquinones
Diels-Alder reactions, 5, 342, 451
Lewis acid promoted, 5, 339
hydrogenation, 8, 152
catalytic, 8, 142
synthesis
via metal-catalyzed cycloaddition, 5, 1200
1H-2-Benzooelenin, 6,8-di-t-butyl-3,4-
dihydro-4,4-dimethyl-
synthesis, 6, 475
5H-[1]Benzooelenin[2,3-b]pyridine
synthesis, 6, 472
Benzoelenophene
alkylation, 2, 817
metallation, 1, 644
Benzoelenophene, 2-lithio-
synthesis, 1, 668
Benzosuberone
synthesis
Friedel–Crafts reaction, 2, 763
Benzosuberones
synthesis
Friedel–Crafts reaction, 2, 755
Benzo systems
photoisomerization, 5, 197
1,2,3,4-Benzotetrazine
synthesis, 7, 743
Benzothiadiazoles
synthesis
via diazotization of aromatic amines, 7, 740
4H-1,4-Benzothiazine, 2,3-dihydro-N-acyl-
aldol reaction
stereoselectivity, 2, 211
1,4-Benzothiazines
reduction, 8, 658
1,3-Benzothiazin4-one
reduction
LAH, 8, 658
Benzo thiazole, 2-alkyl-
metallated
reactions, 2, 495
reactions with carbonyl compounds, 2, 496
synthesis, 6, 490
Benzo thiazole, 2-allyloxy-
reaction with Grignard reagents, 3, 246
Benzo thiazole, 2-chloro-
coupling reactions
with Grignard reagents, 3, 461
Benzo thiazole, 2-hydroxy-
1,3-Benzothiazole

reaction with copper alkynides, 3, 283
1,3-Benzothiazole, 2-methyl-
synthesis
via S$_{N}$1 reaction, 4, 477
Benzenothiazole, 2-methylthio-
coupling reactions
with Grignard reagents, 3, 461
Benzenothiazole, vinyl-
in synthesis
masked carbonyl derivative, 2, 497
Benzenothiazole, 2-vinyl-
addition reactions
with organolithium compounds, 4, 76
Benzenothiazoles
aromatic nucleophilic substitution, 4, 432
metallated
reactions, 2, 495
metallation, 6, 541
reduction, 8, 657
tandem vicinal difunctionalization, 4, 252
Benzenothiazoline, 2-phenyl-
reduction
unsaturated carbonyl compounds, 8, 563
Benzenothiazolium iodide
reaction with amines, 6, 84
Benzenothiazolium salts
catalysts
benzoic condensation, 1, 543
enolization (attempted), 2, 865
reduction, 8, 657
Benzenothiazolium salts, 2-alkoxy-
alcohol inversion, 6, 22
Benzenothiazolium salts, 2-(alkoxy-
fluorination with alcohols
iodination, 6, 214
Benzenothiazolium salts, 2-halo-
carboethioate synthesis, 6, 438
Benzenothiazolone, 2-lithio-
reduction with bis(trimethylsilyl) peroxide, 7, 330
Benzenothiazolones
synthesis, 4, 444
Benzenothiepinones
synthesis
Friedel–Crafts reaction, 2, 765
Benzo[c]thiophene, 1,3-dihydro-
2,2-dioxide
synthesis via ketocarbenoids, 4, 1057
Benzenothiophene, hydroxy-
synthesis
via FVP, 5, 732
Benzenothiophene, 2-methyl-
ionic hydrogenation, 8, 630
Benzenothiophene, 3-methyl-
ionic hydrogenation, 8, 630
Benzo[φ]thiophene, 4-phenyl-
synthesis
via photocyclization–oxidation, 5, 720
Benzo[φ]thiophene, 7-phenyl-
synthesis
via photocyclization–oxidation, 5, 720
Benzenothiophene 2,2-dioxides, 2,5-dihydro-
thermolysis
benzocyclobutene synthesis, 5, 693
Benzenothiophenes
coupling reactions
with primary alkyl Grignard reagents, 3, 447
methylation, 3, 456
reduction, 8, 629
synthesis, 7, 628
via sequential Michael ring closure, 4, 262
via S$_{N}$1 reaction, 4, 479
Benzo[ω]triphenazine
synthesis
via oxidation of amino-3-phenylindazoles, 7, 743
Benzo[ω]triphenazineones
synthesis
via diazotization of aromatic amines, 7, 740
Benzo[ω]triphenazolone, 1-amino-
aryne precursor, 4, 488
benzene from, 7, 482
nitration, 7, 745
oxidation
to 1,2-didehydrobenzene, 7, 743
Benzo[ω]triphenazolone, 2-amino-
oxidation, 7, 743
Benzo[ω]triphenazolone, 1-benzoyloxy-
selective benzylation, 6, 337
Benzo[ω]triphenazolone, 1-chloro-
oxidation
sulfoxides, 7, 767
Benzo[ω]triphenazolone, hydroxy-
esters
amidation, 6, 394
Benzo[ω]triphenazoles
pyridinium chlorochromate
allylic alcohol oxidation, 7, 264
reduction, 8, 661
synthesis
via diazotization of aromatic amines, 7, 740
via oxidation of primary aromatic amines, 7, 739
Benzo[ω]triphenazolide, chlorophosphoryl
phosphorylation, 6, 620
Benzo[ω]triphenazolide, phosphorobis(nitro)-
phosphorylating agent, 6, 619
Benzo[ω]triphenazolide, phosphorobis(hydroxy)-
phosphorylating agent, 6, 619
Benzo[ω]triphenazolone
N-substituted
rearrangement, with lithium alkynides, 3, 282
Benzo[c]triphenyl[3.1.0]hex-3-ene
photoisomerization, 5, 212
Benzo[c]triphenylene
rearrangements, 3, 818
Benzo[c]triazepinones
reduction
Friedel–Crafts reaction, 2, 144
1,2,5-Benzo[c]oxazoles
oxidation, 8, 644
1,3-Benzoxathian-4-one
synthesis
via intramolecular Pummerer rearrangement, 7, 196
1,3-Benzoxathiolum salts, 2-substituted
Friedel–Crafts reaction, 2, 737
1,3-Benzoxathiolum triazaborates
2-substituted
synthesis, 8, 277
Benzo[c]triazepinones
reduction
enolate generation, 3, 51
synthesis
Mannich reaction, 2, 956
Benzo[c]triazines
Mannich reaction
with phenols, 2, 969
synthesis
Mannich reaction, 2, 968
1,4-Benzoxazines
reduction, 8, 653
1,3-Benzoxazines, 2-aryl-
ring–chain tautomerism, 2, 969
1,4-Benzoxazin-3-one, N-alkyldihydro-
reduction
LAH, 8, 654
Benz oxazole
Friedel–Crafts reaction, 2, 743
reduction, 8, 650
synthesis
via Beckmann reaction, 7, 698
Benz oxazole, 2-allenyl-
synthesis, 2, 86
Benz oxazole, 2-(1,1-dimethylpropargyl)-
synthesis, 2, 87
Benz oxazole, 2-(1-methylpropargyl)-
synthesis, 2, 86
Benz oxazole, 2-phenacyl-
synthesis, 6, 534
Benz oxazolium salts, chloro-
chlorination
alkyl alcohols, 6, 206
Benz oxepines
synthesis
via SN1 reaction, 4, 479
1(2H)-Benzoxocin, 2,6-epoxy-
synthesis
via Wharton reaction, 8, 928
Benzoyl r-butyl nitroxide
quinones
synthesis, 7, 349
Benzoyl chloride
synthesis
via benzaldehyde, 6, 308
Benzoyl chloride, 2-fluoro-
Friedel–Crafts reaction
toluene, 2, 736
Benzoyl chloride, 4-nitro-
reduction
metal hydrides, 8, 290
Benzoyl chloride, 2,4,6-trichloro-
mixed anhydride synthesis, 6, 329
Benzoyl cyanide
synthesis
via benzoyl chloride, 6, 233
Benzoyl hypobromite, m-chloro-
synthesis, 7, 535
Benzoylium ion
NMR data
study of stability, 2, 734
Benzoyl peroxide
α-hydroxylation
esters, 7, 182
ketones, 7, 163
reaction with enamines
generation of α-benzyloxy ketones, 7, 171
triphenyphosphine compound
reaction with alcohols, 6, 22
N-Benzoylphenylalaninyl group
removal
chymotrypsin, 6, 643
Benzoylpropionates
alcohol protection
cleavage, 6, 658
Benzoyl sannate
photolysis
radical addition reactions, 4, 749
Benzipinacol
synthesis
via triphenylchromium complex, 1, 176
Benzipinacolone
label redistribution
pinacol rearrangement, mechanism of, 3, 723
Benzy lacetone
reduction
transfer hydrogenation, 8, 555
Benzy alcohol, 4-methoxy-
Birch reduction
dissolving metals, 8, 514
Benzy alcohol esters
electrohydrogenolysis, 8, 974
protecting groups, 8, 956
hydrogen donor
transfer hydrogenation, 8, 551
hydrogenolysis, 8, 956
hydrogenation, 7, 306, 318
4-(dimethylaminopyridinium chlorochromate, 7, 269
solid support, 7, 841, 844
reduction
dissolving metals, 8, 971
Lewis acid activated, 8, 966
sodium borohydride, 8, 968
Benzy alcohol, hydroxy-
nitrile synthesis, 6, 235
Benzyllamine
amines
isomerization, 6, 721
Benzyllamine, N-acyl-α-chloro-
photoinduced cyclization, 4, 477
Benzyllamine, α-alkyl-
stereselective synthesis, 3, 76
Benzyllamine, N,N-dialkyl-
methallation
addition reactions, 1, 463
Benzyllamine, 4-′,N′′-dimethylamino-
N,N-dimethyl-
synthesis, Mannich reaction, 2, 961
Benzyllamine, methyl-
hydrogenation, 8, 146
Benzyllamines
hydrogenolysis, 8, 957
hydrogenolytic asymmetric transamination, 8, 147
reduction
dissolving metals, 8, 971
Benzylation
sulfur- and selenium-stabilized carbanions, 3, 88
Benzy bromide
viny1 substitutions
palladium complexes, 4, 835
Benzy bromide, 2,6-dichloro-
oxidation, 7, 665
Benzy carbamates
protecting groups
peptide synthesis, 6, 635
Benzy carbonate
Benzyl chloride

- alcohol protection
- cleavage, 6, 659

Benzyl chloride reaction with methyl acrylate
- palladium complexes, 4, 842
- vinyl substitutions
- palladium complexes, 4, 835

Benzyl chloride, 4-nitro-
- Hass-Bender reaction, 7, 660

Benzyl cyanide, α,α-bis(imidazoyl)-
- synthesis, 6, 579

Benzyl esters
- carboxy-protecting groups, 6, 667
- cleavage
- trimethylsilyl chlorochromate, 7, 285

Benzyl group
- alcohol protection, 6, 23
- amino acid protecting group
- hydrogenolysis, 8, 958

N-Benzyl group
- thiol protection, 6, 664

S-Benzyl group
- thiol protection, 6, 664

Benzylcicacetals
- reduction
- Lewis acid activated, 8, 966

Benzylcicyanions
- trimethylsilyl-stabilized
- Michael donors, 4, 259

Benzylcicy compounds
- microbial oxidation, 7, 75

Benzylcicyelectrophiles
- reaction with organocopper compounds, 3, 220

Benzylcicy ethers
- reduction
- Lewis acid activated, 8, 966

Benzylcicyhalides
- Barbier-type reactions
- organosamarium compounds, 1, 256

- carboxylation
- formation of esters, 3, 1028
- palladium catalysts, 3, 1021
- cleavage
- zinc, 8, 972
- hydrogenolysis, 8, 955-981
- Raney nickel, 8, 964
- Komblum oxidation, 7, 653
- reduction
- sodium borohydride, 8, 967

Benzylcicyketal
- reduction, 8, 971

Benzylcicythios
- reduction
- Lewis acid activated, 8, 966

Benzylcicydienes
- transition metal complexes
- reaction with alkenes, 4, 980

Benzylcicydienes acetal, 4-methoxy-
- reductive cleavage
- sodium cyanoborohydride, 8, 969

Benzylcicydienes acetals
- hydrogenation, 8, 212

Benzylcicydienes transfer
- Simmons–Smith reaction, 4, 968

N-Benzylcicydienes
- amine protection, 6, 645

α-Benzylcicydines
- aldol reaction, 2, 147

Benzyl iodide
- vinyl substitutions
- palladium complexes, 4, 835

Benzylcicyoxycarbonyl group
- amino acid protecting group
- hydrogenolysis, 8, 958
- deprotection, 8, 957
- protecting group
- peptide synthesis, 6, 632, 635

Benzylcicyoxymethyl group
- alcohol protection, 6, 647

Benzyl cicyphenylpropiolate
- synthesis
- via of 2-acloyxyppyrindinium salts, 6, 331

Benzyl tellurocyanate
- photooxidation, 7, 777

Benzyl xanthate
- photolysis
- radical addition reactions, 4, 748

Benzyne, 4-chloro-
- reaction with ammonia, 4, 494

Benzyne, 3,6-dimethoxy-
- reactions with acetonitrile, 4, 492

Benzyne, 3-fluoro-
- Diels–Alder reactions, 5, 382

Benzyne, 3-isopropyl-
- addition reactions
- lithium piperidide, 4, 493

Benzyne, 3-methyl-
- Diels–Alder reactions, 5, 381

Benzyne, tetrachloro-
- Diels–Alder reactions, 5, 383

Benzyne
- ab initio calculations, 4, 483
- carbocupration, 4, 872
- carbolithiation, 4, 872
- cyclization, 4, 499
- Diels–Alder reactions, 5, 379–385
- double cyclization
- in synthesis, 4, 505
- electrophilicity, 4, 484
- enthalpy of formation, 4, 484
- infrared spectrum, 4, 483
- intramolecular trapping by carbanions, 5, 692
- microwave spectrum, 4, 484
- relative reactivity
- towards nucleophiles, 4, 491
- structure, 4, 483
- substituent effects
- kinetic stability, 4, 492
- substituted
- generation, 4, 489
- nucleophilic addition, 4, 494
- regioselective generation, 4, 489
- synthesis, 7, 743
- in thermal isomerization, 5, 736
- tandem vicinal difunctionalization, 4, 250

Berberines
- synthesis
- via directed metallation, 1, 463

Berbin-8-one
- synthesis
- carbonylation, 3, 1038

Bergamotene
Cumulative Subject Index

Bicyclogermacrene

synthesis via Cope rearrangement, 5, 979–982
Bicycloalkanones
inside–outside
via photocycloaddition reactions, 5, 137
Bicyclo[4.1.0]alkenes
synthesis
via photosomerization, 5, 211
Bicycloalkenes, vinyl-
Cope rearrangement, 5, 812–819
Bicycloaromatization
general strategy, 2, 623
Bicyclobutane
deprotonation
n-butyl lithium, 1, 10
Bicyclo[1.1.0]butane, 1-cyano-
cycloaddition reactions, 5, 1186
Bicyclo[1.1.0]butane, 1-methoxycarbonyl-
cycloaddition reactions, 5, 1186
Bicyclo[1.1.0]butane, 1-methyl-
cycloaddition reactions, 5, 1186
Bicyclo[1.1.0]butane, 1,2,2-trimethyl-
synthesis
via dihalocyclopropanes, 4, 1013
Bicyclo[1.1.0]butanes
cycloaddition reactions
metal-catalyzed, 5, 1185
synthesis
Wurtz reaction, 3, 414, 422
Bicyclo[4.4.0]decadiene
synthesis, 3, 390
Bicyclo[5.3.0]deca-2,10-diene
synthesis, 3, 399
Bicyclo[4.4.0]decane
synthesis, 3, 389, 391
cis-Bicyclo[4.4.0]decane-3,9-dione
intramolecular aldol
equilibrium, 2, 169
Bicyclo[5.3.0]decanes
synthesis
via Cope rearrangement, 5, 982
via photocycloaddition, 5, 669
Bicyclo[4.3.1]decan-10-one
synthesis, 3, 58
Bicyclo[4.2.2]deca-3,7,9-triene
dimerization, 5, 66
Bicyclo[5.3.0]decatriene
synthesis
via ketocarbenoids, 4, 1055
Bicyclo[4.4.0]decene
synthesis, 3, 393
polyene cyclization, 3, 345
Bicyclo[6.2.0]dec-2-ene
thermolysis, 5, 686
Bicyclo[4.4.0]decenol
synthesis, 3, 392
Bicyclo[4.4.0]decen-3-one
synthesis
via Lewis acid allylation, 4, 155
Bicyclo[6.4.0]dodecane, alkyl-
synthesis
via [4 + 4] cycloaddition, 5, 640
Bicyclo[6.4.0]dodecen-3-ones
synthesis
via organosilanes and α,β-enones, 4, 99
Bicyclogermacrene
transannular cyclization, 3, 390
Bicyclo[3.2.0]hepta-3,6-diene

Cumulative Subject Index

Bicyclo[3.2.0]hepta-3,6-diene, 1-methoxy-

reaction with hexacarbonylpropynedcobalt complex

Pauson–Khand reaction mechanism, 5, 1039

Bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylic acid

dimethyl ester

hydrogenation, 8, 440

Bicyclo[3.2.0]hepta-3,6-diene, 1-methoxy-

reaction with hexacarbonylpropynedcobalt complex

Pauson–Khand reaction mechanism, 5, 1039

Bicyclo[4.1.0]heptane, 7-alkoxy-7-phenyl-
synthesis

via Cope rearrangement, 5, 804

Bicyclo[3.2.0]hepta-1,4-dien-3-ones

synthesis

via [2 + 2 + 2] cycloaddition, 5, 1134

Bicyclo[4.1.0]heptane, 7-carboxylic acid

dimethyl ester

hydrogenation, 8, 440

Bicyclo[2.2.1]heptadienes

synthesis

via [3 + 2] cycloaddition reactions, 5, 286

Bicyclo[3.2.0]hepta-3,6-diene synthones

synthesis, 3, 901

Bicyclo[3.2.0]heptanes synthones

synthesis

via [4 + 4] cycloaddition, 5, 639

Bicyclo[4.1.0]heptanes synthones

synthesis, 1, 664

via photocycloaddition, 5, 669

Bicyclo[2.2.1]heptanol carboactations

rearrangement, 3, 707

Bicyclo[2.2.1]heptanone

lithium enolate

exoalkylation, 3, 17

synthesis, 3, 19; 5, 1104

via intramolecular ene reactions, 5, 21

via tandem Michael reactions, 4, 121

Bicyclo[2.2.1]heptan-2-one oximes

reduction, dissolving metals, 8, 124

reduction dissolving metals, 8, 116, 120

Bicyclo[2.2.1]heptan-6-one synthones

synthesis, 6, 144

Bicyclo[4.1.0]heptanone

Knoevenagel reaction, 2, 368

Bicyclo[2.2.1]heptanone, α-diazo-

Wolff rearrangement, 3, 900

Bicycloheptan-2-one, 7,7-dimethyl-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptan-2-one, 1-methyl-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptan-2-one, 6-methyl-

synthesis

via intramolecular ene reactions, 5, 21

Bicyclo[2.2.1]heptan-2-one, 1-phenyl-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptanone, 7,7-dimethyl-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptan-2-one, 5-methylene-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptan-2-one, 6-methyl-

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptan-2-one, 6-methyl-

synthesis

via intramolecular ene reactions, 5, 21

Bicyclo[2.2.1]hept-2-enes

electrophilic attack, 4, 330

oxidative cleavage

potassium permanganate, 7, 558

Bicyclo[2.2.1]hept-5-enes

thermolysis, 5, 558

Bicyclo[3.2.0]hept-6-enes

Pauson–Khand reaction, 5, 1046, 1052

rearrangement, 5, 1016

Bicyclo[4.1.0]hept-2-enes synthesis

via photoisomerization, 5, 196

Bicyclo[4.1.0]hept-3-enes

photoisomerization, 5, 196

trans-Bicyclo[4.1.0]hept-3-enes

synthesis

Ramberg–Bäcklund rearrangement, 3, 876

Bicyclo[4.2.0]hept-2-enes

thermal isomerizations

via retro Diels–Alder reactions, 5, 586

Bicyclo[4.1.0]heptenones, 7-hydroxy-

carbocations rearrangement, 3, 876

Bicyclo[3.2.0]heptenes, dibromo-

dibromone derivative, 4, 1012

Bicyclo[2.2.1]hept-2-enes, 5-methylene-

hydrogenation

heterogeneous catalysis, 8, 433

Bicycloheptenones, 7-vinyl-

Cope rearrangement, 5, 815

Bicyclo[4.1.0]hept-2-enes, 7-endo-vinyl-

Cope rearrangement, 5, 991

exo-Bicyclo[3.2.0]hept-2-en-7-ol

rearrangement, 5, 1016

Bicyclo[2.2.1]heptenols

Cope rearrangement

product aromatization, 5, 791

Bicycloheptenols, 2-vinyl-

oxy-Cope rearrangement, 5, 815

Bicyclo[2.2.1]hept-5-en-2-one

reduction dissolving metals, 8, 121

Bicyclo[2.2.1]heptenones

photoisomerizations, 5, 224, 228

Bicyclo[4.1.0]heptenones, 7-halo-

tautomerism, 5, 714

Bicyclo[3.2.0]hept-7-one, 1-phenyl-

reaction with vinylithium, 5, 1022

Bicyclo[2.2.0]hexacosane

photoisomerizations, 5, 224, 228

tautomerism, 5, 714

Bicyclo[3.1.0]hexane, dibromo-

rearrangement

heterogeneous catalysis, 8, 428

Bicyclo[2.1.1]hexane

synthesis, 3, 901

Bicyclo[2.2.0]hexane

synthesis, 3, 901

Bicyclo[3.1.0]hexane

synthesis, 1, 664

via reductive cyclization, 4, 1007

via ring opening, 5, 708

Bicyclo[3.1.0]hexane, dibromo-
cyclopropyl-allyl rearrangement, 4, 1018
Bicyclo[2.2.1]hexane, 1-vinyl-
Ritter reaction, 6, 273
Bicyclo[2.1.1]hexane-2-carboxylic acid
synthesis, 3, 903
Bicyclo[2.1.1]hexane-6-carboxylic acid,
exo-1,5,5-trimethyl-
synthesis, 3, 900
Bicyclo[2.2.0]hexan-2-ol
oxidative rearrangement, 7, 834
Bicyclo[2.1.1]hexan-2-one
synthesis, 7, 900
Bicyclo[3.1.0]hexan-2-one, 6-vinyl-
enol derivatives
Cope rearrangements, 5, 804
Bicyclo[3.1.0]hexan-2-ones, 6-endo-vinyl-
Bicyclo[2.2.0]hex-1 (4)-ene
Bicyclo[3.1.0]hex-2-ene, 6-endo-vinyl-
Cope rearrangement, 5, 987
Bicyclo[2.2.0]hex-2-enes
Ramberg–Bäcklund rearrangement, 3, 874
Bicyclo[2.2.0]hex-2-enes
via photolysis, 5, 737
thermolysis, 5, 678
Bicyclo[3.1.0]hex-2-enes, 6-(1-alkenyl)-
Cope rearrangement, 5, 984
Bicyclo[3.1.0]hexenone
synthesis
via photolysis, 5, 730
Bicyclo[2.2.0]hexenones, amino-
rearrangement, 5, 732
Bicyclohumulenediol
synthesis, 3, 404
Bicyclomycin
synthesis
Ugi reaction, 2, 1096
via Peterson methylenation, 1, 732
Bicyclo[3.2.2]nona-2,6-diene
synthesis
via Cope rearrangement, 5, 991, 993
cis-Bicyclo[4.3.0]nona-2,4-diene
photolysis, 5, 737
trans-Bicyclo[4.3.0]nona-2,4-diene
synthesis
via thermal rearrangement, 5, 716
Bicyclo[5.2.0]nona-2,8-diene
synthesis
via photoisomerization, 5, 709
Bicyclo[3.2.2]nona-6,8-dien-3-one
synthesis
via [4 + 3] cycloaddition, 5, 608
Bicyclo[3.3.1]nonane
functionalization
alkylthio, 7, 14
synthesis
via Michael addition, 4, 27
Bicyclo[4.2.1]nonane
bridged
synthesis via nitrene cyclization, 4, 1114
Bicyclo[4.3.0]nonane
synthesis
via [3 + 2] cycloaddition reactions, 5, 304
Bicyclo[3.3.1]nonanone
reduction
dissolving metals, 8, 118
Bicyclo[3.3.1]nonan-3-one, 2-bromo-
Favorskii rearrangement, 3, 853
Bicyclo[6.1.0]nonan-5-one, 4-diazo-trans-
irradiation, 3, 905
Bicyclo[4.3.0]nonan-2-one, 1-methyl-
oxime
Beckmann fragmentation, 7, 698
Bicyclo[4.3.0]nonan-3-ones
synthesis
via organosilanes and α,β-enes, 4, 98
Bicyclo[3.2.2]nona-2,6,8-triene
photoisomerization, 5, 196
Bicyclo[3.2.0]nonatrienes
synthesis
via ketocarbenoids, 4, 1056
Bicyclo[3.3.1]non-2-ene
epoxide
transannular hydride shifts, 3, 735
Bicyclo[3.2.2]non-6-en-3-one
synthesis
via Cope rearrangement, 5, 992
Bicyclo[3.3.1]nonenone
synthesis
aldol cyclization, 2, 162
Bicyclo[3.3.1]non-2-en-4-one,
5-(2-ethylallyl)-1-methyl-
synthesis
via Cope rearrangement, 5, 985, 988
via Cope rearrangement, 5, 990
via Cope rearrangement, 5, 984
Bicyclo[3.3.1]nonenone
synthesis
via photolysis, 5, 730
Bicyclo[4.3.0]nonen-3-one, vinyl-
synthesis
via organosilanes and α,β-enes, 4, 99
Bicyclo[3.2.2]nonenones
photoisomerizations, 5, 225, 228
Bicyclo[2.2.2]octa-1,4-diene
Pauson–Khand reaction, 5, 1049
Bicyclo[2.2.2]octa-2,5-diene
flash vapor pyrolysis, 5, 571
Bicyclo[3.2.1]octadiene
synthesis
via cyclopropanation/Cope rearrangement, 4, 1049
Bicyclo[3.2.1]octa-2,6-diene
photoisomerization, 5, 205
substituted
synthesis via Cope rearrangement, 5, 985–988
synthesis
via Cope rearrangement, 5, 794, 984, 987
via [4 + 3] cycloaddition reaction, 5, 597
Bicyclo[3.3.0]octadiene
synthesis, 3, 489
Bicyclo[4.2.0]octa-2,4-diene
tautomerism, 5, 714
Bicyclo[2.2.2]octa-2,5-diene, 1,4-bis(methoxycarbonyl)-
thermolysis, 5, 571
Bicyclo[4.2.0]octadiene, 1-cyano-
synthesis
via photocycloaddition, 5, 161
Bicyclo[2.2.1]octadiene
elimination reactions, 5, 558
Bicyclo[3.3.0]octa-2,6-diol
Bicyclo[3.3.0]octaneacetaldehyde

Cumulative Subject Index

472

Bicyclo[3.3.0]octaneacetaldehyde
synthesis, 3, 382
Bicyclo[3.3.0]octaneacetaldehyde
synthesis, 3, 383
Bicyclo[3.3.0]octanedione
synthesis
via photoisomerization, 5, 233
Bicyclo[2.2.2]octanes
synthesis
via cyclopropane ring opening, 4, 1043
via photoaddition, 5, 657
Bicyclo[3.2.1]octanes
ring formation, 3, 380
synthesis
via Cope rearrangement, 5, 993
via cyclopropane ring opening, 4, 1043
via photoaddition, 5, 657
via Pummerer rearrangement, 7, 199
Bicyclo[3.3.0]octanes
ring formation, 3, 380
synthesis
via Claisen rearrangement, 5, 833
via [3 + 2] cycloaddition reactions, 5, 290, 304
via photocycloaddition, 5, 654, 657
Bicyclo[4.2.0]octanes
aromatization
benzocyclobutene synthesis, 5, 692
rearrangement, 3, 714
synthesis, 3, 382
via photocycloaddition, 5, 657
Bicyclo[2.2.2]octanes, 2-exo-methylene-6-vinyl-
Cope rearrangement, 5, 794
Bicyclo[3.3.0]octanol
synthesis, 3, 384
Bicyclo[2.2.2]octane
synthesis, 3, 19
via intramolecular ene reactions, 5, 21
via Michael addition, 4, 30
via tandem Michael reactions, 4, 121
Bicyclo[3.2.1]octan-2-one
Beckmann rearrangement, 7, 695
Bicyclo[3.3.0]octane
synthesis, 3, 139
C—H insertion reactions, 3, 1060
via [2 + 2 + 2] cycloaddition, 5, 1131
cis-Bicyclo[3.3.0]octan-2-one
synthesis
via metal-catalyzed cycloaddition, 5, 1192
Bicyclo[5.1.0]octanone
Knoevenagel reaction, 2, 368
Bicyclo[3.2.1]octan-3-ones, 2-bromo-
Favorskii rearrangement, 3, 852
Bicyclo[4.2.0]octa-2,4,7-triene
tautomerism, 5, 715
Bicyclo[4.2.0]octa-1,3,5-triene
o-quinodimethane precursors
Diels—Alder reactions, 5, 386
Bicyclo[2.2.2]octene
dimerization, 5, 65
Pauson—Khand reaction, 5, 1051
synthesis
via Cope rearrangement, 5, 812
via cyclization of alkynes, 1, 605
via Diels—Alder reactions, 5, 329
via organosilanes and α,β-enones, 4, 99
Bicyclo[3.2.1]oct-2-ene
allylic oxidation, 7, 95
Bicyclo[3.3.0]octene
synthesis, 3, 380
Bicyclo[3.3.0]oct-1-ene
Pauson—Khand reaction, 5, 1052
Bicyclo[3.3.0]oct-2-ene
Pauson—Khand reaction, 5, 1047
Bicyclo[4.2.0]octa-7-ene
thermolysis, 5, 678
Bicyclo[2.2.2]octa-2,6-dicarboxylic acid
dimethyl ester
hydrogenation, 8, 427
Bicyclo[3.3.0]oct-1(5)-ene-2,6-diene
synthesis, 1, 567
Bicyclo[2.2.2]octenol
methanesulfonates
rearrangement, 3, 717
Bicyclooctenone
synthesis
via Cope rearrangement, 5, 804
Bicyclo[2.2.2]octene
photoisomerizations, 5, 218, 224, 228
Bicyclo[2.2.2]octa-5-en-2-one
Baeyer–Villiger reaction, 7, 683
photoisomerizations, 5, 200
Bicyclo[3.2.1]octa-6-en-3-one
synthesis
via [4 + 3] cycloaddition, 5, 603
Bicyclo[3.3.0]octenone
addition reaction with 2-nitrobut-2-ene, 4, 102
synthesis
aldol cyclization, 2, 162
Bicyclo[3.3.0]octa-1-en-3-one
synthesis
via Pauson—Khand reaction, 5, 1053, 1060
Bicyclo[3.2.1]octa-6-en-3-one, 8-alkylidene-
synthesis
via [4 + 3] cycloaddition, 5, 604
Bicyclo[2.2.2]octa-2,6-diones, 1-methoxy-
photoisomerizations, 5, 226, 233
Bicyclooctenone, (siloxymethy1)-
reactions with allylic sulfynyl carbanions, 1, 522
Bicyclo[10.3.0]-Δ^15-pentadecen-14-one
synthesis
via Wacker oxidation, 7, 455
Bicyclo[2.1.0]pentanes
cycloaddition reactions
metal-catalyzed, 5, 1186
diradicals
via photolytic rearrangement, 5, 914
synthesis, 3, 901
Bicyclo[2.1.0]pentan-2-one
vinyllogous Wolff rearrangement, 3, 906
Bicyclo[2.1.0]pent-2-ene
thermolysis, 5, 678
Bicyclo[4.3.0]proline
synthesis, 7, 731
Bicyclodipropylidene
cycloaddition reactions, 5, 71
dimerization, 5, 65
reaction with tetracyanoethylene, 5, 78
Bicyclo[4.3.0] rings
polyene cyclization, 3, 359
Bicyclo[4.4.0] rings
polyene bicyclization, 3, 360
cis-Bicyclo[5.4.0]undeca-8,10-diene
synthesis
via photolysis, 5, 717
trans-Bicyclo[7.2.0]undeca-2,10-diene
synthesis
via electrolycyclization, 5, 717
Bicyclo[4.5.0]undecane
synthesis
via Cope rearrangement, 5, 815, 982
Bicyclo[6.3.0]undecane
Bicyclo[4.4.1]undecanone
synthesis, 3, 499, 503
nickel catalysts, 3, 229
use of vanadium oxytrichloride, 3, 664
2,2'-Binaphthyls, hydroxy-
synthesis
via SN1 reaction, 4, 477
Binaphthyls, tetrahydroxy-
synthesis
use of potassium ferricyanide, 3, 664
Biochemical reduction
unsaturated carbonyl compounds, 8, 558
Biomimetic reduction
alicyclic compounds, 8, 977
NAD(P)H models, 8, 561
Biomimetic synthesis
Wagner–Meerwein rearrangement, 3, 714
Biotin
synthesis, 3, 151; 8, 608
from thiazolines and enolates, 2, 946
via INOC reaction, 4, 1080, 1128
via stereocontrolled reaction, 1, 350
9,9'-Biphenanthryl, 10,10'-dihydroxy-
lithium aluminum hydride modifier, 8, 164
Biphenol
synthesis, 3, 664
Biphenyl
alkylation
Friedel-Crafts reaction, 3, 304
Birch reduction
dissolving metals, 8, 496
chiral synthesis, 4, 427
2,2'-dianion
crystal structure, 1, 25
fluorination
synthesis, 3, 499
formylation
dichloromethyl alkyl ethers, 2, 750
hydrogenation
palladium-catalyzed, 8, 438
microbial hydroxylation, 7, 78
oxidative rearrangement, 7, 833
polyoxygenated
synthesis, 3, 503
Bifunctional conjunctive reagents
[3 + 2] cycloaddition reactions, 5, 287
trimethylmethane from, 5, 298–308
Bifurandiones
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1138
Bile acids
microbial hydroxylation, 7, 73
Bile pigments
synthesis
Eschenmoser coupling reaction, 2, 874
Bilobalide
synthesis
via Diels–Alder reaction, 5, 356
Bilobalide acetate
synthesis, 8, 824
Binaphthols
Diels–Alder reactions, 5, 376
1,1'-Binaphthyl, 2,2'-diroyoxy-
asymmetric reduction
aluminum hydrides, 8, 545
lithium aluminum hydride modifier, 8, 162
chiral modification of reducing agents, 8, 159
reduction
aluminum hydrides, 8, 545
Binaphthyl, (hydroxymethyl)-
synthesis, 4, 427
2,2'-Binaphthyl-3,3'-dicarboxylic acid
Friedel–Crafts reaction, 2, 757
Binaphthyls
chiral synthesis, 4, 427
synthesis, 3, 499, 503
nickel catalysts, 3, 229
use of vanadium oxytrichloride, 3, 664
2,2'-Binaphthyls, hydroxy-
synthesis
via SN1 reaction, 4, 477
Binaphthyls, tetrahydroxy-
synthesis
use of potassium ferricyanide, 3, 664
Biochemical reduction
unsaturated carbonyl compounds, 8, 558
Biomimetic reduction
alicyclic compounds, 8, 977
NAD(P)H models, 8, 561
Biomimetic synthesis
Wagner–Meerwein rearrangement, 3, 714
Biotin
synthesis, 3, 151; 8, 608
from thiazolines and enolates, 2, 946
via INOC reaction, 4, 1080, 1128
via stereocontrolled reaction, 1, 350
9,9'-Biphenanthryl, 10,10'-dihydroxy-
lithium aluminum hydride modifier, 8, 164
Biphenol
synthesis, 3, 664
Biphenyl
alkylation
Friedel-Crafts reaction, 3, 304
Birch reduction
dissolving metals, 8, 496
chiral synthesis, 4, 427
2,2'-dianion
crystal structure, 1, 25
fluorination
synthesis, 3, 499
formylation
dichloromethyl alkyl ethers, 2, 750
hydrogenation
palladium-catalyzed, 8, 438
microbial hydroxylation, 7, 78
oxidative rearrangement, 7, 833
polyoxygenated
synthesis, 3, 503
synthesis
Negishi method, 3, 503
Vilsmeier–Haack reaction, 2, 782
unsymmetrical
synthesis, 2, 623; 4, 429
Biphenyl, amino-
synthesis
via SN1 reaction, 4, 471
Biphenyl, 2-amino-
lithiation
addition reactions, 1, 463
Biphenyl, 2,2'-diroyoxy-
oxidative coupling, 3, 666
Biphenyl, 4,4'-diroyoxy-
synthesis
use of vanadium tetrachloride, 3, 664
Biphenyl, 4,4'-dimethoxy-
synthesis, 3, 669
Biphenyl, 2,2'-dinitro-
reduction, 8, 364
Biphenyl, 2,6-dinitro-
synthesis, 3, 501
Biphenyl, 2,2'-divinyl-
Biphenyl

photochemistry, 5, 728
Biphenyl, 4-formyl-
synthesis
Gattermann–Koch reaction, 2, 749
Biphenyl, 4-halo-
Sn1 reaction, 4, 461
Biphenyl, 4-methoxy-
Birch reduction
dissolving metals, 8, 514
Biphenyl, 2-methyl-
synthesis, 7, 833
Biphenyl, 4-methyl-
Birch reduction
dissolving metals, 8, 496
Biphenyl, 2-(α-styryl)-
photochemistry, 5, 726
Biphenyl, 3,3',4,4'-tetramethoxy-
synthesis, 3, 668
Biphenyl, 2-vinyl-
photochemistry, 5, 726
Biphenyl-2-carboxylic acid
Friedel–Crafts reaction, 2, 757
Biphenyl-2-carboxylic acid, 2',4,4',6,6'-pentanitro-
Schmidt reaction, 6, 819
Biphenylcarboxylic acids
Birch reduction
dissolving metals, 8, 504
Biphénylenes
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1150
2-(4-Biphenyl)-2-propoxycarbonyl group
carboxy-protecting group, 6, 668
acid stability, 6, 637
2,2'-Bipyridine
cromium(VI) oxide complex
alcohol oxidation, 7, 260
reduction
metal hydrides, 8, 580
Bipyridines
synthesis
via cycloaddition, 5, 1153
Bipyridinium chlorochromate
oxidation
alcohols, 7, 267
2,2'-Bipyridyl
reaction with phenyllithium, 3, 512
synthesis, 3, 509
Birch reduction
acetals, 8, 212
aromatic compounds, 8, 490
aryl ethers
carbocyclic enol ether preparation, 2, 599
chemoselectivity, 8, 530
experimental procedures, 8, 492
hydrogenolysis, 8, 514
intermediates
intramolecular protonation, 8, 495
limitations, 8, 493
mechanism, 8, 490
pyridines, 8, 591
pyrroles, 8, 605
scope, 8, 493
secondary reactions, 8, 493
substituent effects, 8, 493
survey, 8, 493
Bisabolene
synthesis
via Horner reaction, 1, 780
γ-Bisabolone
synthesis, 3, 215
Bisallylic alcohols
allylic rearrangements, 7, 822
tertiary
synthesis, 1, 118
Bisamides
N-acyliminium ion precursors, 2, 1049
Bis-annulation
aromatic nucleophilic substitution
competing reaction, 4, 432
Bisaziridines
ring opening, 7, 487
Bisbenzocycloheptatriene
synthesis
in steganone synthesis, 3, 673
α-Bisboi lone
synthesis
via benzoin alkylation, 1, 552
1,1-Bisboronates
oxidation
aldehyde formation, 7, 597
1,2-Bisboronates
oxidation
1,2-diol formation, 7, 597
2,6-Bis(β butylphenyl) cyanate
synthesis, 6, 243
Biscarbamates
N-acyliminium ion precursors, 2, 1049
Bischler–Napieralski reaction
Ritter reaction, 6, 291
1,1-Bis(dialkylbory1) compounds
oxidation
1,4-bis(trimethylstanny1)-2-butyne reaction with
Eschenmoser’s salt, 2, 1000
Bisepoxides
synthesis, 7, 384
1,3-Bishomocubanone
Baeeyer–Villiger reaction, 7, 686
Bisimines
Diels–Alder reactions, 5, 425
Bis lactim ethers
alkylation, 3, 53
Michael additions
unsaturated esters, 4, 222
Bislactones
synthesis
via cyclization of cycloalkeneacetic acids, 4, 370
2,2'-Bis(methylene cyclopentane)
Cope rearrangement, 5, 820
Bismuth, μ-bis(triphenyl)-
oxidation
secondary alcohols, 7, 322
Bismuth, μ-oxobis(chlorotriphenyl)-
glycol cleavage, 7, 704
oxidation
allylic alcohols, 7, 307
primary alcohols, 7, 310
secondary alcohols, 7, 322
Bismuth carbonate, triphenyl-
biaryl synthesis, 3, 505
glycol cleavage, 7, 704
oxidation
primary alcohols, 7, 310
secondary alcohols, 7, 322
Bismuth compounds, crotyl-type III
reactions with aldehydes, 2, 24
Bismuth diacetate, triphenyl-
reaction with diols, 6, 23
Bismuth reagents
oxidation
secondary alcohols, 7, 318
Bisnorcholenol, 3-keto-
Bisnorisocomene
synthesis
via Pauson-Khand reaction, 5, 1062
A-Bisnorsteroids
synthesis, 3, 901
2,2-Bisoxazoles
reduction
LAH, 8, 650
Bisphosphoranes
open chain
synthesis, 6, 191
silicon-bridged
synthesis, 6, 180
Bisquinonemethides
synthesis, 6, 180
Bisthiazoles
synthesis, 6, 191
Bis(thiazo1in-2-ylidene)
catalyst
benzoin condensation, 1, 543
Bistioacetals
carboxylic group regeneration, 7, 846
Bisthiophenes
coupling reactions, 3, 512
synthesis, 3, 515
Bistriazoles
benzene precursors
Diels-Alder reactions, 5, 382
Bisulfenylation
cyclobutanones, 6, 143
Bisureas
-N-acyliminium ion precursors, 2, 1049
Blaise reaction
nitriles
acylation, Reformatsky reagents, 2, 297
zinc enolates, 2, 297
Bleomycins
synthesis
Mannich reaction, 2, 917, 920
via Diels-Alder reaction, 5, 492
Block copolymers
styrene–ethylene–butene–styrene
Friedel–Crafts alkylation, 3, 303
Blood group antigenic determinants
synthesis, 6, 43
Boat-like transition states
Diels–Alder reactions
decaatrienones, 5, 539–543
Boldine
synthesis, 3, 686, 815
Bombaykol
synthesis, 3, 489, 799
α-Bond metathesis, 7, 3
Bonds
C—C
reductive cleavage, 8, 995
C—halogen
hydrogenolysis, 8, 895
C—Hg
reduction, 8, 850
C—N
hydrogenolysis, 8, 915
reductive cleavage, 8, 995
C—O
hydrogenolysis, 8, 910
reductive cleavage, 8, 991
C—P
reduction, 8, 858
C—S
hydrogenolysis, 8, 913
reduction, 8, 835–870
reductive cleavage, 8, 993
C—Se
reduction, 8, 847
reductive cleavage, 8, 996
C—Si
oxidative cleavage, 6, 16
C—Zn, 1, 212
Boraadamantane
hydride donor, 8, 102
9-Borabicyclo[3.3.1]nonane
hydroboration, 8, 712, 713
kinetics, 8, 724
K-glucoride from, 8, 169
reaction with α-pinene, 8, 101
reduction
acyl halides, 8, 240
carboxylic acids, 8, 237
unsaturated carbonyl compounds, 8, 537, 543
synthesis, 2, 57; 8, 708
synthesis of 1,1-diboryl compounds, 1, 489
9-Borabicyclo[3.3.1]nonane, B-(1-alkenyl)-
conjugate additions
α,β- enones, 4, 147
9-Borabicyclo[3.3.1]nonane, B-alkyl-
oxidation
use of carbonyl compounds, 7, 603
9-Borabicyclo[3.3.1]nonane, B-(1-alkynyl)-
conjugate additions
α,β- enones, 4, 147
9-Borabicyclononane, allyl-
NMR, 2, 976
reactions with amidines, 2, 983
diastereoselectivity, 2, 985
9-Borabicyclo[3.3.1]nonane, allyl-
reactions with allyl organometallics, 2, 32
9-Borabicyclononane, crotyl-
NMR, 2, 976
reaction with imines
syn–anti selectivity, 2, 991
9-Borabicyclo[3.3.1]nonane, crotyl-
reactions with achiral amidines, 2, 15
reactions with carbonyl compounds, 2, 10
reactions with pyruvate esters, 2, 11
9-Borabicyclo[3.3.1]nonane, B-1-(2-ethoxy-
-2-iodovinyl)-
conjugate additions
9-Borabicyclo[3.3.1]nonane

Cumulative Subject Index

a,β-enones, 4, 147
9-Borabicyclo[3.3.1]nonane, B-iodo-
reactions with alkynes and allenes, 4, 358
9-Borabicyclo[3.3.1]nonane, B-methyl-
deprotonation
alkylation of anion, 3, 199
reaction with lithium amides
deprotonation, 1, 491
9-Borabicyclononane, pent-3-en-2-yl-
reactions with imines
syn-anti selectivity, 2, 990, 992
9-Borabicyclo[3.3.1]nonane, (3-pinanyl)-
asymmetric reduction, 8, 160
reaction with aldehydes, 7, 603
reduction
alkynic ketones, 8, 537
9-Borabicyclo[3.3.1]nonane, B-siamyl-
use of carbonyl compounds, 7, 603
4a-Boranaphthalene, perhydro-
synthesis, 8, 708
9-Borabicyclo[3.3.1]non-9-yl triflate
reaction with S-phenyl propanethioate, 2, 245
Boracyclanes
oxidation, 7, 596
Boracyclanes, B-alkyl-
conjugate additions
alkenes, 4, 146
Borane
crylic acid complexes
structure, 1, 289
t-butylamine complex
selective ketone reduction, 8, 18
carbonyl reduction, 8, 20
chirally modified
asymmetric reduction, 8, 169
complexes
hydroboration, 8, 705
dimethyl sulfide complex
carbonyl compound reduction, 8, 20
carboxylic acid reduction, 8, 237
ester reduction, 8, 244
hydroboration, 8, 708
diphenylamine complex
carboxylic acid reduction, 8, 237
hydroboration, 8, 708
disubstituted
hydroboration, 8, 712
formaldehyde complex
rotational barriers, 1, 290
heterocyclic
oxidation, 7, 601
propanal complex
rotational barriers, 1, 290
reagent formed with 2-aminoethanol
selective aldehyde and ketone reduction, 8, 18
reductions, 8, 369
acetals, 8, 214
carbonyl compounds, 8, 315
carboxylic acids, 8, 261
amines, 8, 26, 36
nitroalkenes, 8, 376
pyridines, 8, 580
tetrahydrofuran complex
amide reductions, 8, 249
carboxylic acid reduction, 8, 237
hydroboration, 8, 705
nitrile reduction, 8, 253
reductive animation, 8, 54
thioxane complex
hydroboration, 8, 708
triethylamine complex
hydroboration, 8, 708
α-trimethylsilyl-substituted
reactions with aldehydes, 1, 501
Boranes, acyloxy-
chiral catalyst
Diels–Alder reactions, 5, 377–379
diborane enediolates, 2, 113
Boranes, alkenyl-
1,3-butadiene synthesis, 3, 483
coupling reactions, 3, 489
sp³ organometallics, 3, 473
with benzyl bromide, 3, 465
cross-coupling reactions with 1-alkynyl halides, 3, 530
oxidation
using alkaline hydrogen peroxide, 7, 596
protonolysis, 8, 726
Boranes, alkenyldialkoxy-
synthesis
via α-trimethylsilyl-substituted boranes, 1, 501
Boranes, B-(1-alkenyl)alkoxyfluoro-
conjugate additions
a,β-enones, 4, 147
Boranes, alkenylamin-
aldol reactions, 2, 244
Boranes, alkenyldialkoxy-
formation of aldehydes, 7, 602
Boranes, alkenyldialkyl-
brominolysis
stereochemistry, 7, 605
protonolysis, 8, 724, 726
reaction with iodine
rearrangements, 7, 606
Boranes, alkenyldihydroxy-
brominolysis, 7, 605
iodinolysis
stereochemistry, 7, 606
Boranes, alkenyloxy-
directed aldol reactions, 2, 240
homochiral
aldol reactions, 2, 240
Hooz' reaction, 2, 244
oxidation, 7, 602
reactions with ketones, 1, 499
synthesis
via acylation of boron-stabilized carbanions, 1, 497
Boranes, alkenyloxalkylalkoxy-
aldol reactions, 2, 240
Boranes, alkenyloxidialkoxy-
aldol reactions, 2, 240, 266
syn/anti ratios, 2, 266
Boranes, alkenyloxidialkyl-
aldol reactions, 2, 240
homochiral, 2, 248
chiral
facial selectivity, 2, 261
synthesis, 2, 240
Boranes, alkenyloxidichloro-
preparation, 2, 244
Boranes, alkoxy-
reaction with organometallic compounds, 7, 595
Boranes, β-alkoxyalkyl-
stability, 8, 705
Boranes, alkoxydialkyl-
ketone reduction, 8, 9
Boranes, alkyl-
oxidation
formation of aldehydes, 7, 601
protonolysis
carboxylic acids, 8, 725
Boranes, alkylbromo-
dimethyl sulfide complex
synthesis, 8, 719
Boranes, alkylidichloro-
synthesis, 8, 718
Boranes, alkylidioxy-
synthesis, 7, 603
Boranes, alkylidiphenyl-
conjugate additions
alkenes, 4, 146
Boranes, (alkylethenyl)dialkyl-
brominolysis
Boranes, alkylhalo-
synthesis, 8, 711
Boranes, allyldialkyl-
protonolysis, 8, 725
reactions with epoxides, 6, 7
Boranes, allyl-
oxidation, 7, 596
reaction with imines, 2, 976
Boranes, allyldialkyl-
protonolysis, 8, 725
Boranes, allyldiospinocampheyl-
reactions with aldehydes
asymmetric synthesis, 2, 33
Boranes, allyldimesityl-
anion
reactions, 2, 56
reactions with lithium amides, 1, 492
Boranes, alkylidimethoxy-
reactions with aldmines, 2, 982
Boranes, aryldihydroxy-
nitration and oxidation of the ring, 7, 602
oxidation, 7, 596, 602
use of potassium permanganate, 7, 602
Boranes, (arylethenyl)dialkyl-
brominolysis
Boranes, benzyl-
protonolysis, 8, 725
Boranes, binaphthoxy-
Diels–Alder reactions, 5, 376
Boranes, bis(benzoyloxy)-
reduction
hyrazones, 8, 357
Boranes, bromo-
synthesis, 8, 711
Boranes, t-butyl-
synthesis, 8, 710
Boranes, butyldihydroxy-
oxidation
formation of butanol, 7, 602
Boranes, catechol-
brominolysis, 7, 605
coupling reactions
with aryl iodides, 3, 496
hydroboration, 8, 719
reduction
hyrazones, 8, 356
Boranes, chloro-
reaction with acetophenone, 7, 603
Boranes, β-chloroalkyl-
stability, 8, 705
Boranes, chlorodivinyl-
synthesis, 8, 711
Boranes, crotyl-
reactions with imines, 2, 17
synthesis, 2, 44
Boranes, crotyldiospinocampheyl-
borotropic shift, 2, 10
reactions with aldehydes, 2, 61
Boranes, cycloalkyl-
oxidation
formation of cycloalkanones, 7, 601
Boranes, cyclopropyl-
oxidation, 7, 598
synthesis
via boron-ene reaction, 5, 33
Boranes, dialkoxycy-
chiral catalysts
Diels–Alder reactions, 5, 376
Boranes, dialkoxyl(α-phenylthio)-
oxidation
formation of monothioacetals, 7, 602
Boranes, dialkyl-
hydroboration, 8, 715
regioselectivity, 8, 717
stability, 8, 717
synthesis, 8, 717
Boranes, dialkyllialyl-
reaction with ethoxyacetylene, 5, 34
Boranes, dialkylnitrom-
synthesis, 8, 711
Boranes, dialkylchloro-
alkenyoxyboranes from, 2, 244
synthesis, 8, 711
Boranes, dialkylcrotyl-
isomerization, 2, 5
reactions with carbonyl compounds, 2, 10
Boranes, dialkyl(dialkylamino)-
synthesis, 7, 607
Boranes, dialkylhalo-
synthesis, 8, 711
Boranes, dialkyl(methylthio)-
synthesis, 8, 711
Boranes, di-t-alkylmonoa-
protonolysis, 8, 725
Boranes, dialkyl-
hydroboration, 8, 715
Boranes, dibromo-
dimethyl sulfide complex
synthesis, 8, 718
Boranes, dicycanyl-
chiral hydroboration, 8, 721
Boranes, dichlorophenyl-

Boranes

Cumulative Subject Index

ethyl ketone enolization, 2, 244
syn diastereoselectivity, 2, 245

Boranes, dichloro(vinylamino)-
aldol reaction
directed, 2, 479
reaction with carbonyl compounds, 2, 478

Boranes, dicyclohexyl-
hydroboration
regioselectivity, 8, 716
synthesis of 1,1-diboryl compounds, 1, 489

Boranes, diethoxyisiamyl-
oxidation
using alkaline hydrogen peroxide, 7, 595

Boranes, (diethylamino)dichloro-
dihydridoborate from, 8, 171

Boranes, dihalo-
hydroboration, 8, 718

Boranes, dihydroxy[lithio(trimethylsilyl)methyl]-
pinacol derivative
acylation, 1, 498

Boranes, diisopinocampheyl-
chiral hydroboration,
hydroboration, 8, 712
synthesis, 8, 716

Boranes, dilongifolyl-
chiral hydroboration, 8, 721

Boranes, dimesityl-
deprotonation, 3, 199
hydroboration, 8, 716

Boranes, dimethyl-
reactions with bases, 1, 492
reactions with styrene oxide, 1, 496

Boranes, dimethyl-
synthesis, 8, 717

Boranes, 2,3-dimethyl-2-butyl-
reduction
carboxylic acids, 8, 261

Boranes, diphenyl-
hydroboration, 8, 716

Boranes, diphenyldihydroxy-
oxidation, 7, 603
reaction with ethoxyacetylene
mercury(II) acetate, 2, 242

Boranes, disiamyl-
reduction
acyl halides, 8, 263
amides, 8, 273
lactones, 8, 269
nitriles, 8, 275
synthesis of 1,1-diboryl compounds, 1, 489

Boranes, ethyldimesityl-
reactions with epoxides, 1, 497

Boranes, ethylenedioxychloro-
enolates
generation from carbonyl compounds, 2, 266

Boranes, haloalkyl-
stability, 8, 705

Boranes, iodo-
synthesis, 8, 711

Boranes, α-lithiodimesitylmethyl-
acylation, 1, 498

Boranes, methyl-
synthesis, 8, 710

Boranes, monoalkyl-
redistribution, 8, 710

Boranes, monoalkylchloro-
synthesis, 8, 711

Boranes, monomethyl-
regioselectivity
hydroboration, 8, 710

Boranes, monocloro-
dimethyl sulfide complex
hydroboration, 8, 711
hydroboration, 8, 710
reduction
acetals, 8, 214

Boranes, monohalo-
hydroboration, 8, 710
regioselectivity, 8, 711

Boranes, monoisopinocampheyl-
alkene hydroboration, 3, 797
chiral hydroboration, 8, 721

Boranes, peroxybis(diacetoxy)-
1-hydroxy-2-acetoxyalkene synthesis, 7, 446

Boranes, phenyl-
alkylation, 3, 260

Boranes, phenyldihydroxy-
oxidation, 7, 602

Boranes, pyryldihydroxy-
coupling reactions
with vinyl bromides, 3, 498

Boranes, 1-pyrrolyl-
reduction
eones, 8, 16
tetrahydrofuran complex
reduction, unsaturated carbonyl compounds, 8, 537

Boranes, secondary alkyl
oxidation
formation of ketones, 7, 600, 601

Boranes, thexyl-
hydroboration, 2, 251; 8, 709
reduction
acyl halides, 8, 263
amides, 8, 273
lactones, 8, 269
nitriles, 8, 275

Boranes, thexylbromo-
dimethyl sulfide complex
carboxylic acid reduction, 8, 261

Boranes, thexylchloro-
dimethyl sulfide complex
carboxylic acid reduction, 8, 261
hydroboration, 8, 719

Boranes, thio-
reduction
carboxylic acids, 8, 261

Boranes, trialkenyl-
protonolysis, 8, 724

Boranes, trialkyl-
brominolysis, 7, 604
chlorination, 7, 604
hydride donor
reduction of carbonyls, 8, 99, 101
iodinolysis, 7, 606
ketone reduction, 8, 9
oxidation, 7, 602
carbonyl compounds, 7, 603
protonolysis, 8, 724, 725
reaction with alkenes, 4, 884
reaction with aryl Grignard reagents, 3, 243
reaction with carbon monoxide, 3, 793
reaction with α,β-unsaturated carbonyl compounds, 2, 241

Boranes, triallylene reactions, 5, 33
reaction with alkynes, 4, 886

Boranes, tributylhydride donor
reduction of carbonyls, 8, 101
protonolysis, 8, 724

Boranes, tri-n-butyloxidation, 7, 599

Boranes, trichloroalde...
Bornyl propenoates

- **Bornyl propenoates**
- **reaction with benzenesulfonyl chloride**, 4, 331

Borodin-Hunsdiecker reaction
- **brominative decarboxylation**, 4, 1006

Borohydrides
- **asymmetric reduction**, 8, 169
- **exchange resin**
 - **selective aldehyde reduction**, 8, 16
- **reductions**, 8, 369
- **benzo[8]/furans**, 8, 627
- **indoles**, 8, 616
- **pyridines**, 8, 580
- **pyridinium salts**, 8, 584
- **unsaturated carbonyl compounds**, 8, 536

Borohydrides, alkylcyanoo-reduction
- **imines**, 8, 36

Borohydrides, cyano-zinc-modified
- **selective ketone reduction**, 8, 18

Borohydrides, dialkylcyanoo-reduction
- **imines**, 8, 36

Borohydrides, monoalkyl-reduction
- **cyclic ketones**, 8, 14

Borohydrides, thexyl-di-s-butyl-reduction
- **unsaturated carbonyl compounds**, 8, 537

Borohydrides, tri-s-butyl-reduction
- **unsaturated carbonyl compounds**, 8, 537

Borohydrides, triphenyl-selective ketone reduction, 8, 18

Borolane, crotyl-trans-2,5-dimethyl-allylboranes from reactions with aldehydes, 2, 33

Borolane, 2,5-dimethyl-aldehyde reactions
- **enantioselectivities**, 2, 258
- **asymmetric reduction**, 8, 159
- **chiral hydroboration**, 8, 721
- **diastereoselectivity**, 2, 42

Borolane, B-methoxy-2,5-dimethyl-synthesis, 2, 33

Boromycin synthesis, 1, 568

Boron, dichloro-enoates synthesis, 2, 114

Boron, dimethoxy-enoates synthesis, 2, 114

Boron alkynes
- **alkylation**, 3, 274

Boron–ate complexes, crotyl-reactions with aldehydes, 2, 11

Boronates
- **cyclic**
 - **diol protection**, 6, 662

Boronates, alkynyl-coupling reactions, 3, 489
 - with alkynyl halides, 3, 496
 - reactions
 - **organopalladium catalysts**, 3, 231

Boronates, allyl-reaction with 2,3-O-isopropylidene-D-glyceraldehyde oxime
- **Cram selectivity**, 2, 995
 - **reaction with phenylmethyl-N-methoxy-iminoacetate**, 2, 995
 - **reaction with sulfinimines**, 2, 999

Boronates, 1-bromo-1-alkenyl-from 1-alkynes, 3, 490

Boronates, crotyl-reactions with oximes
- **syn-anti selectivity**, 2, 996, 997
- **synthesis**, 2, 977

Boronates, cyano-rearrangements, 3, 798

Boronates, 1,3-dienyl-Diels–Alder reactions, 5, 336

Boronates, B-ethoxy-coupling reactions
- **with aryl iodides**, 3, 496

Boronates, tetroxanegy-rearrangements, 3, 798

Boronates, [γ-(trimethylsilyl)allyl]-reactions with oximes, 2, 996

Boron bromides
- **reactions with alkenes**, 4, 357

Boron compounds
- **aldol reactions**, 2, 240
 - **carbanions stabilization**, 1, 487–503
 - **Lewis acid complexes structure**, 1, 287
 - **organopalladium catalysis**, 3, 231

Boron compounds, alkenyl-cleavage, 8, 725

Boron compounds, allyl-configurational stability, 2, 5

Boron compounds, aromatic oxidation to phenols, 7, 596

Boron compounds, aryl-protonolysis, 8, 725

Boron compounds, crotyl-reactions with chiral α-methyl aldehydes, 2, 42
- **type I, 2, 10–17**
- **reactions with C==N electrophiles**, 2, 15

Boron-ene reactions, 5, 33

Boron enolates
- **aldol reactions**
 - **diastereofacial preferences**, 2, 224, 231
 - **from homochiral acyl sultam aldol reactions**, 2, 253
 - **reactions with aldehydes**, 2, 250
 - **reactions with N,N-dimethyl(methylene)iminium salts**, 2, 909
 - **synthesis**, 2, 111

Boron enol ethers synthesis
- **enolate geometry**, 2, 111

Boron fluoride
- **hydrofluorination**
 - **alkenes**, 4, 271

Boronic acid, alkynyl-biaryl synthesis, 3, 504
- **synthesis**, 3, 489

Boronic acid, γ-alkoxyallyl-
Cumulative Subject Index

Botryodiplodin

Beckmann rearrangement, 7, 695
benzaldehyde complex, 2, 247
crystal structure, 1, 300
catalyst
allylsilane reactions, 2, 567
allylsilane reactions with acetals, 2, 576
allylstannane reactions with aldehydes, 2, 573
Diels–Alder reactions, 2, 664, 665
Friedel–Crafts reactions, 2, 735; 3, 295
reaction with allylsilanes, diastereoselectivity, 2, 570
Diels–Alder reaction catalysts
diastereofacial selectivity, 2, 679
dimethyl ether complexes
coordination energy, 1, 290
epoxide ring opening, 3, 741
erate
ketone α-ace oxylation, 7, 153
organocuprate reactions, 1, 115; 3, 212
etrate
ethyl acetate complex
NMR, 1, 292
mercury(II) trifluoroacetate
ionic dissociation, 7, 872
organolithium reactions
Lewis acid promotion, 1, 329
reactions with organocuprate compounds
rate enhancement, 1, 343
reactions with organolithium compounds
alkynylation, 1, 343
triethylsilane
2-octanol reduction, 8, 813
Boron trifluoride etherate
catalyst
tandem vicinal difunctionalization, 4, 255
Borrerine
synthesis, 6, 746
Boryl compounds, dimethyl-
properties, 1, 492
reactions with epoxides, 1, 496
synthesis, 1, 494
Boryl compounds, ethylendioxy-
organometallic compounds
synthesis, 1, 494
Boryl enolates
aldol reactions, 2, 239
Boryl triflate
kinetic enolization of carbonyl compounds, 2, 247
Boryl triflate, dialkyl-
boron enolates, 2, 112
enolization of carbonyl compounds, 2, 242
metal exchange reaction
alkenyloxysilane, 2, 245
Boryl triflate, diisopinocampheyl-
aldol reactions, 2, 257
Boschnialactone
synthesis
via photoisomerizations, 5, 230
Boschnialic acid
synthesis
via magnesium-ene reaction, 5, 42
Bostrycochin
synthesis
via regioselective lithiation, 1, 474
Botryodiplodin
synthesis
Bourbonene

rearrangement of epoxides, 3, 768
use of enol esters, 2, 613
via conjugate addition, 4, 211

Bourbonene

synthesis
via photochemical cycloaddition, 5, 124, 129

Bouveauil-Blanc reduction
esters, 8, 243
conversion to primary alcohols, 3, 613

Bovine serum albumin
asymmetric catalyst
Darzens glycidic ester condensation, 2, 435
monoclonal antibodies
Claisen rearrangement, 5, 855

Bovolide

synthesis, 5, 1092

Brassinoide

synthesis
side chain introduction, 1, 552
via Baeyer-Villiger reaction, 7, 680
via carboxalumination, 4, 893
Wittig rearrangement, 3, 1000

Braun reagent

aldol reaction
chiral synthesis, 2, 227

Brefeldin A

synthesis
use of alcohol protection, 6, 648
via activated esters, 6, 373
via o-alkyliuron complexes, 4, 579
via conjugate addition, 4, 211
via [3 + 2] cycloaddition reactions, 5, 308
via Julia coupling, 1, 805
via macroclatonization, 6, 370

Brefeldin A seco acid

synthesis, 7, 625

Brefeldin C

synthesis
via diisopropyl phosphonate, Wittig reaction, 1, 763

Brefeldins

synthesis, 3, 287
via alkenyllchromium reagents, 1, 200

Brevetoxine B

synthesis
via 1,2-dithietane, 6, 448

Brevianamide A

synthesis, 3, 790
exo-Brevicomin
synthesis
aluminum ate complexes, 2, 67
via cyclofunctionalization of cycloalkene, 4, 373
via zinc chelation, 1, 222

Brevicomin

synthesis, 3, 644; 6, 145; 7, 643
via 1,2-addition of ethylcopper reagents, 1, 134
via Lewis acid mediated Grignard addition, 1, 336
via Wacker process, 7, 451

Bridged azacycles
synthesis
Mannich reaction, 2, 1014

Bridged carbocyclic systems

synthesis
via palladium(II) catalysis, 4, 573

Bridged rings
synthesis
via radical cyclizations, 4, 791

Bridged systems

synthesis
via [2 + 3] cycloaddition reactions, 5, 951

Bridgerhead halides

reduction
tributylstannane, 8, 798

Brigl's anhydride
disaccharide synthesis, 6, 48

Bronsted acids

catalysts
Friedel-Crafts reaction, 3, 297
glycosylation, 6, 51

Bronsted-Lewis superacids

catalysts
Friedel-Crafts reaction, 3, 297

Bromides

vinyl substitutions
palladium complexes, 4, 835

Bromination

amines, 7, 741
boryl-substituted carbonanions, 1, 501
ketones
bromine, 7, 120
nucleophilic displacement, 6, 209
secondary amines, 7, 747

Bromine

bromination
ketones, 7, 120
conjugate enolate trap, 4, 262
in the presence of nickel carboxylates
oxidation, diols, 7, 314
reaction with alkenes, 4, 344-346
Ritter reaction, 6, 288

Bromine azide

addition reactions
alkenes, 7, 500
aziridine synthesis, 7, 473

Bromine fluoride

reaction with alkenes, 4, 347

Bromine perchlorate, bis(sym-collidine)-intramolecular bromoalkylamine addition to alkenes, 7, 536

Brominolysis

C-B bonds, 7, 604

α-Bromocarboxylates

aldol reactions
intramolecular, 2, 269

Bromohydrin
coupling reactions
with ary1 Grignard reagents, 3, 464
epoxide synthesis, 6, 25
reaction with magnesium halides, 3, 757

Bromolactonization

cycloheptadienes
palladium catalysis, 4, 687

Bromonoitr compounds

synthesis, 7, 501

Brook-Claisen rearrangements
tandem, 5, 843

Brook rearrangement
desulfonation, 5, 1014
1-oxyallyl anions, 2, 69

Brown-Walker electrolysis
of halfester dimerization, 3, 640

Bruceantin
Cumulative Subject Index

1,3-Butadiene

- synthesis, 8, 925
- Brunké steroid synthesis
diene cyclization, 3, 373
- Bryostatin
synthesis, 2, 264
via acylation with thiol esters, 1, 434
- Bufadienolide
synthesis
Knoevenagel reaction, 2, 382
- Bufomedil
synthesis
via alkylation of cyanohydrin anions, 1, 552
- Bunte salts
Diels–Alder reactions, 5, 436
- Burseran
synthesis, 1, 566
via conjugate addition, 4, 211
- 1,3-Butadiene
1,4-acetamidoiodination, 7, 505
acylation
Friedel–Crafts reaction, 2, 720
addition of D$_2$
Pd/Al$_2$O$_3$ catalysis, 8, 433
carbocupration, 4, 895
carbomagnesiation, 4, 874
chlorination, 7, 530
cyclization, 5, 675
cycloaddition reactions
tropones, 5, 618
[$4 + 3$] cycloaddition reactions, 5, 603
diarylation
palladium catalysts, 4, 849
dicarboxylation, 4, 949
dimerization, 5, 63
via nickel-ene reaction, 5, 56
hydroboration, 4, 299
hydrobromination, 8, 707
hydrobromination, 4, 283
hydrocarboxylation, 4, 945
hydrochlorination, 4, 276
hydrogenation
homogeneous catalysis, 8, 449
hydroisilylation, 8, 776
photocycloaddition reactions
benzene, 5, 636
reaction with t-butyllithium, 4, 868
reaction with ethyl diazopyruvate, 4, 1048
selective reduction, 8, 565, 567, 568
substituted acyclic
synthesis via retro Diels–Alder reaction, 5, 565
symmetrical
synthesis, 3, 482
zirconocene complex
reactions with carbonyl compounds, 1, 163
(Z,Z)-
synthesis, 3, 485
- 1,3-Butadiene, 1-acetoxy-
cycloaddition reactions
tropones, 5, 620
Diels–Alder reactions, 5, 376
- 1,3-Butadiene, 1-N-acylamino-
synthesis
via Curtius reaction, 6, 811
- 1,3-Butadiene, alkoxy-
Diels–Alder reaction, 2, 662; 5, 329
- 1,3-Butadiene, 1-alkoxyisilyl-
synthesis
via cyclobutanones, 5, 677
- 1,3-Butadiene, 4-alkyl-2-amino-4-(substituted
amino)-1,1,3-tricyano-
synthesis
via retro Diels–Alder reaction, 5, 566
- 1,3-Butadiene, 4-amino-1,1-dicyano-
synthesis
Knoevenagel reaction, 2, 359
- 1,3-Butadiene, bis-2,3-chloromethyl-
synthesis
via palladium(II) catalysis, 4, 566
- 1,3-Butadiene, 2,3-bis[[N,N-dimethylaminomethyl)methyl]-
synthesis
from 1,4-bis(trimethylsilyl)-2-butene, 2, 1002
- 1,3-Butadiene, 1,3-butylsiloxy-
Diels–Alder reactions, 5, 323
- 1,3-Butadiene, 1,3-diketones,
synthesis
via cyclobutanes, 5, 684
via 2,3-butanediene, 2, 605
- 1,3-Butadiene, 1,3-dimethoxy-3-silyloxy-
Diels–Alder reactions, 5, 338
- 1,3-Butadiene, 1,3-dimethoxy-3-trimethylsiloxy-
Diels–Alder reactions, 5, 338
- 1,3-Butadiene, 2,3-bis[trimethylsiloxy]-
synthesis
via palladium(II) catalysis, 4, 283
vinyl coupling, 3, 490
- 1,3-Butadiene, 2-t-butyl-
reaction with π-allylpalladium complexes, 4, 601
- 1,3-Butadiene, chloro-
synthesis
vinyl coupling, 3, 487
- 1,3-Butadiene, 1,4-diacyclic
synthesis via ketocarbenoids and furans, 4, 1060
- 1,3-Butadiene, 1-diethylaminocycloaddition reactions
6,6-dimethylfulvene, 5, 626
- 1,3-Butadiene, 1,l-dimethoxy-3-silyloxy-
Diels–Alder reaction, 2, 662
- 1,3-Butadiene, 1,l-dimethoxy-3-trimethylsiloxy-
Diels–Alder reactions, 5, 330
- 1,3-Butadiene, 2,3-dimethyl-
cycloaddition reactions, 5, 199
[$4 + 3$] cycloaddition reactions, 5, 603
Diels–Alder reactions, 5, 372, 380
hydrobromination, 4, 283
hydroisilylation, 8, 780
zirconocene complex
reactions with carbonyl compounds, 1, 163
- 1,3-Butadiene, 2-[(N,N-dimethylaminomethyl)-
3-(trimethylsilylmethyl)]-
Diels–Alder reactions, 5, 338
- 1,3-Butadiene, 1,1-dithio-
synthesis
via 2,3-sigmatropic rearrangement, 6, 854
- 1,3-Butadiene, 2-ethylidihydroxy-
cycloaddition reactions
fulvenes, 5, 629
- 1,3-Butadiene, 2-fluoro-
synthesis
via cyclopropane ring opening, 4, 1020
- 1,3-Butadiene, 2-formyl-
1,3-Butadiene

Cumulative Subject Index

iron tricarbonyl complex
reactions with organocuprates, 1, 115
1,3-Butadiene, 2-hydroxy-synthesis
via retro Diels–Alder reactions, 5, 557
1,3-Butadiene, 2-((1’-hydroxyalkyl)-synthesis
via 1-methylenecyclobutylithium, 1, 709
1,3-Butadiene, 1-methoxy-hetero Diels–Alder reaction
Eu(fod)3-catalyzed, 2, 671
high pressure, 2, 663
1,3-Butadiene, 2-methoxy-3-methyl-iterative rearrangements, 5, 891
1,3-Butadiene, 2-methoxy-1-(phenylthio)-Diels–Alder reactions, 5, 333
1,3-Butadiene, 2-methoxy-3-(phenylthio)-Diels–Alder reaction, 6, 146
synthesis via cyclobutenes, 5, 683
1,3-Butadiene, 1-methoxy-3-(trimethylsiloxy)-Diels–Alder reactions, 5, 329
ZnCl2-catalyzed, 2, 663
[2 + 2] photocycloaddition, 5, 1022
1,3-Butadiene, 2-methyl-acylation
palladium catalysts, 4, 849
hydrobromination, 4, 283
hydrogenation homogeneous catalysis, 8, 449
selective reduction, 8, 567
1,3-Butadiene, 1-phenyl-4-(N,N-dialkylamino)-Diels–Alder reactions, 5, 376
1,3-Butadiene, 1-phenyl-arylation
palladium catalysts, 4, 849
hydrobromination, 4, 283
hydrogenation homogeneous catalysis, 8, 449
selective reduction, 8, 567
1,3-Butadiene, 1-phenyl-4-(2’-thienyl)-photocyclization-oxidation, 5, 720
1,3-Butadiene, 1-(phenylthio)-Diels–Alder reactions, 5, 333
1,3-Butadiene, 2-[(phenylthio)methyl]-Diels–Alder reactions, 5, 338
1,3-Butadiene, silyl-Diels–Alder reactions, 5, 335
synthesis, 3, 487
vinyl coupling, 3, 485
1,3-Butadiene, 1-trialkylsilyl-acylation
Friedel–Crafts reaction, 2, 721
1,3-Butadiene, 2-trialkylsilyl-iron tricarbonyl complexes acylation, 2, 723
1,3-Butadiene, 2-triarylstatnaly-Diels–Alder reactions, 5, 335
1,3-Butadiene, 2-triethylsilyl-Diels–Alder reactions, 5, 335
1,3-Butadiene, 1-trimethylsiloxycycloaddition reactions
tropones, 5, 620
cyclodimerization [4 + 4] cycloaddition, 5, 641
1,3-Butadiene, 2-trimethylsiloxo-Diels–Alder reactions, 5, 320, 329
1,3-Butadiene, 2-(trimethylsilylmethyl)-Diels–Alder reactions, 5, 337, 338
isoprenylation with, 2, 721
1,3-Butadiene, 1-(trimethylsilyl)oxy-reaction with singlet oxygen, 2, 1068
1,3-Butadiene-2-carboxylate, 1-amino-synthesis
via enamines and alkynic esters, 4, 45
1,3-Butadiene-2,3-dicarbonitrile synthesis
via retro Diels–Alder reaction, 5, 566
1,3-Butadiene-2,3-dicarboxylic acid synthesis
via retro Diels–Alder reaction, 5, 565
1,2-Butadienoic acid methyl ester reaction with C-methyl-N-phenyl nitrone, 5, 255
2,3-Butadienoic acid esters
reaction with 1,3-butadiene, 5, 9
1,3-Butadiyne
alkylation, 3, 284
1,3-Butadiyne, 1-alkyl-4-(N,N-dialkylamino)-synthesis, 3, 284
1,3-Butadiyne, bis(trimethylsilyl)-acylation, 3, 284
hydrobromination, 8, 773
1,3-Butadiyne, 1-(N,N-dialkylamino)-lithium derivative synthesis, 3, 284
Butadiynes
synthesis, 3, 551
Butadiynes, 1,4-dialkynyl-synthesis, 3, 554
Butadiynes, 1,4-diaryl-synthesis, 3, 554
Buta-1,3-dienes, 1-trimethylsilyl-acylation
Friedel–Crafts reaction, 2, 725
Butanal synthesis, 8, 297
hydroformylation of propene, 3, 1015
via hydrocarbonylation, 4, 914
Butanal, 2-ethyl-reaction with organometallic compounds chemoselectivity, 1, 148
Butanal, 3-hydroxy-reaction with tetraallylzirconium, 1, 157
Butanal, 2-phenyl-reaction with organometallic reagents diastereoselectivity, 1, 151
Butanamide, diethyl-alkylation, 3, 68
Butane autoxidation, 7, 11
isomerization Friedel–Crafts reaction, 3, 334
Butane, 1-chloro-3-methyl-3-phenyl-synthesis
Butane–Catalysts reaction, 3, 320
Butane, 1,3-dichloro-3-methyl-benzene alkylation by Friedel–Crafts reaction, 3, 320
Butane, 2,3-dimethyl-oxidation
ozone, 7, 14
Butane, 1,2-epoxybenzene alkylation with Friedel–Crafts reaction, 3, 313
Butane, 2,3-epoxyreaction with magnesium halides epoxide ring opening, 3, 755 rearrangement boron trifluoride catalyzed, 3, 742
Butane, 3-lithio-1-methoxyintramolecular solvated tetramer, 1, 10
Butane, 1,1,3,3-tetramethylbromination, 7, 15
1,4-Butanediol synthesis via hydrogenation, 8, 236
2,3-Butanediol chiral acetals reduction, 8, 222 oxidative cleavage, 7, 707 pinacol rearrangement, 3, 725
2,3-Butanedione disilyl enol ethers, 2, 605 Butanesulfonic acid, nonafluoro-bimolecular aromatic, 2, 739 1,2,3,4-Butanetetracarboxylic acid synthesis via photolysis, 5, 723
Butanoic acid synthesis via oxidation of carbon–tin bonds, 7, 614 Butanoic acid, 4-arylfriedel–crafts reaction, 2, 759 synthesis, 2, 744 Butanoic acid, 3-benzyloaminodilithium dianions alkylation, 3, 43 Butanoic acid, 3,3-dimethylmethyl ester lithium enolate, crystal structure, 1, 30 Butanoic acid, 4-dimethylaminoreaction with O-methyl-NN’-dicyclohexylylsourea, 6, 74 Butanoic acid, 3-hydroxychiral synthesis via microbial hydroxylation, 7, 57 ethyl esters alkylation, 3, 44 methyl ester, diaminocatalytic hydrogenation, 8, 151
Butanoic acid, 2-methyl-3-oxoethyldiethylzinc reaction with benzaldehyde, 1, 225 asymmetric reduction aldehyde hydrides, 8, 545
2-Butanone, 3,3-dimethyl lithium enolate reaction with zirconocene/isoprene complex, 1, 163
2-Butanone, 4-hydroxyhydrogenation, 8, 151
3-Butanone, 1-methoxydianion synthesis via ring cleavage of methylenecyclopropane, 7, 825
2-Butanone, 3,3-dimethylstereoselectivity, 2, 291
2-Butanone, 1-(trimethylsilyl)reaction via acylation of copper reagents, 1, 436
2-Butanone, 1-(trimethylsilyl)synthesis via acylation of copper reagents, 1, 436
Butanoyl chloride, γ-furylFriedel–Crafts reaction, 2, 759
Butanoyl chloride, heptafluorouFriedel–Crafts reaction, 2, 759
Butanoyl chloride

bimolecular aromatic, 2, 739
Butanoyl chloride, 4-(2-naphthyloxy)-
Friedel–Crafts reaction
regioselective, 2, 765
Butanoyl chloride, 4-(2'-thionaphthoxy)-
Friedel–Crafts reaction, 2, 765
Butatriene
synthesis
via retro Diels–Alder reaction, 5, 589
1,2,3-Butatriene, 1,4-diphenyl-
hydrogenation
palladium-catalyzed, 8, 436
2-Butenal, 2-methyl-
Diels–Alder reactions, 5, 378
3-Butenal, methyl-2-phenyl-
synthesis, 1, 560
1-Butene
asymmetric hydroformylation, 4, 930
hydroformylation, 4, 930
oxidation
Wacker process, 7, 452
2-Butene
aminomercuration, 4, 290
asymmetric hydroformylation, 4, 930
dicarboxylation, 4, 946
ene reactions, 5, 2
hydroformylation, 4, 930
oxidation
Wacker process, 7, 451
synthesis
Ramberg–Bäcklund rearrangement, 3, 861
cis-2-Butene
cyclobutanones from, 5, 1087
oxidation, 7, 462
2-Butene, 1-bromo-
alkylation, 3, 253
reaction with organochromium compounds
anti selectivity, 1, 179
synthesis
via 1,3-butadiene, 5, 903
2-Butene, 1-cyano-
synthesis
via 1-bromo-2-butene, 6, 230
2-Butene, 2,3-dideutero-
hydrochlorination, 4, 272
1-Butene, 3,3-dimethoxy-2-methyl-
iterative rearrangements, 5, 892
1-Butene, 3,3-dimethyl-
aminomercuration, 4, 294
oxidation
Wacker process, 7, 450
Pauson–Khand cycloaddition, 5, 1041
2-Butene, 2,3-dimethyl-
ee reactions
Lewis acid catalysis, 5, 4
hydroboration, 8, 713
mechanism, 8, 724
hydroformylation, 4, 919
hydroisilylation, 8, 776
photochemical cycloadditions
benzonitrile, 5, 161
2-Butene, 2,3-diphenyl-
hydrogenation
stereochemistry, 8, 426
2-Butene, 1,4-disilyl-
unsymmetrically substituted
Cumulative Subject Index

1-Butyne

hydrocarboxylation, 4, 941
3-Butene-2-ol, 2-methyl-

oxidation
Wacker process, 7, 453

2-Butene-1-ol, 2-methyl-4-phenyl-

asymmetric epoxidation, 7, 409
3-Butene-2-ol, 3-phenyl-

hydrogenation
homogeneous catalysis, 8, 447

3-Butene-1-ol, 1-phenyl-2-methyl-

synthesis
via trihaptotitanium compound, 1, 159

α,β-Butenolide
synthesis
Knoevenagel reaction, 2, 381

Δ1-Butenolide
synthesis
Reformatsky reaction, 2, 284
Butenolide anions
reactions with acetals
Lewis acid promoted, 1, 347
Butenolides
chiral synthesis, 6, 152

3, 905; 7, 596
use of disilyl enol ether, 2, 619
via cyclofunctionalization of alkynoic acids, 4, 393

via hydrocarboxylation, 4, 937

via ortho lithiation, 1, 472

via oxidation of a cyanohydrin, 1, 551

via Peterson alkenation, 1, 791
tandem vicinal difunctionalization, 4, 249
Butenolides, hydroxy-
synthesis
multicomponent carbonylation, 3, 1020
γ-Butenolides, 4-substituted
tandem vicinal difunctionalization, 4, 249
Butenolides, 4-ylidene-
synthesis, 7, 619
2-Butene-1-one, 1-phenyl-4,4,4-trifluororeduction
dihydropyridines, 8, 561
But-2-enoyl chloride, 3-methyl-

reaction with silyl ketene acetals, 2, 804
Butenyl acetate
dicarboxylation, 4, 948
2-Butenyl acetate, 3-methyl-

hydroformylation, 4, 924
3-Butenyl bromide
coupling reactions
with phenyl Grignard reagents, 3, 464
2-Buteneylene dicarbamate
cyclization, 6, 88
Butenyl radicals
cyclizations, 4, 785
But-1-en-3-yne, 2-methyl-

photolysis
with benzophenone, 5, 164
ν-Butyl alcohol
solvent
radical reactions, 4, 721

synthesis
via ethyl acetate, 1, 398
ν-Butylamide, ν-octyl-
lithium derivative
enolate preparation, 2, 600
ν-Butylamine
imines
deprotonation, 6, 720
Butyl benzoate
benzoyl chloride synthesis, 6, 307
ν-Butyl chromate
oxidation
ethers, 7, 236
ν-Butyl esters
carboxy-protecting groups
stability, 6, 668

protecting groups

cleavage, 6, 635
peptides, 6, 633
ν-Butyl hydroperoxide
asymmetric epoxidation, 7, 394
chromium trioxide
alcohol oxidation, 7, 278
oxidation
primary alcohols, 7, 310
secondary alcohols, 7, 323
propylene oxide synthesis, 7, 375
reoxidant
Wacker process, 7, 452, 462

safety, 7, 394

secondary oxidant
osmium tetroxide oxidation, 7, 439
storage, 7, 394
ν-Butyl hypochlorite
alkane chlorination, 7, 17
ν-Butyl hypiodite
reaction with carboxylic acids, 7, 723
ν-Butyl isobutyrate
lithium enolate
crystal structure, 1, 30
Butyl nitrate
nitration with, 6, 110
ν-Butylxyccarboxyl azide
protecting group
amines, 6, 637
ν-Butylxyccarboxyl group
carboxy-protecting group, 6, 669, 670
cleavage, 6, 635, 636
ν-Butylxyccymethyl group
alcohol protection, 6, 647
ν-Butyl peroxide
oxidative cleavage of alkenes
with molybdenum dioxide diacetylacetonate, 7, 587
ν-Butyl propionate
lithium enolate
crystal structure, 1, 30
ν-Butyl trimethylsilylaceta
te lithium anion
Peterson alkenation, 1, 789
2-Butyne
hydrogenation to cis-2-butene

homogeneous catalysis, 8, 458
hydrozirconation, 8, 690

reaction with iron carbene complexes, 5, 1089
2-Butyne, 1,4-bis(trimethylstannyl)-

reaction with Eschenmoser’s salt, 2, 1000
2-Butyne, 1,4-dichloro-

reaction with bromine, 4, 346

reaction with selenenyl halides, 4, 342

reaction with sulfenyl halides, 4, 336
1-Butyne, 3,3-dimethyl-

trimerization
rhodium catalysis, 5, 1146
2-Butyne, hexafluoro-
hydrobromination, 4, 286
1-Butyne, 3-methoxy-3-methyl-
organocopper compounds, 3, 212
1-Butyne, 3-methyl-3-methoxy-
acrylation nontransferable ligand, 1, 430
1-Butyne, 1-trimethylsilyl-
eprotonation formation of organolithium reagent from, 2, 993
2-Butyne-1,4-diol carbomagnesiation, 4, 878
1-Butyn-3-ol, 3-methyl-
trimerization nickel catalysis, 5, 1146
3-Butyn-2-ol, 2-methyl-
in terminal alkyne synthesis, 3, 531
3-Butynone conjugate additions trialkyboranes, 4, 163
[3 + 2] cycloaddition reactions with 1,3,3-trimethyl-1-((trimethylsilyl)allene, 5, 278
ene reactions Lewis acid catalysis, 5, 8
photolysis with isobutene, 5, 164
Butyraldehyde, 3-methoxy(methoxy)-
α-alkoxyaldimines derived from reaction with allyl organometallic compounds, 2, 987
Butyrate, glycidyl-
synthesis enzymatic resolution, 6, 340
Butyric acid, γ-amido-
synthesis via aziridines, 6, 96
Butyric acid, α-amino-
asymmetric synthesis, 8, 146
Butyric acid, 2-amino-4-phosphono-
synthesis via intramolecular ester enolate addition reactions, 4, 111
Butyric acid, γ-bromo-
reactions with samarium diiodide lactone synthesis, 1, 259
Butyric acid, 3-(dimethylphenylsilyl)-
ethyl ester reaction with N-silylimines, 2, 936
ethyl ester, enolate Mannich reaction, 2, 926
Butyric acid, 2,3-dioxo-
r-butyl ester rearrangement, 3, 822, 831
Butyric acid, α-halo-
aryl esters cycloalkylation, 3, 324
Butyric acid, 4-hydroseleno-
ring closure, 6, 462
Butyric acid, 3-hydroxy-
enolates thienamycin synthesis, 2, 925
esters reaction with imines, 5, 102
methyl ester β-lactam synthesis, 2, 937
Butyric acid, 4-phenyl-
Schmidt reaction, 6, 817
Butyric acid, 3-trichloromethyl-
synthesis via conjugate addition to α,β-unsaturated carboxylic acid, 4, 202
Butyric acid, trisopropylsilyloxy-
cycloaddition with imines, 5, 99
γ-Butyrolactone, 2-amino-
synthesis, 5, 1080
γ-Butyrolactone, α, α-bis(phenylthio)-
use as enolate precursors, 2, 186
γ-Butyrolactone, 2,4-disubstituted synthesis via [2 + 2 + 2] cycloaddition, 5, 1138
γ-Butyrolactone, 4,5-trans-disubstituted synthesis via 1,2-addition of organocuprates, 1, 110
Butyrolactone, 5-ethenyl-
synthesis, 3, 245
γ-Butyrolactone, (E)-α-heptylidine-
synthesis use of enolates, 2, 186
Butyrolactone, hydroxy-
alkylation, 3, 41
dianion diastereofacial selectivity, 2, 204
synthesis via alkylation of protected cyanohydrin, 1, 552
γ-Butyrolactone, β-keto-
synthesis via Reformatsky-type reaction, 1, 551
δ-Butyrolactone, β-keto-
synthesis Blaise reaction, 2, 298
Butyrolactone, menthyl-
Diels–Alder reactions, 5, 1076; 7, 102, 239, 502
via carbonylation of homoallylic alcohols, 3, 1031
via retro Diels–Alder reactions, 5, 578
γ-Butyrolactone, 2,3,3-trimethyl-
synthesis via hydrocarboxylation, 4, 941
γ-Butyrolactone 2-acetic acid esters synthesis carbonylation, 3, 1040
Butyrolactones bicyclic synthesis via Michael addition, 4, 24
synthesis via samarium diiodide, 1, 269
lithium enolate aldol reaction, diastereoselection, 2, 204
synthesis via ketyl–alkene coupling reaction, 1, 268
γ-Butyrolactones alkynic ketone synthesis from, 1, 419
hydrogenation, 8, 246
polysubstituted synthesis, 3, 843
β-substituted synthesis via conjugate addition to oxazepines, 4, 206
synthesis enantioselectivity, 3, 956
Perkin reaction, 2, 401
Cumulative Subject Index

Butyrophenone

text via [3 + 2] cycloaddition reactions, 5, 297
via metal-catalyzed cycloaddition, 5, 1200
via α-sulfonyl carbanions, 6, 159

Butyronitrile
reduction
lithium triethoxyaluminum hydride, 8, 274

Butyronitrile, 3,3-dimethyl-2-oxo-
synthesis
via acyl halides, 6, 233
Butyronitrile, phenyl-
synthesis
via organochromium reagent, 1, 175
Butyrophenone
oxidative rearrangement
solid support, 7, 845
C₄₀ archaebacterial diol synthesis
use of aldol reaction, 2, 195
C₁₉ gibberellins synthesis
Knoevenagel reaction, 2, 370
Cadot–Chodkiewicz coupling, 3, 553
alkynes organocopper compounds, 3, 219
Cadmium, γ-alkoxyallyl-reaction with glyceraldehyde acetonide, 2, 31
Cadmium, aryl-alkylation,
Cadmium, dicrotyl-reactions with aldehydes use of aldol reaction, 2, 195
Knoevenagel reaction, 2, 370
Cadiot-Chodkiewicz coupling, 3, 553
organocopper compounds, 3, 219
stereoselectivity, 1, 220
chiral aldehydes, 1, 221
Cadmium chloride
sodium borohydride modifier acyl halide reduction, 8, 263
Cadmium reagents, alkyl-addition reactions chiral aldehydes, 1, 221
Cadmium, methyl-addition reactions
Cadmium reagents, aryl-addition reactions, 1, 225
Caesalpinine synthesis via photocycloaddition, 5, 176
Cafestol synthesis via cyclopropane ring opening, 4, 1043
Caged compounds transannular reactions, 3, 382
Cage-like structures transannular reactions, 3, 854
Caglioti reactions carbonyl deoxygenations, 8, 343
Calameon synthesis transannular ene reaction, 2, 553
Calciferol synthesis via precalciferol, 5, 700
Calciferol, 1,25-dihydroxy-A ring synthesis via intramolecular ene reaction, 5, 18
Calcimycin synthesis, 1, 568; 3, 126, 139
aldol reaction of magnesium enolate, 2, 219
final step, 1, 409
introduction of 2-keto pyrrole, 1, 409
model system, 1, 410
Calcium Birch reduction, 8, 492
dissolving metal reductions unsaturated hydrocarbons, 8, 480
reduction ammonia, 8, 113
enones, 8, 524
epoxides, 8, 881
Calcium hydride reduction acyl halides, 8, 262
Calcium hypochlorite glycol cleavage, 7, 706
oxidation secondary alcohols, 7, 318
Calichemicins synthesis copper catalysts, 3, 217
Ramberg-Bäcklund rearrangement, 3, 883 via electrocyclization, 5, 736
California red scale female sex pheromone A1 component synthesis via ene reaction with methyl propionate, 5, 8
California red scale pheromone synthesis via conjugate addition to α,β-unsaturated acetal, 4, 209 via conjugate addition to α,β-unsaturated carboxylic acid, 4, 202
Calonectrin synthesis via cyclohexadienyl complexes, 4, 680
Camphene hydrozirconation, 8, 689
reaction with hydrofluoric acid, 4, 270
rearrangement, 3, 705
Vilsmeier–Haack reaction, 2, 782
Camphenic acid synthesis via [4 + 3] cycloaddition, 5, 603
Campheniol rearrangement, 3, 706
Campherenone synthesis, 3, 427
via [3 + 2] cycloaddition reactions, 5, 286
Camphor chiral enoates conjugate additions, 4, 202
enol silane derivative
Mannich reaction, 2, 908
enzymic hydroxylation cytochrome P-450, 7, 80
ketal reduction, 8, 222
reaction with lithium aluminum hydride chiral modification of reducing agents, 8, 159
rearrangement, 3, 710
reduction dissolving metals, 8, 109, 110, 120
dissolving metals/ammonia, 8, 112
ytterbium/ammonia, 8, 113
Ritter reaction with acetonitrile, 6, 270
silyl ketene acetics, derivatives of stereoselective reactions, 2, 636
synthesis via [3 + 2] cycloaddition reactions, 5, 286
via intramolecular ene reactions, 5, 21
Camphor, 3-endo-bromo-
rearrangement, 3, 711
Camphor, diazo-
Wolff rearrangement, 3, 900
Camphor, 3,3-dibromo-
Wagner–Meerwein rearrangement, 3, 712
Camphor, iodo-
oxime
Beckmann fragmentation, 6, 774
Camphoric acid, monoperoxy-
oxaziridine synthesis, 1, 838
Camphor quinone, dihydro-
oxime
Beckmann fragmentation, 7, 700
Camphor-9-sulfonic acid
synthesis, 3, 710
Camphor-10-sulfonic acid
synthesis
from camphor, 3, 710
Camphor-9-sulfonic acid, 3-endo-bromo-
synthesis, 3, 711
Camphor-10-sulfonyl chloride
conjugate additions
enones, 4, 201
Camptothecin
synthesis
via activated allene, 4, 54
Canadine
synthesis
via 6-exo-trig cyclization, 4, 39
via tandem vicinal difunctionalization, 4, 251
Candida cloacae
hydrocarbon oxidation, 7, 56
Cannabinoids
microbial hydroxylation, 7, 66
synthesis, 3, 127
Knoevenagel reaction, 2, 372
via Diels–Alder reactions, 5, 468
Cannabinol
photochemical ring opening, 5, 727
Cannabinol, hexahydro-
synthesis
via Diels–Alder reaction, 5, 468
Cannabinol, 3-hydroxyhexahydro-
synthesis
via Diels–Alder reaction, 5, 468
Cannabinol, 7-oxohexahydro-
tosylhydrazine acetate
Bamford–Stevens reaction, 6, 776
Cannabinol, Δ1-tetrahydro-
biomimetic synthesis, 2, 621
Cannabisativine
synthesis
oxime reactions with allyl organometallic
compounds, 2, 996
Cannabisativine, anhydro-
synthesis
via Diels–Alder reaction, 5, 414
Cannitrene II
synthesis, 3, 591
Cannivonine
synthesis
via Cope rearrangement, 5, 814
Cannivonine, dihydro-
synthesis
via dienyliron complexes, 4, 673
Cannizzaro reaction
catalysts, 8, 86
transition metals, 8, 86
electron transfer mechanism, 3, 824
enolizable aldehydes
transition metal catalysts, 8, 86
mechanism
tetracoordinate intermediate, 8, 86
reduction of nonenolizable aldehydes
hydride transfer, 8, 86
Cantharidin
synthesis
via Diels–Alder reaction, 5, 342
Capnellane
synthesis, 3, 389
Capnellene
synthesis, 3, 384, 404
via carbonyl–alkyne cyclization, 3, 602
via Tebbe reagent, 1, 748
Δ9(13)-Capnellene
synthesis, 6, 780
Δ9(12)-Capnellene
synthesis, 3, 20, 288
via magnesium–ene reaction, 5, 40
via Nazarov cyclization, 5, 763, 779
via ring-opening metathesis polymerization, 5, 1121
via Tebbe reagent, 5, 1124
Δ9(12)-Capnellene-8β, 10α-diol
synthesis, 3, 603
Caproic acid
reduction
hydrides, 8, 260
Caproic acid, ε-amino-
catalyst
Knoevenagel reaction, 2, 343
Caprolactam, 2-chloro-
rearrangements, 3, 849
Capsaicinoids
synthesis
via Julia coupling, 1, 797
1-Carbaclycin
synthesis
Dieckmann reaction, 2, 824
Dinagel reaction, 2, 824
Carbacyclins
synthesis
stereoselectivity, 1, 535
via cycloalkenyl sulfone, 4, 79
via zirconium-promoted bicyclization of enynes, 5, 1166
Carbalumination, 8, 756
intramolecular, 8, 758
Carbamates
anodic oxidation, 7, 804
epoxidation directed by, 7, 367
α′-lithioalkyl
alkylation, 3, 88
α-methoxylation, 7, 805
oxidation
electrochemical, 2, 1051
reduction, 8, 254
Carbamates, 2-alkenyl-
Carbamates

- homoadol reaction, 6, 863
- Carbamates, allyl-N-phenyl-reaction with lithium cuprates, 3, 222
- Carbamates, α-chloro-
- Carbamates imines
- Diels–Alder reactions, 5, 405
- Carbamates, N-(3-diphenylpropyl)-synthesis, 6, 94
- Carbamates, N-halo-reaction with conjugated alkenynes, 7, 505
- Carbamates, N-methoxymethyl synthesis, 7, 650
- Carbamates, vinylogous reaction with Grignard reagents, 2, 388
- Carbamazepin epoxide ring opening, 3, 737
- Carbamic acid, 3-alken-1-ynyl-synthesis stereospecificity, 2, 94
- Carbamic acid, allylthio-alkylation, 3, 103
- Carbamic acid, N-(1-hydroxyalkyl)-synthesis, 2, 1049
- Carbamic acid, N-\(\text{1-hydroxyalkyl}\)-synthesis, 7, 650
- Carbamic acid, N-(\(1\)-hydroxyalkyl)-synthesis, 2, 195
- Carbamic acid, N-(1-alkyn-1-yl)-synthesis, 2, 67
- Carbamic acid, N,N-dialkyl-allyl esters reactions with carbonyl compounds, 2, 67
- Carbamic acid, N,N-diisopropyl-2-alkynyl-titanium reagent reaction with aldehydes, 2, 94
- Carbamic acid, N,N-dimethylthio- methyloxymethyl ester alkylation, 3, 136
- Carbamic acid, dithio-α-alkylated allylic rearrangement, 3, 117
- allyl ester reduction, 3, 108
- Carbamic acid, γ-methylthioallyl-alkylation, 3, 103
- Carbamoyl chloride, N,N-dialkyl-adducts amides, 6, 492
- Carbamycin B synthesis via photoisomerization, 5, 232
- Carbamoylchloride-accelerated rearrangements small rings, 5, 1004–1006
- Carbanions acylation, 6, 445
- aliphatic crystal structures, 1, 9
- alkali metal cations, 1, 1–42
- aggregation state, 1, 5
- carbonyl addition reactions, 1, 49–74
- coordination geometry, 1, 7
- coordination number, 1, 7
- alkaline earth metal cations, 1, 1–42
- aggregation state, 1, 5
- carbonyl addition reactions, 1, 49–74
- coordination geometry, 1, 7
- coordination number, 1, 7
- α-alkoxy
- from protected cyanohydrins, 3, 197 silicon-stabilized, alkylation, 3, 198
- alkyne crystal structure, 1, 20
- alkyne alkylation, 3, 271–292
- allylic boron-stabilized, 1, 502
- crystal structure, 1, 18
- allylic heteroatom-stabilized alkylation, 3, 196
- allylic sulfanyl addition reactions with carbonyl compounds, 1, 517
- reactions with enones, 1, 520
- allylic sulfonyl reactions with C=O bonds, 1, 529
- anodic oxidation, 7, 805
- antimony-stabilized alkylation, 3, 203
- arsenic-stabilized alkylation, 3, 203
- aryl crystal structure, 1, 21
- benzylic α-alkoxy alkylation, 3, 196
- bis(dialkoxycarbonyl) stabilization reactions with aldehydes, 1, 501
- bismuth-stabilized alkylation, 3, 203
- boron-stabilized, 1, 487–503
- acylation, 1, 497
- alkylation, 1, 495; 3, 199
- calculations, 1, 487
- carboxylation, 1, 498
- crystal structure, 1, 488
- geometry, 1, 488
- halogenation, 1, 501
- nonallylic, 1, 494
- reactions with aldehydes and ketones, 1, 498
- reactions with epoxides, 1, 496
- reactions with metal halides, 1, 494
- synthesis, 1, 489
- crystallization, 1, 41
- crystal structures, 1, 8
- 2D-HOESY NMR, 1, 41
- dithiocarboxylation, 6, 456
- electron-transfer equilibria, 7, 850
- α-epoxy-phosphorus-stabilized, alkylation, 3, 199
- germanium-stabilized alkylation, 3, 203
- halogen-stabilized alkylation, 3, 202
- heteroaromatic alkylation, 3, 260
- heteroatom-stabilized alkylation, 3, 192
- α-heteroatom stabilized addition reactions, 4, 115–117
- heteroatom-substituted crystal structure, 1, 34
- hydride donors reduction of carbonyls, 8, 98
- lead-stabilized
alkylation, 3, 203
mixed metal cations
crystal structure, 1, 39
nitrogen-stabilized
addition reactions, 4, 116
alkylations, 3, 65–82
carbonyl compound addition reactions, 1, 459–482
nitro-stabilized
reactions, 2, 321
nonstabilized
alkylations, 3, 207–233
nucleophilic addition reactions, 4, 116
alkylation, 3, 193
phosphorus-stabilized
addition reactions, 4, 115
alkylation, 3, 200
phosphoryl-stabilized
Wittig reaction, 1, 761
S$_{2}$N$_{1}$ reactions, 4, 471
selenium-containing
aldehydes, 3, 85–181
selenium-stabilized, 1, 629–724
reactions with carbonyl compounds, 1, 672
synthesis, 1, 630, 635
silicon-stabilized, 1, 579–625
addition reactions, 4, 116
alkylation, 3, 200
α-, β-, γ-bonded, 1, 583
phosphoryl-stabilized
addition reactions, 1, 506
configuration, 1, 506
configuration, 1, 512
addition to C=N bonds, 1, 515
addition to carbonyl compounds, 1, 513
addition to nonactivated C=C bonds, 1, 516
configuration, 1, 512
sulfonimidoyl stabilization, 1, 531
configuration, 1, 531
reactions with carbonyl compounds, 1, 532
sulfonimido stabilization, 1, 528
configuration, 1, 528
addition to carbonyl compounds, 1, 529
addition to carbonyl compounds, 1, 529
sulfur-containing
alkylation, 3, 85–181
addition reactions, 4, 115
thioacylation, 6, 453
thiimidate synthesis, 6, 540
tin-stabilized
alkylation, 3, 203
vinylic
alkene metathesis, 5, 1115
alkylation, 5, 1075
cleavage, 5, 1083
coupling reactions
with alkenes, 5, 1084
with alkynes, 5, 1089

Carbene complexes

ambient, 1, 623
activatable, 1, 59
crystal structure, 1, 39
functionalized
addition reactions, 1, 621
stabilization
hyperconjugation, 1, 582
synthesis
general methods, 1, 618

Carbapenems
synthesis
Eschenmoser coupling reaction, 2, 887

Carbapenems
chiral
synthesis, 2, 611
synthesis
Ugi reaction, 2, 1102, 1103
via cycloaddition with CSI, 5, 105
via Diels–Alder reactions, 5, 407
via intramolecular ester enolate addition reactions, 4, 110
via Wittig cyclization, 1, 434

**Carbapenems, 1,8-methyl-
synthesis, 2, 1059

1-Carba-2-ene
synthesis, 7, 620

6a-Carbaprostaglandin I$_2$
synthesis
via Johnson sulfoximine reaction, 1, 742

Carbazole
hydrogenation, 8, 612
reduction
dissolving metals, 8, 614
synthesis
via intramolecular vinyl substitution, 4, 847
via thermolysis, 5, 725

**Carbazole, N-acyl-
reduction**
metal hydrides, 8, 270, 273

**Carbazole, allyl-
anion**
γ-alkylation, 2, 61

**Carbazole, hexahydro-
synthesis, 7, 524

**Carbazole, hydroxy-
synthesis**
via FVP, 5, 732

**Carbazole, N-methyltetrahydro-
aminoalkylation**
Mannich reaction, 2, 967

**Carbazole, N-phenylpropan-3-one, 2,4,6,8-tetraeno-1-
reduction**
metal hydrides, 8, 273

**Carbazole, 1,2,3,4-tetrahydro-
reduction**
dissolving metals, 8, 615

Carbazole aminals
lithiation
addition reactions, 1, 463

Carben complexes
alkene metathesis, 5, 1115
alkylation, 5, 1075
cleavage, 5, 1083
coupling reactions
with alkenes, 5, 1084
with alkynes, 5, 1089
<table>
<thead>
<tr>
<th>Carbene complexes</th>
<th>Cumulative Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>cumulenes, 5, 1107</td>
<td></td>
</tr>
<tr>
<td>cycloaddition</td>
<td></td>
</tr>
<tr>
<td>reactions, 5, 1065–1113</td>
<td></td>
</tr>
<tr>
<td>nucleophilic substitutions, 5, 1083</td>
<td></td>
</tr>
<tr>
<td>reactions, 5, 1067</td>
<td></td>
</tr>
<tr>
<td>Carbene complexes, alkyl aminoalkylation, 5, 1076</td>
<td></td>
</tr>
<tr>
<td>Carbene complexes, alkyl pentacarbonylalkylation, 5, 1076</td>
<td></td>
</tr>
<tr>
<td>anions</td>
<td></td>
</tr>
<tr>
<td>reaction with carbonyl compounds, 5, 1076</td>
<td></td>
</tr>
<tr>
<td>Carbene complexes, aminoalcohol reactions, 5, 1074</td>
<td></td>
</tr>
<tr>
<td>synthsis, 5, 1066</td>
<td></td>
</tr>
<tr>
<td>Carbene complexes, tetracarbonylphosphatealkylation, 5, 1076</td>
<td></td>
</tr>
<tr>
<td>Carbene complexes, α,β-unsaturated Michael additions, 5, 1081</td>
<td></td>
</tr>
<tr>
<td>Carbenes</td>
<td></td>
</tr>
<tr>
<td>chromium complexes</td>
<td></td>
</tr>
<tr>
<td>alkenesynthesis, 1, 807</td>
<td></td>
</tr>
<tr>
<td>deoxygenation</td>
<td></td>
</tr>
<tr>
<td>epoxides, 8, 890</td>
<td></td>
</tr>
<tr>
<td>generation, 4, 961</td>
<td></td>
</tr>
<tr>
<td>metal complexes</td>
<td></td>
</tr>
<tr>
<td>alkenesynthesis, 1, 807</td>
<td></td>
</tr>
<tr>
<td>reaction with alkenes, 7, 8, 10</td>
<td></td>
</tr>
<tr>
<td>reaction with alkenes, 4, 953</td>
<td></td>
</tr>
<tr>
<td>reaction with nitriles, 6, 401</td>
<td></td>
</tr>
<tr>
<td>thioimidate synthsis, 6, 540</td>
<td></td>
</tr>
<tr>
<td>titanium-zinc complexes reactions with esters, 1, 809</td>
<td></td>
</tr>
<tr>
<td>transition metal complexes use in synthesis, 4, 976–986</td>
<td></td>
</tr>
<tr>
<td>Carbenes, alkynyltransition metal complexes</td>
<td></td>
</tr>
<tr>
<td>[2 + 2] cycloaddition reactions, 5, 1067, 1068</td>
<td></td>
</tr>
<tr>
<td>cycloaddition reactions with 1,3-dienes, 5, 1072</td>
<td></td>
</tr>
<tr>
<td>ene reactions, 5, 1075</td>
<td></td>
</tr>
<tr>
<td>Carbenes, cyclopentylring enlargement</td>
<td></td>
</tr>
<tr>
<td>cyclobutene synthsis, 5, 677</td>
<td></td>
</tr>
<tr>
<td>Carbenes, dichlorogeneration, 4, 1000</td>
<td></td>
</tr>
<tr>
<td>Carbenes, difluorgeneration, 4, 1000, 1001</td>
<td></td>
</tr>
<tr>
<td>Carbenes, dihaloaddition to π-bonds, 4, 1002–1005</td>
<td></td>
</tr>
<tr>
<td>electronic configuration, 4, 1002</td>
<td></td>
</tr>
<tr>
<td>generation, 4, 1000–1002</td>
<td></td>
</tr>
<tr>
<td>reaction with imines, 6, 498</td>
<td></td>
</tr>
<tr>
<td>reaction with enol ethers, 1, 878</td>
<td></td>
</tr>
<tr>
<td>structure, 4, 1000</td>
<td></td>
</tr>
<tr>
<td>Carbenes, diiodogeneration, 4, 1001</td>
<td></td>
</tr>
<tr>
<td>Carbenes, diphenyltransition metal complexes reaction with alkenes, 4, 980</td>
<td></td>
</tr>
<tr>
<td>Carbenes, ketoaddition to alkenes, 4, 1031–1064</td>
<td></td>
</tr>
<tr>
<td>Carbenes, α-siloxyintermediates in enol ether preparation, 2, 601</td>
<td></td>
</tr>
<tr>
<td>Carbenes, vinyl-</td>
<td></td>
</tr>
<tr>
<td>adducts</td>
<td></td>
</tr>
<tr>
<td>Cope rearrangement, 5, 804</td>
<td></td>
</tr>
<tr>
<td>[4 + 3] cycloaddition reactions, 5, 599, 604</td>
<td></td>
</tr>
<tr>
<td>α,β-unsaturated addition reaction with enolates, 4, 104</td>
<td></td>
</tr>
<tr>
<td>Carbenium ions</td>
<td></td>
</tr>
<tr>
<td>electron-transfer equilibria, 7, 850</td>
<td></td>
</tr>
<tr>
<td>non-Kolbe electrolysis, 3, 649</td>
<td></td>
</tr>
<tr>
<td>Carbenium ions, trialkoxyorthoester synthsis, 6, 562</td>
<td></td>
</tr>
<tr>
<td>Carbenium salts, dialkoxy-2,2-bis(dialkoxy)carbonitrile synthsis, 6, 565</td>
<td></td>
</tr>
<tr>
<td>Carbenoids</td>
<td></td>
</tr>
<tr>
<td>alkylation, 3, 202</td>
<td></td>
</tr>
<tr>
<td>deoxygenation</td>
<td></td>
</tr>
<tr>
<td>epoxides, 8, 890</td>
<td></td>
</tr>
<tr>
<td>displacement reactions, 2, 1049</td>
<td></td>
</tr>
<tr>
<td>halogen-stabilized epoxidation, 1, 830</td>
<td></td>
</tr>
<tr>
<td>insertion, 3, 1047</td>
<td></td>
</tr>
<tr>
<td>reaction with alkenes, 4, 953</td>
<td></td>
</tr>
<tr>
<td>Carbenoids, ketoaddition to alkenes, 4, 1034–1050</td>
<td></td>
</tr>
<tr>
<td>regioselectivity, 4, 1035</td>
<td></td>
</tr>
<tr>
<td>addition to alkynes, 4, 1050–1052</td>
<td></td>
</tr>
<tr>
<td>generation, 4, 1032</td>
<td></td>
</tr>
<tr>
<td>Carbenoids, β-oxido-rearrangement, 1, 873</td>
<td></td>
</tr>
<tr>
<td>Carbenoids, vinyl-[4 + 3] cycloaddition reactions, 5, 599</td>
<td></td>
</tr>
<tr>
<td>Carbinolamines reduction, 8, 974</td>
<td></td>
</tr>
<tr>
<td>Carbinols, allylvinyllerarrangements, 1, 885</td>
<td></td>
</tr>
<tr>
<td>Carbinols, azidosynthesis, 6, 253</td>
<td></td>
</tr>
<tr>
<td>Carbinols, bis(2-pyrydyl)-synthesis, 3, 826</td>
<td></td>
</tr>
<tr>
<td>Carbinols, diethylphenylsynthesis via triphenylchromium complex, 1, 176</td>
<td></td>
</tr>
<tr>
<td>Carbinols, divinylasymmetric epoxidation, 7, 416</td>
<td></td>
</tr>
<tr>
<td>regioselective rearrangements via Claisen rearrangement, 5, 851</td>
<td></td>
</tr>
<tr>
<td>Carbinols, ethynylselective reduction, 8, 530</td>
<td></td>
</tr>
<tr>
<td>Carbinols, α-silylpreparation, 2, 601</td>
<td></td>
</tr>
<tr>
<td>Carbinols, triphenylreduction</td>
<td></td>
</tr>
<tr>
<td>dissolving metals, 8, 526</td>
<td></td>
</tr>
<tr>
<td>Carboalkoxylation halides</td>
<td></td>
</tr>
<tr>
<td>aryl and vinyl, 3, 1028</td>
<td></td>
</tr>
<tr>
<td>Carboalumination alkenes, 4, 887–893</td>
<td></td>
</tr>
<tr>
<td>regioselectivity, 4, 887</td>
<td></td>
</tr>
<tr>
<td>catalysis</td>
<td></td>
</tr>
<tr>
<td>transition metal complexes, 4, 889</td>
<td></td>
</tr>
<tr>
<td>internal alkenes, 4, 890</td>
<td></td>
</tr>
<tr>
<td>intramolecular, 4, 887</td>
<td></td>
</tr>
<tr>
<td>vinylalanes, 3, 266</td>
<td></td>
</tr>
<tr>
<td>Carboboration alkenes, 4, 884–887</td>
<td></td>
</tr>
</tbody>
</table>
alkynes, 4, 886
intramolecular, 4, 884
Carbocations
-o-hydroxybenzyl
Diels–Alder reactions, 5, 501
Carbocations, α-fluoro-
in fluorination of alkenes, 4, 344
Carbocupration
alkenes, 4, 893–903
intramolecular, 4, 898
Wittig alkenation
diene synthesis, 4, 262
Carbocycles
synthesis
via Ireland silyl ester enolate rearrangement, 5, 841, 843
Carbocyclic compounds
aminokylation
Mannich reaction, 2, 961
Vilsmeier–Haack reaction, 2, 779
Carbocyclines
synthesis
via Pauson–Khand reaction, 5, 1060
Carbocyclization
hydroalumination, 8, 758
Carbodeaulation, 8, 755
Carboximidides
acid anhydride synthesis, 6, 384
amidine synthesis, 6, 546
cycloaddition reactions
isocyanates, 5, 1156
ketenes, 5, 99
peptide synthesis
coupling reagents, 6, 385
Carboximidides, dicyclohexyl-
acid anhydride synthesis, 6, 313
activator
alcohol oxidation, DMSO, 7, 293
acylation
amino acids, 6, 387
esterification, 6, 334
thiol ester synthesis, 6, 437
Carboximidides, diisopropyl-
peptide synthesis
solid phase, 6, 387
Carboximidides, 1-(3-dimethylaminopropyl)-3-ethyl-
Pfitzner–Moffatt oxidation, 7, 294
Carboximidinium iodide
reaction with alcohols
iodination, 6, 214
Carbodiphosphoranes
reactions with halogen compounds
formation of diphosphaallyl cations, 6, 190
synthesis, 6, 196
Carbodiphosphoranes, hexaphenyl-
reactions with heteroallenes, 6, 190
synthesis, 6, 196
Carbodithioates, carboxymethyl
synthesis
via alkylation of sodium carbodithioates, 6, 454
Carbodithioates, phenyl
synthesis
via intramolecular thioacylation, 6, 454
Carbohydrates
epoxides
reduction, 8, 875, 878
fused
synthesis via radical cyclization, 4, 792
α-ketol rearrangement, 3, 831
nucleophilic addition reactions
stereoselectivity, 1, 55
oxidation, 7, 294
Collins reagent, 7, 259
DMSO, 7, 295, 296
pyridinium chlorochromate, 7, 265
permethylation
functionalization for analysis, 6, 647
protected
cleavage, 8, 959
regiodifferentiation
hydroxy group protection, 6, 660
Sharpless–Masamune synthesis
Pummerer rearrangement in, 7, 196
synthesis
Dieckmann reaction, 2, 827
hetero Diels–Alder reaction, 2, 663
via 1,3-dipolar cycloadditions, 4, 1077
via osmium tetroxide, 7, 440
via 5-exo-trig cyclization, 4, 38
Ugi reaction
chiral templates, 6, 405
Carbohydrates, azido
synthesis
via sulfonates, 6, 245
Carbohydrates, 4-methoxybenzyl ethers
oxidation, 7, 237
Carbolines
reduction
borohydrides, 8, 618
β-Carbolines
liithiated formamidines
reaction with benzaldehyde, 1, 482
synthesis, 3, 72
β-Carbolines, 1-alkyl-3-methoxycarbonyl-
1,2,3,4-tetrahydro-
synthesis
Mannich reaction, 2, 1017
β-Carbolines, 1-alkyltetrahydro-
synthesis, 6, 738
β-Carbolines, trans-Nβ-benzyl-3-methoxycarbonyl-
1-substituted-1,2,3,4-tetrahydro-,
synthesis
Mannich reaction, 2, 1017
β-Carbolines, 3,4-dihydro-
silylation, 1, 366
γ-Carbolines, dihydro-
synthesis, 5, 1109
γ-Carbolines, hexahydro-
synthesis, 8, 613
β-Carbolines, tetrahydro-
1,3-disubstituted
synthesis, Mannich reaction, 2, 1017
synthesis, 6, 737
Mannich reaction, 2, 1017
Carbolithiation
alkenes, 4, 867–873
intramolecular, 4, 871
regioselectivity, 4, 868
Carbomagnesiation
alkenes, 4, 873–879
Carbomercuration

regioselectivity, 4, 874
alkynes, 4, 877-879
catalysis
transition metal complexes, 4, 875
heterocycle synthesis, 4, 877
intramolecular
alkenes, 4, 876

Carbomercuration
alkynes, 4, 904
Carbometallation
alkenes, 4, 865-906
chemoselectivity, 4, 866
definition, 4, 866
heteroconjugate addition reactions, 4, 120
organotransition metal compounds, 5, 1163
reaction conditions, 4, 867
regioselectivity, 4, 866
stereoselectivity, 4, 867

Carbomycin B
synthesis
via cycloheptadienyliron complexes, 4, 686

Carbon
chromium(VI) oxide intercalation
alcohol oxidation, 7, 282

Carbonates
alcohol protection, 6, 657
cyclic
diol protection, 6, 662
enol esters, 6, 395
\([3 + 2]\) cycloaddition reactions, 5, 303
reduction
stannane, 8, 824
Carbonates, α-methoxy-
reaction with enol silanes
Lewis acid mediated, 2, 635

Carbonation
organoauminum compounds, 8, 737
organoytterbium compounds, 1, 277
Carbon–boron bonds
oxidation, 7, 593-608

Carbon–carbon bonds
electrochemical oxidation, 7, 794
formation
C—H insertion, 3, 1045-1062
oxidation, 7, 793

Carbon dioxide
conjugate enolate trapping, 4, 261
reactions with \(\pi\)-allylpalladium complexes, 4, 601
regioselectivity, 4, 643

Carbon disulfide
Knoevenagel reaction, 2, 364
thioacylation
amines, 6, 428
Carbon–halogen bonds
oxidation, 7, 653-669
Carbon–hydrogen bonds
cleavage, anodic oxidation, 7, 793
oxidation, 7, 793

Carbonic acid
derivatives
adducts with amides, 6, 491
Knoevenagel reaction, 2, 368

Carbonitriles, 2'-azido-2-phenyl-,
1,3-dipolar cycloaddition, 4, 1101
Carbonitriles, 2,2-bis(dialkoxy)-
synthesis, 6, 564
Carbonitriles, 2,2-bis(dialkylamino)-
synthesis, 6, 577
tris(dialkylamino)alkane synthesis, 6, 580
Carbonitriles, 2,2-dihalo-
2,2-bis(dialkylamino)carbonitrile synthesis, 6, 577
Carbonium ions
hydride acceptors, 8, 91
Carbon–mercury bonds
oxidation, 7, 631
ozonolysis, 7, 637
Carbon–metal bonds
oxidation, 7, 613-638
Carbon monoxide
addition reactions
alkenes, 4, 913-949
hydroxylation in the presence of, 8, 788
reaction with alcohols and amines
mechanism, 3, 1016
reaction with \(\pi\)-allylpalladium complexes, 4, 600
regioselectivity, 4, 643
stereochemistry, 4, 625
reaction with nitriles, 6, 401
reaction with zirconium compounds, 8, 691
reductions
aromatic nitro compounds, 8, 372
Carbon–nitrogen bonds
radical additions
cyclizations, 4, 815-818
Carbon–nitrogen compounds
1,2-addition reactions
organoauminum compounds, 1, 98

Carbon nucleophiles
aromatic nucleophilic substitution, 4, 426-433
Carbonochloridothioates
ketone synthesis from
Grignard reagents, 3, 463
Carbon–oxygen bonds
radical additions
cyclizations, 4, 815-818
Carbon–palladium bonds
oxidation, 7, 629
Carbon–selenium bonds
formation, 7, 619
Carbon–silicon bonds
oxidation, 7, 641-650
Carbon–sulfur bonds
formation, 7, 515
Carbon tetrachlorides
imidoyl halide synthesis, 6, 524
Carbon–tin bonds
oxidation, 7, 614
unactivated
oxidation, 7, 614
Carbononylation, 3, 1015-1041
additive
mechanism, 3, 1019
alkanes
transition metal catalysis, 7, 6
catalysts, 3, 1016
direct
mechanism, 3, 1018
double, 3, 1039
diels–alder reactions, 5, 430
gem-dimethylation
 tebbe reagent, 5, 1124
electroreduction, 8, 131
 asymmetric, 8, 134
 indirect, 8, 132
 enantiomeric reductions
 enzymes and microorganisms, 8, 185
 enolizable reaction with organometallic compounds, 1, 150
 epoxidation, 1, 819
 functional group transformations, 6, 763–793
 α-halo-
 korblum oxidation, 7, 653
 α-heteroatom–substituted deprotonation, 2, 101
 reduction to enolates, 2, 186
 homogeneous catalytic hydrogenation, 8, 152
 homologation
 α-selenoalkyl metals, 1, 724
 hydrazones and arylsulfonylhydrazones
 wolff–kishner reduction, 8, 327–359
 α-hydroxylation, 7, 144
 3-iodo-
 reduction, enoelolate generation, 2, 442
 julia coupling
 sulfones, 1, 806
 knoevenagel reaction, 2, 364
 lewis acid complexes, 1, 283–321
 σ- versus π-(π*)-bonding, 1, 284
 conformation, 1, 285
 effects on rate and reactivity, 1, 284
 NMR, 1, 292
 theoretical studies, 1, 286
 X-ray crystallography, 1, 299
 mannich reaction, 2, 1010
 masked addition to alkyaluminum, 1, 88
 metal hydride reduction
 diastereoselectivity, 8, 7
 α-methyl-β-hydroxy-construction, 2, 249
 nitrogen derivatives
 alkylation, regiochemistry, 3, 28
 alkylation, stereochemistry, 3, 28
 nonconjugated addition reactions, 1, 314
 nucleophilic addition reactions
 chiral auxiliaries, 1, 61
 stereocontrol, 1, 150
 oxidation
 orthoacid synthesis, 6, 561
 oxidation by, 7, 603
 pinacol coupling reactions
 with alkenes, 3, 598
 with alkynes, 3, 602
 with allenes, 3, 605
 polyalkenic α,β-unsaturated reaction with organocuprates, 4, 181
 polycyclic α,β-unsaturated reaction with organocuprates, 4, 181
 prochiral nucleophilic addition reactions, 1, 68
 protecting groups, 6, 675
Carbonyl compounds

Cumulative Subject Index

498

reactions with alkyl pentacarbonyl carbene anions, 5, 1076
reactions with allenylsilanes
titanium tetrachloride, 1, 595
reactions with allylic sulfinyl carbani ons, 1, 517
reactions with crotyl organometallics
Lewis acid catalyzed, 2, 4
reactions with N,N-dimethyl(methylene)iminium salts, 2, 901
reactions with α-halo sulfones, 1, 530
reactions with nitriles, 6, 401
reactions with organocerium compounds, 1, 234
reactions with organosamarium ‘ate’ complexes, 1, 254
reactions with organosamarium(III) reagents, 1, 253
reactions with organotitanium compounds, 1, 145
reactions with organozinc reagents, 1, 215
reactions with organosilicon compounds, 1, 145
reactions with selenium-stabilized carbanions, 1, 517
reactions with sulfinyl-stabilized carbanions, 1, 532
reactions with sulfonyl-stabilized carbanions, 1, 529
reduction
catalytic hydrogenation, 8, 139–155
chemoselectivity, 8, 15
chirally modified hydride reagents, 8, 159–180
dissolving metals, 8, 107–123
dissolving metals, absence of proton donors, 8, 109
dissolving metals, mechanism, 8, 108
dissolving metals, presence of proton donors, 8, 110
enzymes and microorganisms, 8, 185
metal hydrides, 8, 1–22
silanes, 8, 216
stereoselectivity, 8, 3
reductive amination
sodium cyanoborohydride, 8, 47
reductive coupling reactions, 3, 563
with alkenes, 3, 583
regeneration from hydrazones, 2, 523
α-substituted
enolates, 2, 99
reduction, 8, 983–996
α-sulfanyl-α,β-ununsaturated
enantionmers, Michael reaction, 2, 363
synthesis, Knoevenagel reaction, 2, 363
synthesis
from alkyl vinyl sulfides and selenides, 3, 120
via alcohol oxidation, 7, 305
via β-hydroxyalkyl selenides, 1, 712, 714, 721
via oxidative cleavage of alkenes, 7, 544
1,2-transposition
Shapiro reaction, 6, 780
α,β-unsaturated
addition reactions, 1, 311
1,4-addition reactions, 1, 546, 566
1,4-addition reactions with cyanohydrin ethers, 1, 552
1,4-addition reactions with cyanohydrins, 1, 548
1,4-addition reactions with α-(diakylamino)nitriles, 1, 556
addition reactions with organometallic compounds, 1, 155
alkali metal enolates, 2, 106
allylic oxidation, 7, 99
conjugate addition, 4, 228
1,4-conjugate addition of hydrazones, 2, 517
cycloaddition reactions, metal catalyzed, 5, 1197
Diels–Alder reactions, 5, 453
enolates, 2, 187
enolates from, 2, 184
hydrogenation, 8, 439
hydrogenation, homogeneous catalysis, 8, 452
Lewis acid complexes, 1, 287
Lewis acid complexes, NMR, 1, 294
Michael additions, 4, 217
oxidation, palladium(II) catalysis, 4, 553
pinacol coupling reactions, 3, 577
preparation, use of imine anions, 2, 482
protection, 7, 146
reaction with allenylsilanes, 1, 596
reaction with boron reagents, 2, 112
reaction with lithium diallylcuprate, 2, 120
reaction with organocerium compounds, 1, 235, 239
reaction with organocuprates, 4, 179–187
reaction with organometallic compounds, site selectivity, 1, 81
reaction with trialkylboranes, 2, 241
regioselective oxidation, 7, 462
Simmons–Smith reaction, 4, 968
synthesis, 3, 161; 7, 119
synthesis, palladium catalysis, 4, 611
tandem vicinal difunctionalization, 4, 253
β,γ-unsaturated
acrylic, photoisomerizations, 5, 220
regioselective oxidation, 7, 462
semicr yclic, photoisomerizations, 5, 221
synthesis, 5, 941; 6, 850
γ,δ-unsaturated
synthesis via allyl alcohols and allylamines, 6, 855
via Claisen rearrangement, 6, 855
δ,ε-unsaturated
synthesis via 2,3-Wittig–oxy–Cope rearrangement, 6, 852
unsaturated acetics
substitution reactions, 6, 849
α-unsubstituted-β-hydroxy-construction, 2, 260
Carbonyl compounds, α-alkoxy
chiral
reaction with organometallic compounds, 1, 153
reactions with organometallic compounds
Lewis acids, 1, 335
Carbonyl compounds, 2-alkoxy-3-trimethylsilylalkenyl
nucleophilic addition reactions, 1, 58
Carbonyl compounds, α-alkyl
nucleophilic addition reactions, 1, 50
Carbonyl compounds, 2-alkyl-3-trimethylsilylalkenyl
nucleophilic addition reactions
stereoselectivity, 1, 58
Carbonyl compounds, allenic
synthesis, 6, 852
Carbonyl compounds, α-amino
nucleophilic addition reactions
stereoselectivity, 1, 56
Carbonyl compounds, α-arylsulfinyl-α,β-ununsaturated
homochiral
conjugate additions, 4, 213
Cumulative Subject Index

Carbonyl compounds, α-benzyloxy nucleophilic addition reactions selectivity, 1, 52
Carbonyl compounds, α-bromo-oxidation triflamides, 7, 668
Carbonyl compounds, α-chloro-reduction, 8, 20
Carbonyl compounds, cyclic azo-synthesis via oxidation of hydrazides, 7, 748
Carbonyl compounds, α,β-dihydroxy nucleophilic addition reactions stereoselectivity, 1, 55
Carbonyl compounds, α-halo electrochemical reduction, 8, 987 nucleophilic addition reactions selectivity, 1, 50 reduction, 8, 19 reductive cleavage, 8, 987
Carbonyl compounds, α-hydroxy reactions with organometallic compounds Lewis acids, 1, 335 synthesis via cleavage of 1,3-oxathianes, 1, 61 via keto aminals, 1, 64
Carbonyl compounds, α-iodo-synthesis, 7, 535
Carbonyl compounds, α-nitroaryl synthesis, 4, 429
Carbonyl compounds, α-oximino-synthesis via nitroschlorination of alkenes, 4, 357
Carbonyl compounds, α-oxygenated Wittig reaction selectivity, 1, 757
Carbonyl compounds, α-phenylselenenyl-synthesis, 7, 522
Carbonyl compounds, α-seleno enolates reactivity, 1, 691 reactions with enals, 1, 686
Carbonyl compounds, α-sulfenyl reactions with carbonyl compounds, 1, 523
Carbonyl dibromide reaction with amides, 6, 495
Carbonyl dichloride acid anhydride synthesis, 6, 312
Carbonyl difluoride imidoyl halide synthesis, 6, 523 reaction with amides, 6, 495 reaction with tertiary amides, 6, 495
Carbonyldiimidazolide acid anhydride synthesis, 6, 313 imidazolide synthesis, 6, 308
Carbonylmethylenation iodomethylenation samarium diiodide, 1, 261
Carbonyl oxides existence, 4, 1098
Carbonyloxy radicals cyclizations, 4, 798
Carbonyl sulfide conjugate enolate trapping, 4, 261
Carbonyl ylides
alkyne cyclizations, 4, 1163 cyclic alkene cyclizations, 4, 1162 cyclizations, 4, 1159–1163 1,3-dipolar cycloadditions, 4, 1089–1093 open-chain alkene cyclizations, 4, 1161 photogeneration, 4, 1090 Carbonyl ylides, aryl cyclizations, 4, 1161 Carbopalladation alkenes, 4, 903 Carbosulfonylation alkenes, 4, 331 selectivity, 6, 142 Carbethioates α,β-unsaturated synthesis, 6, 453 Carbethioates, β-hydrazono-O-alkyl esters synthesis, 6, 453 Carbethioates, β-oxo-O-alkyl esters synthesis, 6, 453 Carbethioates, O-trimethylsilyl esters synthesis, 6, 448 Carboxamides 3-lithiated reaction with electrophiles, 2, 442 Carboxamides, α-allyloxy-Wittig rearrangement, 3, 1004 Carboxamides, α-bromo-reaction with amines, 6, 67 Carboxonium salts alkoxymethyleniminium salt synthesis, 6, 506 orthoacid synthesis, 6, 561 synthesis via amide alkylation, 6, 502 Carboxy group activation esterification mechanism, 6, 326 ester synthesis, 6, 324 Carboxy groups enzymic reduction specificity, 8, 201 protection, 6, 665 Carboxyhydrazides, α-bromo-reaction with amines, 6, 67 Carboxylation reaction, 7, 728 Carboxylates alkylation preparation of alcohols, 6, 2 in the presence of bromine oxidation, diols, 7, 314 oxidation thiols, 7, 760 reaction with alkyl sulfonates inversion of alcohols, 6, 21 reaction with π-allylpalladium complexes stereochemistry, 4, 622 reaction with nitriles, 6, 401 Carboxylates, γ-bromo-γ-lactone synthesis, 6, 359 Carboxylation alkenes, 4, 932–946
Carboxylic acid azides

catalysts, 4, 939
mechanism, 4, 936–939
ketones, 2, 841
Carboxylic acid azides
amide synthesis, 6, 389
Carboxylic acid chlorides
arylation
palladium complexes, 4, 857
reactions with benzylsamarium reagents, 1, 253
Carboxylic acid chlorides, α-alkoxy-
reactions with ketones
samarium diiodide, 1, 259
Carboxylic acid derivatives
reduction, 8, 235–254
Carboxylic acid esters
acid halide synthesis, 6, 302
acrylic
diastereoselective alkylation, 3, 44
acyclic enolates
diastereoselective alkylation, 3, 42
acylation
preparation of ketones, 1, 411
addition to alkenes
palladium(II) catalysis, 4, 553
alkenic
divinyl ketones from, 5, 776
amide synthesis, 6, 382
amidine synthesis, 6, 543
amidinium salt synthesis, 6, 513
anodic oxidation, 7, 805
aromatic
Birch reduction, 8, 499
azide synthesis, 6, 253
coupling reactions
with alkyl Grignard reagents, 3, 463
Darzens glycidic ester condensation, 2, 425
degradation
amine synthesis, 6, 795
dehydrogenation, 7, 137
pyridine N-oxide, 7, 144
derivatives
amide adducts, 6, 493
nucleophilic addition, 1, 397–453
reactions with organoaluminum reagents, 1, 92
reactions with α-seleno carbanions, 1, 694
α,α-dialkyl
asymmetric synthesis, 3, 53
enantioselective synthesis
Claisen rearrangement, 5, 864
endocyclic enolates
diastereoselective alkylation, 3, 39
enolates
cycloalkylation, 3, 48
intramolecular cyclization, 3, 49
esters
hydroxy group activation, 6, 333
exocyclic enolates
diastereoselective alkylation, 3, 39
homochiral β-branched
conjugate additions, 4, 202
α-hydroxylation, 7, 185
Ivanov reaction, 2, 210
Kolbe electrolysis
cross-coupling, 3, 642
symmetrical coupling, 3, 637
3-lithiated
reaction with electrophiles, 2, 442
masked anions
alkylation, 3, 53
metal enolates
alkylation, 3, 39
2-[6-(2-methoxyethyl)pyridyl] ester
acylating agent, 1, 453
reactions with alkenes, 4, 312–316
reduction
metal hydrides, 8, 259–279
to aldehydes, 8, 283–304
salts
acid anhydride synthesis, 6, 314
sulfenylation, 7, 125
synthesis
carbonylation, 3, 1026
from ketones, 2, 420
homologation of ketones, 2, 419
via microbial oxidation, 7, 56
via organoytterbium compounds, 1, 277
via oxidative cleavage of alkenes, 7, 541, 574
α-(trimethylsilyl)-α,β-unsaturated
reaction with organolithium compounds, 4, 74
unsaturated
dehydration of cyclization via Friedel–Crafts
reaction, 2, 711
γ-lactonization, 6, 360
synthesis, 3, 862
synthesis via Perkin reaction, 2, 401
α,β-unsaturated
diastereoselective additions, 4, 200–208
enzymic reduction, 8, 205
hydrobromination, 4, 282
hydrogenation, homogeneous catalysis, 8, 453
hydroiodination, 4, 288
reaction with allylic halides, 3, 50
β,γ-unsaturated
isomerization, 6, 896
γ,δ-unsaturated
synthesis, via Claisen rearrangement, 5, 828
cis-α,β-unsaturated
carbonylation of alkyne, 3, 1027
α,β-unsaturated dienolates
alkylation, 3, 50
α,β-unsaturated-α-nitro-esters
synthesis, Knoevenagel reaction, 2, 364
Vilsmeier–Haack reaction, 2, 786
Carboxylic acids, N-acetylamino-
hydrogenation, 8, 535
Carboxylic acids, β-alkyl-
synthesis
Knoevenagel reaction, 2, 363
Carboxylic acids, allyl-
synthesis
ene reaction, 2, 539
Carboxylic acids, α-allyloxy-
Cumulative Subject Index

2,3-Carvene

Wittig rearrangement, 3, 999
Carboxylic acids, syn-α-amino-β-hydroxy-enantioselective aldol reaction
gold catalysis, 2, 317
Carboxylic acids, β-bromocyclization, 6, 345
Carboxylic acids, 2,3-epoxy-methyl esters
reaction with organocuprates, 6, 11
ring opening, 6, 11
Carboxylic acids, α,β-epoxy-synthesis
via sulfur ylide reagents, 1, 822
Carboxylic acids, α-halo-dianions
Darzens glycidic ester condensation, 2, 425
resolution, 6, 340
Carboxylic acids, α-hydradino-synthesis, 6, 118
Carboxylic acids, α-hydradino-β-hydroxy-esters
synthesis, 6, 118
Carboxylic acids, α-hydroxy-asymmetric synthesis
from chiral α-keto esters, 1, 49
chiral
synthesis, 1, 86
‘enantiotomerically pure’
synthesis, 7, 316
optically active
synthesis, 6, 852
synthesis, 1, 62
enantiotomerically enriched, 1, 66
via organoytterbium compounds, 1, 280
Carboxylic acids, β-hydroxy-elimination
alkene synthesis, 2, 597
β-lactone synthesis, 6, 347
Carboxylic acids, γ-hydroxy-cyclization
γ-lactone synthesis, 6, 354
Carboxylic acids, α-keto-preparation
Darzens glycidic ester condensation, 2, 420
Carboxylic acids, syn-α-methyl-β-hydroxy-aldol reaction
titanium enolates, chiral auxiliary, 2, 308
zirconium enolates, chiral auxiliary, 2, 304
synthesis, 2, 272
Carboxylic acids, perfluoro-hydrogenation, 8, 242
Carboxylic acids, α-selenometallation, 1, 642
Carboxylic acids, β-silyl-oxidative decarboxylation
formation of alkenes, 7, 628
Carboxylic acids, β-stannyl-oxidation, 7, 628
oxidative decarboxylation
formation of alkenes, 7, 628
Carboxylic anhydrides
Pummerer rearrangement, 7, 196
α,β-unsaturated α-sulfinyl synthesis, 2, 388
Carboxylic esters, α-keto-hydrogenation, 8, 152
Carboxylic esters, α-nitro-synthesis, 6, 104
Carboxylic esters, 4-oxo-synthesis
via benzoin condensation, 1, 542
Carboxylic groups
protection
organometallic transformation, 6, 673
Carboxyl radicals
generation
functional group compatibility, 7, 718
Carboxymethyleniminium salts
acylation, 1, 423
Carbozincation
alkenes, 4, 879–884
alkynes, 4, 883
stereoselectivity, 4, 880
Cardenolides
side chain elaboration
Pummerer rearrangement, 7, 196
synthesis
Knoevenagel reaction, 2, 382
Carene
epoxides
ring opening, 3, 736
3-Carene
allylboranes from
reactions with aldehydes, 2, 33
allylic oxidation, 7, 102
oxidation, 7, 97
pyridinium fluorochromate, 7, 267
ozonolysis
experimental details, 7, 544
Carenomes
synthesis
via Wharton reaction, 8, 927
Carminomycinone, 11-deoxy-synthesis
via ortho lithiation, 1, 464
Carnegine
synthesis, 6, 152, 739
Carotene
synthesis
use of enol ethers, 2, 612
β-Carotene
synthesis, 3, 169, 585
Ramberg–Bäcklund rearrangement, 3, 883
Carotenoids
synthesis, 8, 560
Carpanone
synthesis, 3, 698
via Diels–Alder reactions, 5, 468
Carroll rearrangement
ester enolates, 5, 835
variant of Claisen rearrangement, 5, 834
α-Cartoprione
synthesis
via retro Diels–Alder reaction, 5, 571
2,3-Carvene
oxiranes
rearrangement, 3, 771

Experimental Details
Carvenolide
synthesis, 3, 849

Carveol
oxidation
solid support, 7, 841
reduction
aluminum hydrides, 8, 542
synthesis, 7, 99
cis-Carveol
Claisen–Cope rearrangement, 5, 881

Carvomenthene
oxiranes
rearrangement, 3, 771

Carvomenthone
rearrangement, 3, 832

Carvones
aldol reaction
benzaldehyde, 2, 152
hydrogenation
homogeneous catalysis, 8, 446
Michael addition
benzenethiolate, 6, 141
photochemical cycloadditions, 5, 123
reaction with trimethylsilyl cyanide
1,2-addition, 2, 599
reduction, 8, 563
biochemical, 8, 559
borohydride, 8, 536
dissolving metals, 8, 526
iron hydrides, 8, 550
metal hydrides, 8, 315
molybdenum complex catalyst, 8, 554
silyl ketene acetal derivatives
Cope–Claisen rearrangement, 5, 886
synthesis, 7, 99

Carvones, dihydro-

ozonolysis
Criegee rearrangement, 6, 14
synthesis, 6, 141

Caryolan-1-ol
synthesis, 3, 386

Caryophyllene
synthesis, 3, 389

Caryophyllene synthesis,
3, 386, 399
via photochemical cycloaddition, 5, 124

α-Caryophyllene alcohol
synthesis, 3, 400, 713

α-Caryopterone
synthesis
via retro Diels–Alder reaction, 5, 564

Casbene
synthesis, 3, 431; 7, 94, 647

Casegravol
synthesis, 7, 823

Castelanolide
synthesis, 8, 932

Castro reaction
copper(I) alkynides
reaction with aryl halides, 3, 522

Catalytic transfer hydrogenation
heterogeneous catalysis, 8, 440

Catechols
oxidation
solid support, 7, 843

oxidative trimerization, 3, 669
Catennane
synthesis
intramolecular acyloin coupling reaction, 3, 628

Catharanthine
synthesis
via palladium catalysis, 4, 598

Cation-exchange resins
acidic
catalyst, Friedel–Crafts reaction, 3, 296
Ritter reaction
initiator, 6, 283

Cation-forming agents
metathetic, catalysts
Friedel–Crafts reaction, 3, 298

Cationic cyclizations, 5, 751–781

CBT
synthesis, 3, 1012

CC-1065
synthesis
Sommel–Hauser rearrangement, 3, 969
via Diels–Alder reaction, 5, 492

Cectopia juvenile hormone
synthesis, 3, 99, 107

Cedrane oxide
ozonation, 7, 247

Cedranoids
synthesis
via photoisomerization, 5, 233

Cedrene
synthesis
via Nazarov cyclization, 5, 779
via photocycloaddition, 5, 647, 657

Cedrenone
synthesis
via photocycloaddition, 5, 659

Cedrene, bromo-
synthesis, 5, 659

Cedrol
microbial hydroxylation, 7, 64
synthesis
via photoisomerizations, 5, 231

Celacinnine
synthesis
via cleavage of hydrazide, 8, 389

Celite
silver carbonate support, 7, 841

Cell wall constituents
bacteria
synthesis, 6, 52

Cembranolides
synthesis, 3, 99; 7, 89
via Horner–Wadsworth–Emmons reaction, 1, 772
via sulfones, 6, 158
β-2,7,11-Cembratriene-4,6-diol
synthesis
via failed Wharton reaction, 8, 929

Cembrane
synthesis, 3, 431
Friedel–Crafts reaction, 2, 711

Cephalosporin C
synthesis
Knoevenagel reaction, 2, 358

Cephalosporins
bicyclic
Chelidonine

synthesis via cyclization of enol thioether, 4, 410
rearrangements, 3, 954
synthesis organopalladium catalysts, 3, 232
via cycloadditions of acid chlorides and imines, 5, 92
Yoshimoto's transformation, 6, 897

Cephalosporins, 7α-methoxy-
synthesis, 7, 741

Cephalotaxine

via arynes, 4, 502

Cephalotaxus alkaloids

synthesis

electron transfer induced photocyclizations, 2, 1038

Cepham

synthesis

Ugi reaction, 2, 1103

Cephem dioxides

allylic oxidation, 7, 112
oxidative rearrangement, 7, 820

Ceramides

synthesis, 6, 53
Henry reaction, 2, 331

Cerebroside

synthesis, 6, 54

Cerium

use in cycloalkanone coupling reactions, 3, 570
use in pinacol coupling reactions, 3, 567

Cerium, alkynyl-

reactions with enones, 1, 240
Cerium, alkyl-
in synthesis, 1, 237
Cerium, alkylnyl-

reactions, 1, 242
Cerium, allyl-
synthesis, 1, 239
Cerium, aryl-

reactions with enones, 1, 240
Cerium, trimethylsilylethynyl-

reactions, 1, 242
Cerium, trimethylsilylmethyl-
synthesis, 1, 238
Cerium, α-trimethylsilylvinyl-

reactions with enones, 1, 240
Cerium ammonium nitrate
cyclohexadienyliron complexes
decomplexation, 4, 674
nitrination with, 6, 110
oxidation
benzylic alcohols, 7, 308
quinones, 7, 350
secondary alcohols, 7, 322
tetrahydrofurans, 7, 237

Cerium chloride

Grignard reagent system, 1, 244
lithium aluminum hydride
alkyl halide reduction, 8, 803
preparation, 1, 232
reduction
enones, 8, 540
Cerium complexes

aldol reaction, 2, 311
Cerium enolates
Chenodeoxycholic acid

via arynes, 4, 500
via Diels–Alder reaction, 5, 391
Chenodeoxycholic acid precursor
synthesis via ene reaction with methyl acrylate, 5, 5
Chichibabin reaction
bipyridines, 8, 596
Chinchorone alkaloids
catalysts
conjugate additions, 4, 230
Chinensin
synthesis via ortho directed addition, 1, 468
2-(1H)-Chinolone
synthesis
Knoevenagel reaction, 2, 357
Chirality
self-reproduction
alkylation of enolates, 3, 40
Chitobiase, α-fucosyl-synthesis
protecting groups, 6, 633
Chitobiosyl azide, α-fucosyl-synthesis
protecting groups, 6, 633
Chloral
aldol reaction
unsymmetrical ketones, 2, 144
ene reaction
addition to alkenes, 2, 534
endo/exo selectivity, 2, 534
regioselectivity, 2, 534
oxidant
alumina support, 7, 841
N-sulfonyl imine
Diels–Alder reactions, 5, 402
Chloramine
amination
amines, 7, 741
secondary amines, 7, 746
irradiation, 7, 40
reactions with alkenes, 7, 498, 537
reactions with organoboranes, 7, 606
reaction with trialkylboranes, 7, 607
selenium elimination, 7, 129
Chloranil
dehydrogenation, 7, 135
Chlorides
catalysts
allylsilane reactions with aldehydes, 2, 571
Chlorination
alkanes
remote functionalization, 7, 43
amines, 7, 741
ionic
sulfides, 7, 193
nucleophilic displacement, 6, 204
secondary amines, 7, 747
template-directed
β-cyclodextrin, 7, 49
trimethylborane, 7, 604
Chlorine
activator
DMSO oxidation of alcohols, 7, 298
ligand transfer
oxidation of cyclobutyl radicals, 7, 860
reaction with alkenes, 4, 344
reaction with thioamides, 6, 496
Ritter reaction, 6, 288
Chlorinolysis
C—B bonds, 7, 604
Chloroacetyl esters
alcohol protection
cleavage, 6, 658
Chloroacetyl group
amine-protecting group, 6, 642
α-Chloro acids
synthesis via α-amino acids, 6, 207
m-Chloro-p-acyloxybenzylxoycarbonyl group
amine-protecting group
cleavage, 6, 639
Chloroamination
alkenes, 7, 498
Chloroamphenicol
synthesis, 2, 325
Chlorofluorocarbons
synthesis, 4, 270; 6, 220
Chloroform
reactions with amines, 6, 521
reaction with nitroarenes, 4, 432
Chloroformate
synthesis via DMSO, 7, 299
Chlorohydrin acetate
synthesis, 7, 527
Chlorohydrins
by-product
Wacker process, 7, 451
synthesis, 3, 224; 8, 20
Chloromethylation
arenes
Friedel–Crafts reaction, 3, 321
Chloromethyleniminium ions
synthesis, 6, 487
Chloromethyleniminium salts
formation
Vilsmeier–Haack reaction, 2, 779
reaction with alkenes
Vilsmeier–Haack reaction, 2, 781
reaction with aromatic compounds, 2, 779
2-Chloromethyl-4-nitrophenyl esters
phosphoric acid protecting group, 6, 623
4-Chloro-2-nitrophenyl esters
phosphoric acid protecting group, 6, 622
Chlorophosphoric acid
diamides
amide adducts, 6, 490
ester amides
amide adducts, 6, 490
Chlorosulfamation
alkenes, 4, 347
Chlorosulfonylimidate
acid anhydride synthesis, 6, 313
activator
DMSO oxidation of alcohols, 7, 299
amide synthesis, 6, 386
reaction with imines, 5, 105
Chlorothricin

synthesis
via tandem vicinal difunctionalization, 4, 243

Chlorothricolide

synthesis
via Ireland rearrangement, 5, 842

Chokol A

enantioselective synthesis
via Johnson rearrangement, 5, 839

Cholanic acid, 3α-hydroxy-7-keto-
dissolving metals, 8, 117
5β-Cholanic acid, 3α,11α,15β-trihydroxy-
microbial hydroxylation, 7, 73
5β-Cholanic acid, 3α,11β,15β-trihydroxy-
microbial hydroxylation, 7, 73
5β-Cholanic acid, 3α,15β,18α-trihydroxy-
microbial hydroxylation, 7, 73

Cholesterol

with iminium salts, 2, 901
reactions with organometallic reagents
equatorial or axial, 1, 152
tosylhydrazone
reactions with alkylthiium compounds, 1, 377
Cholestan-6-one, 3β-acetoxy-5α-chloro-
synthesis, 7, 529
Cholestan-3-one, 2α-halo-
reductive elimination, 8, 926
Cholestan-3-ones, 5-vinyl-
pyrolysis
intramolecular ene reaction, 5, 21
Cholest-5-ene
allylic oxidation, 7, 101
synthesis, 8, 819
Δ²-Cholestane, 3-methylene-
synthesis
via ketone methylaion, 1, 506
Cholest-4-ene, 3,6-dione
reduction
transition metals, 8, 531
3β-Cholest-8(14)-enol
hydrogenation
heterogeneous catalysis, 8, 428
Cholestene
hydrogenation
catalytic, 8, 533
reduction
borohydride, 8, 536
Cholest-1-en-3-one
Clemmensen reduction, 8, 311
Cholest-4-en-3-one
hydrogenation
homogeneous catalysis, 8, 452
oxime
Beckmann rearrangement, 7, 692
reduction
dissolving metals, 8, 526
electrochemical, 8, 532
reductive elimination, 8, 930
Cholest-5-en-3-one
1,2-propylenedioxy ketal
reduction, 8, 222
Cholest-5-en-7-one
synthesis, 7, 101
5α-Cholest-1-en-3-one, 2-hydroxy-
rarrangements, 3, 832
5α-Cholest-3-en-2-one, 3-hydroxy-
rarrangements, 3, 832
Cholesterol
acetate
photochemical epoxidation, 7, 384
ethers
synthesis, 6, 23
oxidation
chromium(VI), 7, 820
DMSO, 7, 294
solid support, 7, 841
oxidative rearrangement, 7, 835
Cholesterol, (20S)-hydroxy-
synthesis, 3, 127
Cholesterol, 24-hydroxy-
synthesis, 3, 161
Cholesterol, 25-hydroxy-
precursor
Cholesterol

synthesis via ene reaction with methyl acrylate, 5, 5
synthesis, 8, 694
Cholesterol, (25R)-26-hydroxy-
synthesis, 3, 983
Cholesterol, thioicarbonyl-
reduction
tributylstannane, 8, 820
Cholesterol 3-acetate, 1α-hydroxy-
synthesis
via intramolecular photocycloaddition, 5, 180
Cholesterol acetate, 24-oxo-
synthesis
via ene reaction, 5, 6
Cholesteryl benzoate
allylic oxidation, 7, 104
Choline, thioxobenzoyl-
-thiobenzoylating agent
synthesis, 6, 450
Chorismate
Claisen rearrangement
enzymatic, 5, 855
Chorismate mutase-prephenate dehydrogenase
Claisen rearrangement, 5, 855
Chorismic acid
dimethyl ester
synthesis, Mannich reaction, 2, 904
synthesis
via cyclopropanation, 4, 1036
Chroman, hydroxylamino-
synthesis, 8, 374
3-Chromanamine
synthesis, 8, 376
Chromanones
dehydrogenation
use of thallium trinitrate, 7, 144
use of trityl perchlorate, 7, 144
Mannich reaction
with preformed iminium salts, 2, 902
synthesis
Friedel–Crafts reaction, 2, 758
via ketocarbenoids, 4, 1057
thia analogs
Mannich reaction, with preformed iminium salts,
2, 902
synthesis, Friedel–Crafts reaction, 2, 759
Chroman-4-ones, 2-alkyl-
synthesis
via conjugate addition, 4, 215
Chromanones, 4-thio-
dehydrogenation
use of trityl perchlorate, 7, 144
Chromates
oxidation
halides, 7, 663
sigmatropic rearrangement, 7, 821
Chromates, alkylammonium
oxidation
alcohols, 7, 283
Chromates, hydridopentacarbonyl-
reduction
acyl chlorides, 8, 289
Chromates, metal alkyl
catalytic oxidants
alcohols, 7, 285
Chromene
Vilsmeier–Haack reaction, 2, 782
Chromenes, 3-nitro-
reduction, 8, 374
Chromenones
synthesis
Vilsmeier–Haack reaction, 2, 791
Chromic acid
inert inorganic support
alcohol oxidation, 7, 279
oxidation
ethers, 7, 235, 236
organoboranes, 7, 600
silica support, 7, 844
α,β-unsaturated carbonyl compounds, 7, 99
resin supports
alcohol oxidation, 7, 280
Chromic anhydride
oxidation
alumina support, 7, 844
solid-supported, 7, 840
quinone synthesis, 7, 355
Chromium, α-acyl-
reactions, 1, 202
Chromium, alkynyl-
intramolecular addition reactions, 1, 200
reactions, 1, 193
Chromium, γ-alkoxyallylic
reactions with aldehydes, 1, 185, 190
Chromium, alkyl-
addition to carbonyl compounds, 1, 202
Chromium, (alkylbenzene)tricarbonyl-
substitution reactions, 4, 538
Chromium, alkyl-gem-di-
alkenation, 1, 205
Chromium, alkynyl-
reactions, 1, 201
Chromium, allylic
asymmetric induction, 1, 187
enantioselective addition reactions, 1, 192
intramolecular addition reactions, 1, 187
reactions
1,2-asymmetric induction, 1, 179
carbonyl addition, 1, 177
with achiral aldehydes, 2, 20
with achiral carbonyl compounds, 2, 19
substituted substrates, 1, 189
Chromium, (anisole)tricarbonyl-
addition-protonation reactions, 4, 543
addition reactions, 4, 538
Chromium, (η-arene)tricarbonyl-
addition-oxidation reactions, 4, 531–541
tandem vicinal difunctionalization, 4, 253
Chromium, (η6-benzene)tricarbonyl-
addition-oxidation, 4, 532
reaction with 2-lithio-1,3-dithiane, 4, 545
Chromium, benzylic-
reaction with acrylonitrile, 1, 175
Chromium, (η6-benzyl alcohol)tricarbonyl-
Ritter reaction, 6, 287
Chromium, chloroarene tricarbonyl-
coupling reactions
with tetrabutylin, 3, 454
Chromium, (chlorobenzene)tricarbonyl-
nucleophilic addition reactions, 4, 519
reaction with lithioisobutyrilonitrile, 4, 526
Chromium, crotyl-2,3-asymmetric induction, 1, 181 reactions
carbonyl addition, 1, 177
with achiral carbonyl compounds, 2, 19
with glyceraldehyde acetonide, 2, 29
with α-methyl chiral aldehydes, 2, 29
synthesis, 1, 179
Chromium, (η-1,3,5-cycloheptatriene)tricarbonyl-
cycloaddition reactions
dienes, 5, 633
Chromium, (η4-cyclohexadienyl)tricarbonyl-
Chromium, (μ-cyclopentadienyl)dinitrosobis-
reaction with benzyl bromide, 4, 712
reduction
vicinal dibromides, 8, 797
Chromium, dichlorotris(tetrahydrofuran)alkyl-
Chromium, dichlorotris(tetrahydrofuran)-p-tolyl-
Chromium, (diphenyl ether)tricarbonyl-
synthesis, 1, 202
synthesis, 1, 174
nucleophilic substitution, 4, 527
reaction with diethyl sodiomalonate, 4, 526
synthesis, 4, 523
Chromium, (haloarene)tricarbonyl-
halide exchange, 4, 527
nucleophilic substitution, 4, 522–524
Chromium, hexacarbonyl-
allylic oxidation, 7, 107
Ritter reaction
stereospecific, 6, 287
Chromium, (indole)tricarbonyl-
substitution reactions, 4, 539
Chromium, isopropenyl-
cycloaddition reactions
cyclopentadiene in, 5, 1070
Chromium, methallyl-
reactions
carbonyl addition, 1, 177
Chromium, (N-methyltetrahydroquinoline)tricarbonyl-
addition reactions, 4, 534
Chromium, (naphthalene)tricarbonyl-
addition reactions, 4, 536
Chromium, naphthol tricarbonyl-
synthesis, 5, 1093
Chromium, pentacarbonyl(methoxyarylcarbene)-
selenol ester, 6, 473
Chromium, pentacarbonyl(methoxymethyl)-
reaction with amines
β-lactam synthesis, 3, 1037
Chromium, propargyl-
reactions
carbonyl addition, 1, 177
with carbonyl compounds, 1, 191
Chromium, propynyl-
cycloaddition reactions with cyclopentadiene, 5, 1072
Chromium, (styrene)tricarbonyl-
addition reactions, 4, 546
Chromium, α-thioalkyl-
synthesis, 1, 202
Chromium, (α-(trimethylsilyl)anisole)tricarbonyl-
methylallation, 4, 539
Chromium, triphenyltris(tetrahydrofuran)-
reaction with carbon monoxide
benzpinacol synthesis, 1, 175
synthesis, 1, 174
Chromium carbonyne complexes
anchorage
amino acids, 6, 671
Chromium chloride (see also Chromium dia-
and tri-chloride)
catalyst
Friedel–Crafts reaction, 2, 737
Chromium complexes
chiral
imines, 1, 364
octahedral configuration, 1, 179
Chromium complexes, hydro-
unsaturated compounds, 8, 551
Chromium complexes, vinylcarbene-
reduction
unsaturated carbonyl compounds, 8, 551
Chromium diacetate
reduction
epoxides, 8, 883
Chromium diacetate, bis(ethylenediamine)-
reduction
α,β-unsaturated ketone, 8, 531
Chromium dichloride
electroreduction
carbonyl compounds, 8, 133
reductions
nitro compounds, 8, 371
Chromium(II) perchlorate
radical cyclizations
nonchain methods, 4, 808
Chromium perchlorate, benzylpentaaquo-
synthesis, 1, 174
Chromium reagents
acidic
alcohol oxidation, 7, 252
alkane oxidation, 7, 12
allylic oxidation, 7, 95
aqueous acetic acid
alcohol oxidation, 7, 252
dimethylformamide
alcohol oxidation, 7, 252
dimethyl sulfoxide
alcohol oxidation, 7, 252
glycol cleavage, 7, 706
heterocyclic bases
alcohol oxidation, 7, 256
hexavalent
oxidative cleavage of alkenes, 7, 571
Jones oxidation
alcohols, 7, 253
organoborane oxidation, 7, 600
oxidants
solid-supported, 7, 839
oxidation
alcohols, 7, 251–286
silica support, 7, 844
oxidative rearrangements, 7, 816
sulfuric acid
alcohol oxidation, 7, 252
two phase oxidation
alcohols, 7, 253
Chromium salts
Chromium(II) salts

deoxygenation
epoxides, 8, 888
organochromium compound synthesis from, 1, 174
reduction
alkenes, 8, 531
alkyl halides, 8, 796
mechanism, 8, 482
unsaturated hydrocarbons, 8, 481
reductive cleavage
α-halocarboxyl compounds, 8, 987
ketols, 8, 992
Chromium(II) salts
use in intermolecular pinacol coupling reactions, 3, 565
Chromium trichloride
catalyst
Wurtz reaction, 3, 421
lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 485
reduction
vicinal dibromides, 8, 797
Chromium trioxide
t-butyl hydroperoxide
alcohol oxidation, 7, 278
carbon intercalation
alcohol oxidation, 7, 282
catalytic oxidation
alcohols, 7, 278
crown ethers
alcohol oxidation, 7, 278
diethyl ether
alcohol oxidation, 7, 278
2,4-dimethylpentane-2,4-diol complex
alcohol oxidation, 7, 278
3,5-dimethylpyrazole complex
alcohol oxidation, 7, 260
allylic oxidation, 7, 104
inert inorganic support
alcohol oxidation, 7, 279, 280
oxidation
ethers, 7, 237, 239
sulfoxides, 7, 768
tetaalkylstannanes, 7, 614
oxidative cleavage of alkenes, 7, 542
synthesis of carbonyl compounds, 7, 571
synthesis of carboxylic acids, 7, 587
pyridine complex
alcohol oxidation, 7, 256
allylic oxidation, 7, 100
Chromones
reduction
aluminum hydrides, 8, 544
synthesis, 7, 136
Chromyl azide
azido alcohols from, 7, 491
Chromyl chloride
alkene complexes, 7, 528
inert inorganic support
alcohol oxidation, 7, 279
oxidation
solid support, 7, 845
oxidative halogenation, 7, 527
reaction with silyl enol ethers
ketone α-hydroxylation, 7, 166
Chromyl fluoride
synthesis, 7, 528
Chromyl trichloroacetate
organoborane oxidation, 7, 601
Chrysanthemic acid
synthesis, 7, 96
via carbomagnesiation, 4, 874
Chrysantherum acid
synthesis
via Claisen rearrangement, 6, 859
Chrysene
synthesis
via electrocyclization, 5, 720
Chrysene, 5,6,11,12-tetrahydro-
synthesis
via FVP, 5, 725
Chrysomelidal
synthesis
via [3 + 2] cycloaddition reactions, 5, 309
Chymotrypsin
phthaloyl group removal
amine protection, 6, 643
substrate specificity
synthetic applicability, 2, 456
Cicaprost
synthesis
Knoevenagel reaction, 2, 381
Cinerolone
synthesis
via cinerone, 7, 54
Cinerone
microbial oxidation, 7, 54
Cine substitution
in synthesis, 4, 496
Cinnamaldehydes
dicarbonyl(triphenylphosphine)iron complexes
crystal structure, 1, 309
hydrogenation
catalytic, 8, 140
oxidative rearrangement
solid support, 7, 845
reaction with diethylzinc, 1, 217
reaction with organocopper compounds, 1, 113
reduction
aluminum hydrides, 8, 541, 544
borohydrides, 8, 537
molybdenum complexes, 8, 551
synthesis, 8, 301
Vilsmeier–Haack reaction, 2, 782
Cinnamamides, N,N-dialkyl-
addition reactions
with organomagnesium compounds, 4, 84
Cinnamates
reaction with lithium dimethylcuprate, 4, 171
reduction
borohydrides, 8, 536
Cinnamic acid
acyl cyanides
synthesis, 6, 317
configuration
Knoevenagel reaction product, 2, 345
methyl ester
reaction with lithium bis(phenyl-
dimethylsilyl)cuprate, 2, 200
reduction
transfer hydrogenation, 8, 552
Cumulative Subject Index

Claisen rearrangement

reduction, 8, 563, 564
borohydrides, 8, 540
thermal ene reaction, 2, 540
trans-Citral
Perkin reaction, 2, 400
Citromycinone
synthesis
ene reaction, 2, 549
Citronellal
hydrogenation
catalytic, 8, 533
reduction
borohydrides, 8, 540
synthesis
via conjugate addition to crotonaldehyde
N,O-acetel, 4, 210
via Diels–Alder reaction, 5, 468
thermal cyclization
ene reaction, 2, 540
Citronellal, hydroxy-
synthesis
rhodium-catalyzed hydroformylation, 3, 1022
via hydroformylation, 4, 923
Citronellate, orthodihydro-
methyl ester
Claisen rearrangement, 5, 888
Citronellene
hydroformylation, 4, 922
Citronelic acid
synthesis
via organocopper-mediated additions, 4, 152
Citronellol
microbial hydroxylation, 7, 62
oxidation
solid support, 7, 841
synthesis via conjugate addition to α,β-unsaturated carboxylic amides, 4, 203
synthesis via asymmetric hydrogenation of geraniol or nerol
homogeneous catalysis, 8, 462
biochemical reduction, 8, 560
Claisen–Claisen rearrangement, 5, 888
Claisen condensation
in synthesis, 2, 820
mechanism, 2, 797
reduction and, 2, 818
retro, 2, 855
stereochemistry, 2, 846
tandem reaction, 2, 852
thiocarboxylic esters, 6, 446
Claisen–Cope rearrangement, 5, 876–884
Claisen rearrangement, 5, 827–866
abnormal, 5, 834
acyclic substrates
remote stereocontrol, 5, 864
stereochemistry, 5, 862
alkyl substituents
kinetics, 5, 856
allylic systems, 6, 834
allyl vinyl ethers, 5, 832–834
discovery, 5, 827
amide acetal, 6, 406
aromatic, 5, 834
arylsulfonyl carbamion-accelerated, 5, 1004
asymmetric induction, 6, 858

synthesis
Perkin reaction, 2, 395, 399
cis-Cinnamic acid
Friedel–Crafts reaction, 2, 757
Cinnamic acid, α-acetylamino-
asymmetric hydrogenation
homogeneous catalysis, 8, 460
Cinnamic acid, α-aryl-
synthesis
Perkin reaction, 2, 400
Cinnamic acid, 2-benzamido-
Erlenmeyer azlactone synthesis, 2, 403
Cinnamic acid, p-chloro-
reduction, 8, 905
Cinnamic acid, hydroxy-
oxidative dimerization, 3, 692
Cinnamic acid, α-phenyl-
stereoisomers
Perkin reaction, 2, 397
Cinnamic acid anhydride
synthesis
via 4-benzylpyridine, 6, 310
Cinnamolide
synthesis, 7, 307
Cinnamoyl azides
Curtius rearrangement, 6, 799
Cinnamoyl chloride
reduction
metal hydrides, 8, 290
Cinnamoyl group, 2-nitrodihydro-
reductive cyclization, 8, 367
Cinnamyl acetate
hydrogenolysis, 8, 977
Cinnamyl alcohol
asymmetric epoxidation, 7, 393
kinetics, 7, 421
oxidation
solid support, 7, 841
Cinnamyl alcohol, α-phenyl-
epoxidation, 7, 424
Cinnamyl alcohol epoxide
deoxegenation, 8, 886
Cinnamyl cyanimate
reduction
transfer hydrogenation, 8, 554
Cinnamyl compounds
oxidative rearrangement, 7, 829
Cinnamyl esters
carboxy-protecting groups, 6, 666
Cinnamylcarboxy group
amine-protecting group, 6, 641
Cinnolines
reduction, 8, 640
ring opening
cathodic reduction, 8, 641
Cinnolines, 4-amino-
synthesis
Friedel–Crafts reaction, 2, 758
Cinnolone, 3-cyano-
synthesis
Friedel–Crafts reaction, 2, 758
Citral
aldol reaction
2-butanone, 2, 146
oxidative rearrangement, 7, 828
Claisen–Schmidt reaction

carbonanion-accelerated, 5, 829, 1004
catalysis, 5, 850
charge-accelerated, 5, 847–850
competitive, 5, 850
with Wittig rearrangement, 5, 851
cyclic substrates
remote stereocontrol, 5, 864
stereochemistry, 5, 863
elimination v.s. rearrangement, 5, 853
enzymatic, 5, 851
ester enolate, 6, 859
ketenes, 5, 829
kinetics, 5, 856
mechanism, 5, 856–865
ortho, 5, 834
oxyanion-accelerated, 5, 1000
para, 5, 834
phosphorus-stabilized anions, 5, 847
propargyl vinyl systems, 6, 862
remote stereocontrol, 5, 864
ring expansion
alkylaluminum-catalyzed, 5, 850
self-immolative process
stereochemistry, intrinsic transfer, 5, 860
solvent effects, 5, 854
stereochemistry
intrinsic transfer, 5, 860–863
stereocontrol, 5, 859; 6, 856
synthetic aspects, 5, 830–855
tandem ene reactions, 5, 11
transition state structures, 5, 857
vinyllogous anomeric effect, 5, 856
ynamine, 5, 836
Claisen–Schmidt reaction
acetone
with aromatic aldehydes, 2, 143
mixed aldol reaction, 2, 134
Clavicipitic acids
synthesis
Mannich reaction, 2, 967
via diazoalkene cyclization, 4, 1157
Clavulones
synthesis
via retro Diels–Alder reactions, 5, 562
Claycop
solid support
oxidants, 7, 846
Clayfen
Ritter reaction
initiator, 6, 283
solid support
oxidants, 7, 846
Clays
solid supports
oxidants, 7, 840, 845
stabilized pillared catalysts
Friedel–Crafts reaction, 3, 296
Cleavage reactions
alkenes, 7, 541–589
synthesis of alcohols, 7, 543
Clemmensen reduction
carbonyl compounds, 8, 307, 309
mechanism, 8, 309
Cleomiscosin A
synthesis
silver oxide oxidation, 3, 691
Cleomiscosin B
synthesis
silver oxide oxidation, 3, 691
Cloke rearrangement, 5, 945
Clostridium paraputrificum
reduction
unsaturated carbonyl compounds, 8, 558
Clovone
synthesis, 3, 23, 386
C—H insertion reactions, 3, 1058
Coal
hydrocracking, 3, 328
Cobalamin
catalyst
nitrile reduction, 8, 299
reduction
unsaturated carbonyl compounds, 8, 562
Cobalt
alkene epoxidation catalysis, 7, 383
Cobalt, acetylenehexacarbonyl-
alkyne protection, 6, 692
Cobalt, allyl-
fragmentation
radical reactions, 4, 746
Cobalt, acyl-
aldol reaction, stereoselective, 2, 314
deprotonation
reaction, 2, 217
Cobalt, bis(dimethylglyoximate)chloro(pyridine)-
catalyst
partial reduction of pyridinium salts, 8, 600
Cobalt, carbonylhydrido-
reduction
unsaturated carbonyl compounds, 8, 551
Cobalt, carbonylhydridotris(tributylphosphine)-
hydrogenation
alkenes, 8, 446
Cobalt, carbonylhydridotris(triphenylphosphine)-
hydrogenation
alkenes, 8, 446
Cobalt(I), chlorotris(triphenylphosphine)-
catalyst
Wurtz reaction, 3, 421
Cobalt, dicarbonylhydridobis(tributylphosphine)-
hydrogenation
alkenes, 8, 446
Cobalt, dienyl-
synthesis, 4, 691
Cobalt, octacarbonyldi-
catalyst
acetal hydrogenation, 8, 212
alkyne trimerization, 5, 1146
carbonylation of aryl and vinyl halides, 3, 1026
hydroisilylation, 8, 764
silane reaction with carbonyl compounds, 2, 603
dehalogenation
α-halocarbonyl compounds, 8, 991
deoxygenation
epoxides, 8, 890
Pauson–Khand reaction, 5, 1037
Cobalt, tetracarbonylhydrido-
catalyst
hydroformylation, 4, 915
Cobalt, tricarbonylhydrido(trIBUTylphosphine)-
catalyst
 hydroformylation, 4, 915
Cobalt, trihydridotris(triphenylphosphine)-hydrogenation
 alkenes, 8, 446
Cobalt acetate
 chalcone formation, 2, 150
Cobaltacycloheptanones
 β-hydride elimination
 1-heptene synthesis, 5, 1141
Cobaltacycloheptenes
 β-hydride elimination
 1,6-heptadiene synthesis, 5, 1141
Cobaltacyclopentadienes
 pyridone synthesis
 via [2 + 2 + 2] cycloaddition, 5, 1155
 reaction with carbon disulfide
 thiopyran-2-thione synthesis, 5, 1158
 reaction with nitriles, 5, 1152
 synthesis
 via [2 + 2 + 2] cycloaddition, 5, 1142
Cobalt chloride
 lithium aluminum hydride
 unsaturated hydrocarbon reduction, 8, 485
Cobalt complexes
 allylic oxidation, 7, 95
 catalysts
 carbonyl compound hydrogenation, 8, 154
 hydroboration, 8, 709
 glycol cleavage, 7, 706
Cobalt complexes, carbene
 furans from, 5, 1092
Cobalt enolates
 aldol reaction, 2, 314
Cobalt halides
 lithium aluminum hydride
 unsaturated hydrocarbon reduction, 8, 483
Cobalt hydride
 elimination
 alkene synthesis, 4, 805
Cobaltocene
 pyridone synthesis
 via [2 + 2 + 2] cycloaddition, 5, 1155
Cobalt perchlorate
 alkane oxidation, 7, 12
Cobalt phthalocyanines
 vinyl substitutions
 palladium complexes, 4, 841
Cobalt triacetate
 allylic oxidation, 7, 92
Cocaine
 Mannich base, 2, 894
 oxygen analog
 synthesis, 2, 623
 synthesis
 via nitroene cyclization, 4, 1120
Cocycloaddition reactions
 alkynes, alkenes and carbon monoxide, 5, 1037
Codamine, N-trifluoroacetyl-
 oxidative coupling, 3, 670
Codeinone, 14-bromo-
 catalytic hydrogenation, 8, 899
Codling moth constituent
 synthesis
 via tandem vicinal difunctionalization, 4, 250

Coenzyme A
 dithioesters
 synthesis, 6, 455
Colchicine
 synthesis, 3, 807
 electrooxidation, 3, 683
 via [4 + 3] cycloaddition, 5, 604
 via isomerization, 5, 714
Colletodiol
 synthesis
 via Horner–Wadsworth–Emmons reaction, 1, 769
 via macro lactonization, 6, 375
Collins reagent
 oxidation
 alcohols, 7, 256
 ethers, 7, 240
Communic acids
 biomimetic conversion
 pimaranes, 7, 634
Compactin
 microbial oxidation, 7, 77
 synthesis, 3, 589; 7, 247; 8, 925, 945
 via cyclofunctionalization of cycloalkene, 4, 373
 via Diels–Alder reaction, 5, 350
 via nitrile oxide cyclization, 4, 1128
Compactin, dihydro-
 synthesis, 3, 161
 polyalkene cyclization, 2, 714
Complex reducing agents
 desulfurizations, 8, 840
 reduction
 alkyl halides, 8, 802
 unsaturated carbonyl compounds, 8, 551
Computer programs
 nucleophilic reactivity
 arenes, 4, 425
Concerted reactions
 heterocyclic synthesis, 6, 756
Conduramine F1
 synthesis
 via Diels–Alder reaction, 5, 418
Conduritol A
 synthesis
 via retro Diels–Alder reactions, 5, 564
Confertifolin
 synthesis, 1, 570
Confertin
 synthesis
 ene reaction, 2, 551
 via conjugate addition, 4, 229
 via Cope rearrangement, 5, 982
 via ketocarbenoids, 4, 1055
 via Wharton reaction, 8, 929
Conhydrine
 synthesis, 1, 555
Conia reaction
 thermal intramolecular ene reactions, 5, 20–23
Conine
 synthesis, 1, 559; 6, 769
Conjugate addition–enolate trapping
 definition, 4, 238
Conjugate addition reactions
 chiral catalysts, 4, 230
 organocuprates, 4, 169–195
 stereoselectivity, 4, 187
Conjugate enolates

Conjugate enolates

definition, 4, 238

σ-Conjugation

cyclopropanes, 5, 900

Consecutive rearrangements, 5, 875–896

Contact ion pairs
electron-transfer oxidation, 7, 851, 854

intermolecular interactions
electron-transfer oxidation, 7, 852

Copacamphene

synthesis, 3, 20, 712

Copaene

synthesis, 3, 20

Cope–Claisen rearrangement, 5, 884–887

Cope rearrangement, 5, 785–822

alkyl substitution, 5, 789

allylic systems, 6, 834

amino alcohol synthesis, 7, 493

carbonium-accelerated, 5, 1005

catalysis, 5, 798–803

chirality

transfer, 5, 821

chiral vinyl substituents
double diastereoselection, 5, 817
cis-1,2-divinylcyclopropane, 5, 971–996

conformation, 5, 794

conjugating substituents, 5, 789
double bond configuration, 5, 821
equilibria, 5, 789–796

erethro–threo ratios, 5, 821

heterodivinylcyclopropane, 5, 939

metal catalysis, 5, 799

palladium(II) catalysis, 5, 884–887

synthesis, 3, 201

alkylation, 3, 201

Copper enolates

mechanism of reaction, 2, 120

Copper(I), allyl-

magnesium bromide reagent

reactions with α,β-dialkoxo aldehydes, 1, 109

Copper, 2,2′-bipyridyl-

chalcone formation, 2, 150

Copper, μ-bis(cyanotriylidroborato)-
tetrakis(triphenylphosphine)diphenylphosphido-

acetyl halides, 8, 264

Copper, crotyl-

reaction with benzaldehyde, 1, 113

Copper(I), dialkyl-
tandem vicinal difunctionalization, 4, 254–256

Copper(I), dicyclohexylamido-

conjugate additions

nontransferable ligand, 4, 177

Copper(I), (diethoxyphosphoryl)methyl-
aklylation, 3, 201

Copper(I), diphenylphosphido-

conjugate additions

nontransferable ligand, 4, 177

Copper, germyl-

reaction with alkynes, 4, 901

Copper(I), hexynyl-
tandem vicinal difunctionalization, 4, 256

Copper, iodofluoroacetates

synthesis, 3, 421

Copper, (isopropylthio)allyl-

reactions with acetone, 1, 508

Copper, lithiodimethyl-

copper enolates

mechanism of reaction, 2, 120

Copper, methyl-

aluminum enolates

catalysis, 2, 114

structure, 3, 210

synthesis, 3, 208

Copper(I), pentynyl-
tandem vicinal difunctionalization, 4, 256

Copper, phenyl-

stability, 3, 210

structure, 3, 210

synthesis, 3, 208

Copper, γ-silylated vinyl-

acylation of, 1, 428

Copper, tetrahydroboratobis(triphenylphosphine)-

reduction

hydrazones, 8, 347

unsaturated aldehydes, 8, 540

sodium borohydride modifier

acyl halide reduction, 8, 264

Copper(I), tetrakis[jodo(tri-n-butylphosphine)-

coupling, 3, 418

Copper, trimethylsilyltripheny1-

acetylation of, 1, 436

Copper, vinyl-

reaction with alkynyl halides, 3, 219

reaction with selenol esters, 6, 469

reaction with vinyl halides, 3, 217

Copper acetate

oxidative decarboxylation, 7, 722

oxidant
Cumulative Subject Index

Cortexolone

- Wacker process, 7, 451
- Copper(II) acetylates
 - Cadiot–Chodkiewicz coupling, 3, 219
 - hydrolysis, 3, 210
 - reaction with propargylic electrophiles, 3, 223
 - synthesis, 3, 208, 209
- Copper aldimesines
 - conjugate additions
 - α,β-enones, 4, 162
- Copper(I) alkynes
 - reaction with aryl halides, 3, 522
- Copper borates
 - reaction with allylic halides, 3, 221
- Copper bromide
 - halogenation
 - carbonyl compounds, 7, 120
 - ketone dehydrogenation, 7, 144
 - reaction with organoboranes, 7, 604
 - reoxidant
 - Wacker process, 7, 451
- Copper(II) chloride
 - catalyst
 - Knoevenagel reaction, 2, 345
 - cyclohexadienyliron complexes
decomplexation, 4, 674
- Copper chromite
 - catalyst
 - carboxylic acid hydrogenation, 8, 236
 - ester hydrogenation, 8, 242
 - hydrogenation, 8, 963
- Copper compounds
 - zero-valent
 - organocopper compounds from, 3, 209
- Copper(I) compounds
 - catalysts
 - Grignard couplings, 3, 419
 - halogen atom transfer addition reactions, 4, 754
 - lithium enolate polyalkylation, 3, 6
 - Copper(I) cyanide
 - copper alkynide synthesis, 4, 176
 - purification, 3, 209
- Copper(II) chloride
 - cyanobis(dimethylphenylsilyl)-tandem vicinal difunctionalization, 4, 257
- Copper enolates
 - synthesis, 2, 119
- Copper(I) enolates
 - enantioselective aldol reaction
 - acyloin complexes, 2, 316
- Copper hydride
 - elimination
 - radical cyclizations, 4, 807
 - reduction
 - alkyl halides, 8, 801
 - unsaturated carbonyl compounds, 8, 548, 550
 - Copper iodide
 - unsaturated hydrocarbon reduction, 8, 483
 - in alkylations
 - α-thioalkyllithium, 3, 88
 - purification, 3, 209
 - vinyl Grignard reagent alkylations
 - catalyst, 3, 243
 - Copper(II) dichloroiodide
 - in alkylation
 - Wacker process, 7, 451
- Copper(II) iodide
 - in alkylation
 - alkyl Grignard reagent alkylations
 - catalyst, 3, 243
 - Copper(II) bromide
 - purification, 3, 209
 - Copper(II) chloride
 - catalyst
 - Knoevenagel reaction, 2, 345
cyclohexadienyliron complexes
decomplexation, 4, 674
- Copper(II) cyanide
 - radical cyclizations, 4, 807
 - reduction
 - alkyl halides, 8, 801
 - unsaturated carbonyl compounds, 8, 548, 550
 - Copper iodide
 - unsaturated hydrocarbon reduction, 8, 483
Corticosteroids

oxidative cleavage
sodium bismuthate, 7, 704
synthesis, 3, 126
via acylation of organolithiums, 1, 412

Cortisol
microbial dehydrogenation, 7, 67

Cortisol, fluoro-

Cortisone
microbial dehydrogenation, 7, 67
(±)-Cortisone
synthesis
use of copper homoenolate, 2, 452

Cortisone, 6α-methylhydro-
microbial dehydrogenation, 7, 68

Corydallic acid
methyl ester
synthesis, Mannich reaction, 2, 929

Corydalisol
synthesis, 1, 564

Corydine
synthesis, 3, 807

Corynanthe alkaloids
synthesis
Mannich reaction, 2, 1031

Corynantheoid indole alkaloids
synthesis
via Diels–Alder reactions, 5, 467

Corynabacterium equi
epoxidation, 7, 429

Corynabacterium equi
reduction
unsaturated carbonyl compounds, 8, 561

Corynespora cassicola
epoxidation, 7, 429

Costal
synthesis
via Wharton reaction, 8, 928

Costunolide
synthesis, 8, 945
via chromium(II) ion mediation, 1, 188
via cyclization, 1, 553
Wittig rearrangement, 3, 1010

Costunolide, dihydro-
synthesis
via Cope–Claisen rearrangement, 5, 886

Costus, dehydro-
lactone
synthesis, Mannich reaction, 2, 911

Coulson–Moffitt model
cyclopropane
bonding, 5, 900

Coumaran-2,3-diones
synthesis
Friedel–Crafts reaction, 2, 757

Coumarin-3-carboxylic acid
esters
Knoevenagel reaction, 2, 354
synthesis
Knoevenagel reaction, 2, 357

Coumarin-3-carboxylic acid, 3,4-dihydro-3-substituted-esters
Knoevenagel reaction, 2, 355

Coumarins
synthesis
Knoevenagel reaction, 2, 362
Perkin reaction, 2, 395, 401
via arylicerium reagents, 1, 242
Vilsmeier–Haack reaction, 2, 790

Coumarins, 3-acetyl-
synthesis
Knoevenagel reaction, 2, 359

Coumarins, dihydro-
synthesis, 7, 336
via aromatic Claisen rearrangement, 5, 834

Coumarins, 4-hydroxy-
synthesis
sulfur-assisted carbonylation, 3, 1034

Coumarins, 7-methoxy-3-pyridyl-
synthesis
Knoevenagel reaction, 2, 362

Coumestones
synthesis
via isoflavones, 7, 831

Counter electrodes
electrosynthesis, 8, 130

Coupling reactions
acyloins, 3, 613–631
alkenes, 3, 482
sp carbon centers, 3, 551–559
sp² and sp carbon centers, 3, 521–549
sp³ and sp² carbon centers, 3, 481–515
sp³ and sp² carbon centers, 3, 435–476
sp³ carbon centers, 3, 413–432
sp³ organometallics and alkenyl halides, 3, 436
Crabtree’s catalyst
hydrogenation
alkenes, 8, 452

Cracking
alkanes, 7, 7

Cram–anti-Cram ratio
aldol reactions, 2, 248

Cram–Felkin stereochemical control
Diels–Alder reactions, 2, 677

Cram’s rule
carbonyl compounds
reduction, 8, 3
chiral aldehyde reactions
with pinacol crotylboronates, 2, 25

Crassin acetate
basic nucleus
synthesis, 2, 194

Crenulidine, acetoxy-
synthesis
via Claisen rearrangement, 5, 833

Cresols
cycloalkylation
Friedel–Crafts reaction, 3, 304
disproportionation
Friedel–Crafts reaction, 3, 328

o-Cresols
Mannich reaction
with preformed iminium salts, 2, 960

p-Cresols
arylation, 4, 469, 470
Mannich reaction
with methylamine and formaldehyde, 2, 969
oxidative coupling, 3, 665

p-Cresols, 2,6-di-i-butyl-
enolates
synthesis, 2, 105
Criegee rearrangement
alcohol synthesis, 6, 14
Crinine
synthesis, 6, 741
Mannich reactions, 2, 1042
Crispic acid
synthesis, 8, 647
Croomine
synthesis
via iodicyclization of allylic substrate, 4, 404
Crotepoxide
synthesis
via retro Diels–Alder reactions, 5, 563
Crotonaldehyde
ene reactions
Lewis acid catalysis, 5, 6
hydrogenation, 8, 140
Lewis acid complexes
NMR, 1, 294
reduction
aluminum isopropoxide in isopropyl alcohol, 8, 88
synthesis
via retro Diels–Alder reaction, 5, 553
Crotonamides, N,N-dialkyl-addition reactions
with organomagnesium compounds, 4, 84
Crotonates
alcohol protection
cleavage, 6, 658
conjugate additions
amines, 4, 231
synthesis, 3, 263
Crotonates, ethyl α-methyl-β-bromo-catalytic hydrogenation, 8, 899
Crotonates, methoxy-
alcohol protection
cleavage, 6, 658
Crotonic acid
methyl ester
reaction with lithium
bis(phenyldimethylsilyl)cuprate, 2, 200
reaction with 1-pyrroline 1-oxide, 5, 256
Crotonic acid, 3-amino-2,4-dicyno-reaction with benzil, 3, 824
Crotonic acid, γ-amino-α-fluoro-hydrogenolysis, 8, 896
Crotonic acid, 4-bromo-
esters
Reformatsky reaction, regioselectivity, 2, 286, 287
Crotonic acid, 2-methyl-
ester
alkylation of enolates, 2, 187
Crotonic acid, 3-methyl-
ester
alkylation of enolates, 2, 187
methyl ester
enolates, aldol reaction, 2, 188
Crotonic acid, β-phenylseleno-
synthesis
via alkoxyselenation, 4, 340
Crotonyl azides
Curtius rearrangement, 6, 799
Crotonyl chloride
Nazarov cyclization, 5, 778
Crotyl acetal
reduction, 8, 213
Crotyl addition
aldehydes
2,5-dimethylborolane, 2, 258
Crotyl bromide
reaction with benzaldehyde
chromium dichloride mediated, 1, 179
Crotyl cyanide
Michael additions
chiral imines, 4, 221
Crotyl halides
addition to α-alkoxy chiral aldehydes
chromium mediated, 1, 185
Crotyl organometallic compounds
configurational stability, 2, 5
mechanistic classification
simple diastereoselectivity, 2, 3
reactions with aldimes
regioselectivity, 2, 989
reactions with gem-amino ethers
dependence of product type on metal, 2, 1005
reactions with imines, 2, 988
regioselectivity, 2, 988
reversibility, 2, 980
syn–anti selectivity, 2, 990
reactions with iminium salts
dependence of product type on metal, 2, 1001
reactions with ketones
diastereoselectivity, 2, 8
type I
chair-like transition states, 2, 4
reactions with achiral aldehydes, 2, 9–19
reactions with achiral imines, 2, 9–19
reactions with achiral ketones, 2, 9–19
reactions with aldehydes, 2, 4
reactions with aldehydes, diastereofacial selectivity, 2, 29
reactions with C==X electrophiles, 2, 6
type II
reactions with carbonyl compounds, 2, 4
type III
reactions with achiral aldehydes, 2, 19–24
reactions with achiral ketones, 2, 19–24
reactions with aldehydes, 2, 5
reactions with aldehydes, diastereofacial selectivity, 2, 29
reactions with C==X electrophiles, 2, 6
18-Crown-6
alcohol inversion
suppression of elimination reactions, 6, 21
18-Crown-6, dicyclohexyl-
-S-t-butyl thiocarboxylic esters
synthesis, 6, 440
Crown ethers
1,2-additions to carbonyl compounds
lower order cuprates, 1, 115
chromium(VI) oxide
alcohol oxidation, 7, 278
dissolving metals
reductions, 8, 524
in sulfide metallation, 3, 86
phenolic
synthesis, 7, 333
Crustecdysone

Cumulative Subject Index

516

reactions with organometallic compounds
 Lewis acids, 1, 335
 reduction
 aluminum hydrides, 8, 541
 synthesis, 3, 591
Crustecdysone, 2-deoxy-
synthesis, 8, 534
Cryptands
 reduction
 aluminum hydrides, 8, 541
 [2.2.2]-Cryptand
thioallyl anion reactions
 regioselectivity, 2, 71
Cryptasoline
 synthesis
 via arynes, 4, 504
Cryptopleurine
 synthesis, 3, 507
 use of thallium trifluoroacetate, 3, 670
 via selective ortho lithiation, 1, 466
Cryptopleuroperminene
 synthesis, 1, 564
Cryptowoline
 synthesis
 via arynes, 4, 504
Crystal growth
 carbanions, 1, 40
 Cubane amides
 lithiation, 1, 480
Cubanes
 isomerizations
 metal catalyzed, 5, 1188
 reactions with transition metal complexes, 7, 4
 synthesis, 3, 848, 854
 via photochemical cycloaddition, 5, 123
Cubebin
 synthesis, 1, 566
Cularine alkaloids
 synthesis
 via arynes, 4, 505
Cumene
 solvent
 reductive decarboxylation, 7, 720
 synthesis
 Friedel–Crafts reaction, 3, 294
Cumulatrienes
 synthesis
 via allenic phosphonates, 6, 845
Cumulenes
 addition reactions, 7, 506
 coupling reactions
 carbene complexes, 5, 1107
 cyclic
 synthesis via dihalocyclopropanes, 4, 1010
 hydrogenation, 8, 434
 synthesis
 3,2-sigmatropic rearrangement, 3, 963
 via dihalocyclopropanes, 4, 1010
 via retro Dieck-Alder reaction, 5, 589
Cumyl hydroperoxide
 asymmetric epoxidation, 7, 394
Cunninghamella blakesleean
di-methylhydroxylation, 7, 58
Cuparene
 synthesis, 3, 588
 epoxide ring opening, 3, 744
 synthesis, unsuccessful
diastereoselectivity, 1, 150
Cuparenone
 synthesis, 3, 785, 786
 C—H insertion reactions, 3, 1060
 α-Cuparenone
 synthesis
 via conjugate addition, 4, 215
 via [3 + 2] cycloaddition reactions, 5, 284
 via [4 + 3] cycloaddition reactions, 5, 603
 β-Cuparenone
 synthesis
 via addition with organozinc compounds, 4, 95
 via conjugate addition of aryl cyano-based, 1, 552
Cuprates (see also under Lithium and Dilithium
compounds)
carbanions
 crystal structure, 1, 40
 Claissen rearrangement, 5, 844
 enolates
 synthesis, 2, 119
 higher order, 3, 213
 properties, 4, 170
 synthesis, 3, 209
 immobilization
 solid supports, 3, 211
 reaction with tosylates, 3, 248
 synthesis
 via transmetallation, 4, 175
Cuprates, alkylphenylthio-
lithium salt
 reaction with α,β-unsaturated carbonyl
 compounds, 2, 121
Cuprates, benzyl-
synthesis, 3, 209
Cuprates, bis(phenyldimethylsilyl)-
lithium salt
 conjugate addition to α,β-unsaturated esters, 2, 186
Cuprates, (α-carbalkoxyvinyl)-
rearrangement, 3, 217
Cuprates, cyanoc(2-thieny1)-
alkylation, 3, 251
 stability, 3, 213
Cuprates, dialkenyl-
transmetallation to alkenylzinc reagents, 4, 903
Cuprates, dialkyl-
lithium salt
 conjugate addition to enones, 2, 185
 reactions with dienyliron complexes, 4, 670
Cuprates, dialkylcyclo-
carbonylation with α,β-unsaturated ketones
 1,4-diketone synthesis, 3, 1024
 dilithium salt
 reaction with α,β-unsaturated ketones, 2, 120
Cuprates, dl-3-butyolphosphido-
 stability, 3, 211
Cuprates, dicyclohexylamido-
 stability, 3, 211
Cuprates, dicyclohexylphosphido-
 stability, 3, 211
Cuprates, dimethyl-
lithium salt
 spirocyclic aldol formation, 2, 166
Cuprates, diphenylphosphido-
Cyanohydrins

稳定性，3, 211

Cuprates，divinyl-
没有找到

Cuprates，hydroxy-
没有找到

unsaturated carbonyl compounds，8, 549

Cuprates，phenylthio-
没有找到

Cuprates，phosphino-
没有找到

Cuprates，α-selenoalkyl-
没有找到

Cuprates，α-selenoalkyl-
没有找到

Cuprates，a-selenoalkyl-
没有找到

Cuprates，silyl-
没有找到

Cuprates，vinyl-
没有找到

Curcuminene
没有找到

α-Curcumene
没有找到

α-Curcumene
没有找到

β-Curcumin
没有找到

Current density
没有找到

Current efficiency
没有找到

Current yield
没有找到

Curtius rearrangement，6, 806

acyl azides，3, 908; 6, 797; 7, 477

stereoselectivity，6, 798

Curvularin
没有找到

Curvulin
没有找到

Cyanallyl
discovery，6, 242

Cyanamides
没有找到

Cyanates
没有找到

Cyanation
没有找到

Cyanides
没有找到
Cyanohydrins

- benzoin condensation, 1, 548
- unsaturated anions
- intramolecular reactions, 3, 51

Cyanohydrins, O-allyl-
- Wittig rearrangement, 3, 998

Cyanohydrins, ketone
- β,γ-unsaturated
- synthesis, 3, 998

Cyanohydrins, O-trimethylsilyl-
- alkylation, 3, 197
- p-benzoquinone protection, 6, 682
- carbonyl group protection, 6, 682

Cyanophosphates
- acyl anion equivalents, 1, 544, 560

Cyanophosphates, ketone
- γ unsaturated
- synthesis, 3, 998
- alkylation, 3, 197
- carbonyl group protection, 6, 682

Cyanoselenation
- ketene O,O-acetals, 6, 565

Cyanoselenenylation
- alkenes, 4, 341

Cyanoselenenylation
- alkenes, 4, 337
- synthesis of α-methylthionitriles, 6, 239

Cyanuric acid chloride
- adducts
- amides, 6, 492
- amide synthesis, 6, 383

Cyanuric acid esters
- acid anhydride synthesis, 6, 313

Cyclic compounds
- synthesis
- aldol reaction cascade, 2, 619
- allylic halides, 3, 429
- Wurtz reaction, 3, 422

Cyclo voltammetry
- electrochemistry, 8, 131

Cyclo voltamograms
- oxidation potentials, 7, 852

Cyclitols, amino-
- synthesis
- via cyclofunctionalization, 4, 375, 400

Cyclization–carbonylation
- carboxylate ions
- palladium(II) catalysis, 4, 558

Cyclization–demercuration
- mercury(II)-induced, 8, 857

Cyclization-induced rearrangement
- palladium(II) catalysis, 4, 563

Cyclization reactions
- Beckmann rearrangement, 6, 771
- carbonyl derivatives
- electrophilic or radical attack, 6, 755
- donor radical cations, 7, 876
- electrophilic heteroatom, 4, 363–414
- 5-endo
- alkenyl systems, 4, 377
- 5-endo-trigonal
- intramolecular addition, 4, 40
- 6-endo-trigonal
- intramolecular addition, 4, 40
- 5-exo
- alkenyl systems, 4, 377
- 5-exo-trigonal
- intramolecular addition, 4, 38
- 6-exo-trigonal

Cycloaddition reactions
- intramolecular addition, 4, 39
- nitrogen heterocycles, 397–413
- polyenes, 3, 341–375
- initiation, 3, 342
- mechanism, 3, 374
- propagation, 3, 343
- termination, 3, 345
- radical cations
- unimolecular reaction, 7, 858
- SRN1 reactions, 4, 476–480
- sulfur compounds, 4, 413
- tandem semipinacol rearrangements, 3, 792
- transannular electrophilic, 3, 379–407

Cycloacylation
- γ-hydroxy acids
- γ-lactone synthesis, 6, 350
- lactone synthesis, 6, 342
- β-lactone synthesis, 6, 346
- macrolactonization, 6, 369

Cycloaddition reactions
- alkynes
- alkenes, 5, 676
- carbone transition metal complexes, 5, 1065–1113
- 1,3-dipolar
- intermolecular, 4, 1069–1104
- intramolecular, 4, 1111–1166
- donor radical cations, 7, 879
- hole catalyzed
- diene oxidation, 7, 861
- phenol ethers, 3, 696
- photochemical, 5, 123–148
- mechanisms, 5, 124
- radical cations
- bimolecular reaction, 7, 859
- small ring compounds
- metal-catalyzed, 5, 1185–1204
- thermal, 5, 239–270
- transition metal catalysts, 5, 271–312
- Wolff rearrangement, 3, 905

[2 + 1 + 1] Cycloaddition reactions
- cyclobutanones, 5, 1087

[2 + 2] Cycloaddition reactions
- alkenes
- thermal, 5, 63–79
- carbene transition metal complexes, 5, 1067
- diastereofacial selectivity, 5, 79
- intramolecular, 5, 67–72
- thermal
- stereochemistry, 5, 79

[2 + 2 + 1] Cycloaddition reactions
- cyclopentene synthesis
- Pauson–Khand reaction, 5, 1037

[2 + 2 + 1 + 1] Cycloaddition reactions
- two-alkyne annihilations, 5, 1102

[2 + 2 + 2] Cycloaddition reactions, 5, 1129–1158

[3 + 2] Cycloaddition reactions
- carbene complexes, 5, 1070
- intramolecular, 5, 304
- methylene cyclopropanes, 5, 1188
- radical anions, 7, 862
- synths, 5, 271

[4 + 2] Cycloaddition reactions
- carbene complexes, 5, 1070
- radical anions, 7, 862

[4 + 3] Cycloaddition reactions, 5, 593–613
intramolecular, 5, 609
nonconcerted, 4, 1075

[6 + 4] Cycloaddition reactions, 5, 617–635

Cycloalkadienes
molybdenum complexes
reactions with N-substituted sulfoximine carbanions, 1, 535

monoepoxides
reaction with lithium homocuprates, 3, 226

Cycloalkanecarboxylic acid, 1,2-dialkyl-
synthesis
intramolecular alkylation, 3, 49

1,2-Cycloalkanediols, 1,2-divinyl-
oxo-Cope rearrangement, 5, 796
1-Cycloalkanepropionate, 2-alkoxycarbonyl-
synthesis
Cycloalkanes
bridged
synthesis via 1,3-dipolar cycloadditions, 4, 1077
condensed
synthesis via 1,3-dipolar cycloadditions, 4, 1077
synthesis
Wurtz reaction, 3, 422

Cycloalkanes, alkylidene-
synthesis, 1, 669

Cycloalkanes, 1-azido-1-thiomethyl-
rearrangement, 6, 542
Cycloalkanes, trans,trans-1,2-bis(alkylidene)-
synthesis
via diyne bicyclization, 5, 1171
Cycloalkanes, divinyl-
bridged
Cope rearrangements, 5, 812–819
Cycloalkanes, 1,2-divinyl-
Cope rearrangement, 5, 791, 803–812
Cycloalkanes, methylene-
epoxidation, 7, 361, 364
ring expansion, 7, 831
Cycloalkanol, 2-methoxy-
odic cleavage, 7, 705

Cycloalkanones
boron trifluoride complex
NMR, 1, 293
pinacol coupling reactions
cerium-induced, 3, 570
ring contraction, 7, 832
spiroannelation, 3, 88
synthesis, 7, 601
via Michael addition, 4, 14
Cycloalkanones, alkylidene-
Grignard additions
copper catalyzed, 4, 91
peroxy acid oxidation, 7, 684
Cycloalkanones, 2-alkyl-2-phenyl-
synthesis, 3, 36
Cycloalkanones, dibromomonochloro-
rearrangement, 3, 851
Cycloalkanones, 2,3-dihydroxy-
synthesis
via 2-cycloalkenones, 1, 534
Cycloalkanones, 2-formyl-
Michael addition, 4, 5
Cycloalkanones, 2-nitro-
2-substituted
synthesis, 2, 331
Cycloalkanones, polyhalo-
larger ring
rearrangements, 3, 850
rearrangements, 3, 849
Cycloalkencarbaldehyde
aldimines
reactions with Grignard compounds, 1, 382

Cycloalkenes
allylic oxidation
selenium dioxide, 7, 91
chirality transfer
sulfoxide–sulfenate rearrangements, 6, 900
hydroalumination, 8, 739
ring contraction, 7, 831
synthesis
intramolecular McMurry reaction, 3, 588
via cycloadditions, 5, 64
toluene alkylation with
Friedel–Crafts reaction, 3, 304
transannular reactions, 3, 379
Cycloalkenes, 1-alkyl-
synthesis, 3, 247
Cycloalkenes, 1-chloro-2-hydroperfluoro-
reduction, 8, 897
Cycloalkenes, 1,2-dialkyl-
asymmetric epoxidation
kinetic resolution, 7, 416
Cycloalkenes, dideuterio-
synthesis, 8, 726
Cycloalkenes, 2,3-divinyl-
synthesis
via Cope rearrangement, 5, 797
Cycloalkenes, epoxy-
nucleophilic reactions
Lewis acids, 1, 343
3-Cycloalkenes, 1-trimethylsiloxy-1-vinyl-
thermal rearrangements, 5, 1001
3-Cycloalkenols, 1-vinyl-
oxy-Cope rearrangements, 5, 1001
Cycloalkenones
synthesis, 1, 669
2-Cycloalkenones
dimerization
base initiated, 4, 239
Grignard additions
copper catalyzed, 4, 91
tandem vicinal difunctionalization, 4, 242, 245
2-Cycloalkenones, 2-arylsulfonyl-
addition reaction with enolates, 4, 108
addition reaction with Grignard reagents, 4, 86
tandem vicinal difunctionalization, 4, 245
2-Cycloalkenones, bromo-
hydrogenolysis, 8, 900
Cycloalkenones, 3-nitro-
synthesis, 6, 109
2-Cycloalkenones, β-silyl-
synthesis, 7, 107
2-Cycloalkenones, 2-silyl-
conjugate additions, 4, 213
Cycloalkylation
Cycloalkylcarboxylic acids

Cumulative Subject Index

520

arenes
Friedel–Crafts reaction, 3, 309
carboxylic acid derivatives
enolates, 3, 48
Friedel–Crafts reaction, 3, 323
lactone synthesis, 6, 342
β-lactone synthesis, 6, 345
γ-lactone synthesis, 6, 357
macrolactonization, 6, 375
saturated ketones, 3, 18

Cycloalkylcarboxylic acids
synthesis, 3, 845

Cycloalkylidene epoxides, α-methylene-macroyclic
reaction with organocopper compounds, 3, 226

3α-5-Cyclo-5α-androstan-6-one
Mannich reaction
with iminium salts, 2, 901

Cycloaraneosene
synthesis
via intramolecular ene reactions, 5, 24

Cycloaraneosine
synthesis
via allyl chromium reagents, 1, 187
via chromium-initiated cyclization, 1, 188

Cycloartenol
biosynthesis, 3, 1048

cycloazasulfenylation
alkenes, 4, 332

Cyclobutabenzannulation
biphenylene synthesis, 5, 1151

Cyclobutadienes
isolation
transition metal complexes, 6, 692
push–pull
synthesis, 6, 191
synthesis
via retro Diels–Alder reaction, 5, 568

Cyclobutanediols
pinacol rearrangement, 3, 727

Cyclobutane-1,2-diones
ring contraction, 3, 832

Cyclobutane-1,2-diones, tetramethylene-irradiation
[4 + 3] cycloaddition reaction, 5, 597

Cyclobutanes
alkenes from, 5, 64
charge-accelerated rearrangements, 5, 1016
oxidative rearrangement, 7, 824, 833
ring formation
thermal, 5, 63–79
strain energy, 5, 900
synthesis
intramolecular acyloan coupling reaction, 3, 620
via photochemical cycloaddition, 5, 123
Wurtz reaction, 3, 422

Cyclobutanes, alkylidene-
isomerization
1-alkycyclobutenes, 5, 677

Cyclobutanes, aryl-
rearrangement
oxyanion-accelerated, 5, 1018

Cyclobutanes, 1-cyano-1-(methylthio)-
synthesis, 1, 561

Cyclobutanes, cyclopropyl-
synthesis, 5, 927

Cyclobutanes, 1,2-dicyano-
synthesis
via acrylonitrile dimerization, 5, 63

Cyclobutanes, 1,1-dicyano-2-methoxy-
cleavage, 5, 73

Cyclobutanes, 1,2-dimethylene-
synthesis, 3, 873

Cyclobutanes, divinyl-
rearrangements, 5, 1024–1030
anion-accelerated, 5, 1027–1030
thermolysis
[4 + 4] cycloaddition, 5, 639

Cyclobutanes, 1,2-divinyl-
Cope rearrangement, 5, 791, 805, 821
palladium catalysts, 5, 799
3,3-sigmatropic rearrangement, 5, 1024
synthesis
via [2 + 2] cycloaddition, 5, 1025

Cyclobutanes, 1-lithio-1-selenophenyl-
synthesis
via cyclobutanones, 5, 677

Cyclobutanes, methylene-
oxidation
Wacker process, 7, 453

Cyclobutanes, octylidene-
synthesis, 1, 653

Cyclobutanes, 1,2,3,4-tetravinyl-
Cope rearrangement, 5, 810

Cyclobutanes, vinyl-
rearrangements
azaanion-accelerated, 5, 1023
oxyanion-accelerated, stereochemistry, 5, 1018
thermal, 5, 1016–1024
ring expansion
oxyanion-accelerated, 5, 1017–1023
synthesis
via photoisomerization, 5, 199

Cyclobutane-3-thione, 2,2,4,4-tetramethyl-1-oxo-
tetramethyldisulfide

cycloadditions, 4, 1074

Cyclobutanols
oxidation
solid support, 7, 841
oxidative cleavage, 7, 825
ring expansion, 7, 843
ring strain
relief, 1, 887
synthesis, 7, 41

photochemically mediated, 3, 1048

Cyclobutanols, 1-(1’-alkenyl)-
synthesis, 1, 709

Cyclobutanols, 2-(2-furyl)-
rearrangement
oxyanion-accelerated, 5, 1018

Cyclobutanols, phenyl-
rearrangement
oxyanion-accelerated, 5, 1018

Cyclobutanols, 1-vinyl-
rearrangement
oxyanion-accelerated, 5, 1022
1-Cyclobutanols, 1-vinyl-
oxidation
Wacker process, 7, 453

Cyclobutanols, 2-vinyl-
Cumulative Subject Index

Cyclobutene-3-carbaldehyde

Ramberg–Bäcklund rearrangement, 3, 862, 871

via ene reactions with methyl propiolate, 5, 7

uses in synthesis, 5, 683–688

Cyclobutene, alkylidene synthesis, 3, 116

Cyclobutene, 3-t-butyl-3-methoxy isomerization, 5, 679

Cyclobutene, 1-chloro-2-hydroperfluoro hydrogenation, 5, 899

Cyclobutene, 1-chloro-2-iodotetrafluoro hydrogenolysis, 5, 900

Cyclobutene, 1,2-dialkyl synthesis

via Ramberg–Bäcklund reaction, 3, 873

Cyclobutene, cis-3,4-dichloro synthesis

via retro Diels–Alder reaction, 5, 677

Cyclobutene, 3,3-diethyl isomerization, 5, 679

Cyclobutene, diimino synthesis

via diarylalkynes, 5, 1130

Cyclobutene, 1,1-dimethoxy synthesis

via benzynes, 5, 692

Cyclobutene, 3,3-dimethoxy synthesis

via retro Diels–Alder reaction, 5, 797

via retro Diels–Alder reactions, 5, 560

Cyclobutene, 3-ethoxy ring opening, 5, 1031

Cyclobutene, 3-ethyl-3-methyl isomerization, 5, 679

Cyclobutene, hexafluoro hydrogenation, 5, 897

Cyclobutene, cis-3-methoxy-4-chloro synthesis and ring opening, 5, 684

Cyclobutene, 3,3-dimethyl isomerization, 5, 679

Cyclobutene, 3,4-dimethyl reduction diimide, 5, 475

thermolysis, 5, 678

Cyclobutene, dimethylene synthesis

via Cope rearrangement, 5, 797

via retro Diels–Alder reactions, 5, 560

Cyclobutene, 3-ethoxy ring opening, 5, 1031

Cyclobutene, 3-ethyl-3-methyl isomerization, 5, 679

Cyclobutene, hexafluoro hydrogenation, 5, 897

Cyclobutene, cis-3-methoxy-4-chloro synthesis and ring opening, 5, 684

Cyclobutene, 1-methyl oxidation, 7, 462

Cyclobutene, 3-methyl-3-isopropyl isomerization, 5, 679

Cyclobutene, 3-methyl-3-propyl isomerization, 5, 679

Cyclobutene, 3,3,4,4-tetrafluoro reduction, 5, 897

Cyclobutene, perfluoro ring opening, 5, 680

Cyclobutene, 3-phenyl ring opening, 5, 682

Cyclobutene, vinyl synthesis

via ring opening, 5, 708

Cyclobutene-3-carbaldehyde ring opening, 5, 680

Cyclobutene

cis-3,4-disubstituted
cycloaddition reactions, 5, 257

[2 + 2 + 2] cycloaddition reactions, 5, 1130
electrocyclic ring opening, 5, 1030

anion-accelerated, 5, 1032

rearrangements, 5, 1030–1033

ring opening reactions, 5, 675–694

stereochemistry, 5, 678

substituent effects, 5, 678–683

two-carbon ring expansion, 5, 686–688

synthesis, 3, 163; 5, 676

intramolecular McMurry reaction, 3, 588

Cyclobutene-3-carbaldehyde

Ramberg–Bäcklund rearrangement, 3, 862, 871

via ene reactions with methyl propiolate, 5, 7

uses in synthesis, 5, 683–688

Cyclobutene, alkylidene synthesis, 3, 116

Cyclobutene, 3-t-butyl-3-methoxy isomerization, 5, 679

Cyclobutene, 1-chloro-2-hydroperfluoro hydrogenation, 5, 899

Cyclobutene, 1-chloro-2-iodotetrafluoro hydrogenolysis, 5, 900

Cyclobutene, 1,2-dialkyl synthesis

via Ramberg–Bäcklund reaction, 3, 873

Cyclobutene, cis-3,4-dichloro synthesis

via retro Diels–Alder reaction, 5, 677

Cyclobutene, 3,3-diethyl isomerization, 5, 679

Cyclobutene, diimino synthesis

via diarylalkynes, 5, 1130

Cyclobutene, 1,1-dimethoxy synthesis

via benzynes, 5, 692

Cyclobutene, 3,3-dimethoxy synthesis

via retro Diels–Alder reaction, 5, 797

via retro Diels–Alder reactions, 5, 560

Cyclobutene, 3-ethoxy ring opening, 5, 1031

Cyclobutene, 3-ethyl-3-methyl isomerization, 5, 679

Cyclobutene, hexafluoro hydrogenation, 5, 897

Cyclobutene, cis-3-methoxy-4-chloro synthesis and ring opening, 5, 684

Cyclobutene, 3,3-dimethyl isomerization, 5, 679

Cyclobutene, 3,4-dimethyl reduction diimide, 5, 475

thermolysis, 5, 678

Cyclobutene, dimethylene synthesis

via Cope rearrangement, 5, 797

via retro Diels–Alder reactions, 5, 560

Cyclobutene, 3-ethoxy ring opening, 5, 1031

Cyclobutene, 3-ethyl-3-methyl isomerization, 5, 679

Cyclobutene, hexafluoro hydrogenation, 8, 897

Cyclobutene, cis-3-methoxy-4-chloro synthesis and ring opening, 5, 684

Cyclobutene, 1-methyl oxidation, 7, 462

Cyclobutene, 3-methyl-3-isopropyl isomerization, 5, 679

Cyclobutene, 3-methyl-3-propyl isomerization, 5, 679

Cyclobutene, 3,3,4,4-tetrafluoro reduction, 8, 897

Cyclobutene, perfluoro ring opening, 5, 680

Cyclobutene, 3-phenyl ring opening, 5, 682

Cyclobutene, vinyl synthesis

via ring opening, 5, 708

Cyclobutene-3-carbaldehyde ring opening, 5, 680
Cyclobutenediones

via Cope–Claisen rearrangement, 5, 884

2,6-Cyclodecadienones

synthesis

from protected cyanohydrins, 3, 198
via cyclization, 1, 553

1,2-Cyclodecadienedione

reduction, 8, 950

Cyclodecanes

functionalized

synthesis via Cope rearrangement, 5, 796

Cyclodecane

reduction, 8, 935

Cyclodecapentaene

synthesis

via photoysis, 5, 716

1,3,5-Cyclodecatriene

irradiation, 5, 717
ring closure, 5, 715
synthesis

via photoisomerization, 5, 706

Cyclodecenes

stereoselective synthesis

via [6 + 4] cycloaddition, 5, 624

synthesis

via cyclodecane, 7, 15
transannular cyclization, 3, 388

Cyclodecenols

synthesis

Wittig rearrangement, 3, 1009
transannular cyclization, 3, 393

Cyclodecenones

functionalized

synthesis, 7, 625

Cyclodec-5-ynol

transannular cyclization, 3, 396

Cycloextrins

catalysts

benzoin condensation, 1, 543
Reimer–Tiemann reaction
regioselectivity, 2, 771

β-Cyclocitral

synthesis

Reformatsky reaction, 2, 287

Cyclocopacamphene

synthesis

via diazoalkene cyclization, 4, 1154

Cyclocuprate

Wurtz coupling, 3, 423

Cyclodecadienedione

aldol cyclization, 2, 169

Cyclodecadienes

Cope rearrangement

palladium catalysis, 5, 799
monoepoxides
transannular cyclization, 3, 396
transannular reactions, 3, 389

1,2-Cyclodecadienes

hydrobromination, 4, 284
hydrogenation

palladium-catalyzed, 8, 435

1,3-Cyclodecadienes

synthesis

via cyclobutene ring opening, 5, 686

1,5-Cyclodecadienes

Cope rearrangement, 5, 794
equilibrium, 5, 809

1,6-Cyclodecadienes

synthesis

via [2 + 2 + 2] cycloaddition, 5, 1130

Cyclobutene

cycloaddition reactions

metal catalyzed, 5, 1202–1204

synthesis

Cyclobutene, 4-alkynyl-

photolysis, 5, 733

Cyclobutene, amino-

thermalysis

benzoquinone synthesis, 5, 690

Cyclobutenes, 2-chloro-

rearrangements, 3, 849

Cyclobutenes, 4-alkyl-

photolysis, 5, 733

Cyclobutenes, 4-aryl-

photolysis, 5, 733

Cyclobutylcarbinol

oxidative rearrangement, 7, 834

Cyclobutyl isocyanide

rearrangements, 6, 294

Cyclobutyl radicals

oxidation, 7, 860

β-Cyclocitral

synthesis

Reformatsky reaction, 2, 287

Cyclooctapocamphene

synthesis

via diazoalkene cyclization, 4, 1154

Cyclocuprateglylketene

synthesis

Cyclooctadiene

Synthesis

Cyclooctadiene, 4-aryl-

hydroquinone synthesis, 5, 690

Cyclooctadiene, 2-chloro-

rearrangements, 3, 849

Cyclooctadiene, cyano-

reduction, 8, 253

1,2-Cyclooctadienediol

oxidative cleavage, 7, 708

1,2-Cyclooctadienedione

synthesis, 8, 551

1,6-Cyclooctadienedione

aldol cyclization, 2, 169

1,7-Cyclooctadienedione

aldol cyclization, 2, 169

Cyclooctadienone

tartrate

reaction with allenylboronic acid, 2, 96

Cyclooctadiene

lithiated imines
alkylation, 3, 37
Cyclododecanone, 1-bromo-reaction with methyl iodide, 1, 202
Cyclododecanone, 2,3-epoxy-rearrangement
 epoxide ring opening, 3, 753
Cyclododecanone, 2-methyl-synthesis, 3, 37
Cyclododecatriene
 synthesis, via Cope rearrangement, 5, 812
 1,5,9-Cyclododecatriene
 hydroboration, 8, 708
 hydrogenation
 homogeneous catalysis, 8, 451
 hydrosilylation, 8, 780
Cyclododecene
 oxidation halogenation, 7, 527
Cyclododecene oxides
 deoxygenation, 8, 888
Cycloedusmol
 synthesis, via cyclopropanation, 4, 1043
Cyclofenchene
 synthesis, 3, 709
Cyclofunctionalization
 electrophile-initiated
 mechanism, 4, 365–367
 heteroatom, 4, 363–414
 oxygen nucleophiles, 4, 367–397
 regioselectivity, 4, 367
 stereochemistry, 4, 366, 379–385
Cyclohepta(cd)benzofuran, 7-methoxy-hydrogenation, 8, 625
Cycloheptadienes
 alkylation
 stereocontrolled, via iron carbonyl complexes, 4, 581
 bridged
 synthesis via Cope rearrangement, 5, 803
 multiple functionalization
 stereochemistry, 4, 685
 synthesis via Cope rearrangement, 4, 1048
Cycloheptadienes
 photoisomerization, 5, 196, 211
 synthesis via Cope rearrangement, 5, 791, 803, 971
 cis-1,4-Cycloheptadienes, 6,7-dimethyl-synthesis via Cope rearrangement, 5, 973
Cycloheptadienol
 oxidative rearrangement, 7, 823
Cycloheptadienol
 potassium salt
 1,5-rearrangement, 5, 1003
Cycloheptadienones
 Nazarov cyclization, 5, 760
Cycloheptanes
 functionalized
 synthesis via Cope rearrangement, 5, 976–978
 synthesis
 intramolecular acyloin coupling reaction, 3, 626
via intramolecular ene reactions, 5, 24
via Michael addition, 4, 6
via photocycloaddition, 5, 657
Cycloheptanes, 1,2-divinyl-Cope rearrangement, 5, 810
Cycloheptanes, 1,3,5-trimethylene-synthesis
 via metal-catalyzed cooligomerization, 5, 1195
Cycloheptanoids
 synthesis
 via photocycloaddition, 5, 670
Cycloheptanols
 formation
 type II intramolecular ene reaction, 2, 551
Cycloheptanols, 3-methylene-synthesis
 ene reaction, 2, 547
Cycloheptanone
 dimethyl acetals
 selective reduction, 8, 217
 α-hydroxylation, 7, 166
 oxime
 catalytic hydrogenation, 8, 143
 reduction
 aluminum amalgam, 8, 116
 synthesis
 Friedel–Crafts reaction, 2, 711
 homoenolates, 2, 448
 via ring expansion, 5, 907
Cycloheptanone, 5-ethoxycarbonyl-2-methyl-synthesis, 3, 783
Cycloheptanone, 2-methyl-synthesis
 via ring expansion, 1, 851
Cycloheptanone, 2-phenyl-synthesis
 via ring expansion, 1, 851
Cycloheptanone, 2-methylpyrrolidines
 synthesis
 Mannich cyclization, 2, 1041
Cycloheptatriene
 anodic oxidation, 7, 796
 cycloaddition reactions
 dienes, 5, 632
 hydride donor
 to carbonium ions, 8, 91
 hydrogenation
 homogeneous catalysis, 8, 451
 photocycloaddition reactions
 9-cyanoanthracene, 5, 636
 synthesis
 via ketocarbenoid reaction with benzenes, 4, 1052, 1057
Cycloheptatriene
 tautomericism, 5, 713
Cycloheptatriene, 7,7-dimethoxy-synthesis, 7, 796
Cycloheptatriene, 1-methoxy-anodic oxidation, 7, 796
Cycloheptatriene, 3-methoxy-anodic oxidation, 7, 796
Cycloheptatriene, 7-methoxy-synthesis, 7, 796
Cycloheptatrienecarboxamide, N,N-dimethyl-lithium enolate
 crystal structure, 1, 32
2,4,6-Cycloheptatrien-1-one

Cycloheptene

- oxidation
- Wacker process, 7, 450
- oxide
 - rearrangement, lithium perchlorate catalyzed, 3, 761
- Pauson–Khand reaction, 5, 1049
- reduction
 - transfer hydrogenation, 8, 552

Cycloheptene, methylene-synthesis
 - via [4 + 3] cycloaddition reactions, 5, 598

Cycloheptene, 1-nitro-synthesis, 6, 107

Cycloheptene, 1-nitromethyl-synthesis
 - Knoevenagel reaction, 2, 365

2-Cycloheptenol

2-Cycloheptenones

- alkyl-substituted

4-Cyclohepten-1-ones

- substituted
 - synthesis via Cope rearrangement, 5, 976
 - synthesis via [4 + 3] cycloaddition, 5, 603

Cycloheptenones, 2-chloro-synthesis, 1, 878
 - via dihalocyclopropyl compounds, 4, 1018

1,9-Cyclohexadecadiene

- synthesis
 - via alkene metathesis, 5, 1119

Cyclohexadecanone

- synthesis
 - from protected cyanohydrins, 3, 198

Cyclohexadiene

- Pauson–Khand reaction, 5, 1049
- photochemical ring opening, 5, 710
- photocycloaddition reactions
 - anthracene, 5, 636
 - synthesis
 - via [2 + 2 + 2] cycloaddition, 5, 1142–1144
 - via retro Diels–Alder reaction, 5, 569

1,2-Cyclohexadiene

- synthesis
 - via dihalocyclopropanes, 4, 1010
 - via electrocyclization, 5, 735

1,3-Cyclohexadiene

- addition–protonation reactions, 4, 542
- alkylation
 - stereocontrolled, via iron carbonyl complexes, 4, 581
- anodic oxidation, 7, 795
- [4 + 3] cycloaddition reactions, 5, 603
- Diels–Alder reactions
 - imines, 5, 404, 408
- disproportionation
 - hydrogenation, 8, 440
 - hydration, 4, 299
 - hydroboration, 8, 716
 - hydrobromination, 4, 284
 - hydrocarboxylation, 4, 945

1,4-Cyclohexadiene

- disproportionation
 - hydrogenation, 8, 440
 - photoisomerization, 5, 196
- synthesis, 3, 653
 - via hydroformylation, 4, 922
 - via radical cyclization, 4, 810

1,3-Cyclohexadiene, cis-5,6-dimethyl-synthesis
 - via 2,4,6-octatriene electrocyclization, 5, 702

1,3-Cyclohexadiene, trans-5,6-dimethyl-synthesis
 - via 2,4,6-octatriene electrocyclization, 5, 702

1,3-Cyclohexadiene, cis-5,6-dimethyl-1,4-diphenyl-photochemical ring opening, 5, 739

Cyclohexadiene, 1,4-disilyl-diacylation
- Friedel–Crafts reaction, 2, 717

1,3-Cyclohexadiene, 1-methoxy-Diels–Alder reactions, 5, 376

1,3-Cyclohexadiene, 5-methyl-synthesis
 - via dienetricarbomylmanganese anions, 4, 704

1,4-Cyclohexadiene, 1,2,4,5-tetraphenyl-synthesis
 - via metal-catalyzed cycloaddition, 5, 1197

1,3-Cyclohexadiene, 1-trimethylsiloxy-i-butylation, 3, 27

1,3-Cyclohexadiene, 2-trimethylsiloxy-Diels–Alder reactions
 - imines, 5, 403

2,4-Cyclohexadieneacetic acid
cyclofunctionalization, 4, 371

Cyclohexadiene amino acids

- synthesis
 - Diels–Alder reactions, 5, 320

1,3-Cyclohexadiene carboxylic acids
 - synthesis
 - via Diels–Alder reactions, 5, 322

Cyclohexadienimines, N-alkyl-synthesis
 - via photolysis, 5, 731

Cyclohexadienones
 - alkyl shifts, 3, 804
 - annulation, 5, 1093, 1099
Cumulative Subject Index

Cyclohexane

- aromatization
- bond cleavage, 3, 816
- conjugation
 - rearrangements, 3, 803
- oxygen migration, 3, 812
- photochemical aromatization, 3, 815
- reactions with nucleophiles
 - rearrangements, 3, 817
- synthesis, 7, 105
 - phenol ether coupling, 3, 683
 - via Diels–Alder reactions, 5, 329
 - via Robinson annulation, 4, 43

2,4-Cyclohexadienones
- 1,2-diaryl shifts, 3, 806
- photo rearrangements, 5, 223

2,5-Cyclohexadienones
- photo rearrangement, 5, 730

2,4-Cyclohexadienones, 5-allyl-Cope rearrangement, 5, 790

2,5-Cyclohexadienones, 4,4-dimethyl-rearrangements, 3, 804

2,5-Cyclohexadienones, 4,4-disubstituted Nazarov cyclization, 5, 760

Cyclohexadienones, 4-ethyl-4-methyl-rearrangements, 3, 804

Cyclohexadienones, 2-hydroxy-synthesis, 7, 835

2,5-Cyclohexadienones, 4-hydroxy-4-methyl-methyl group shift, 3, 804

2,5-Cyclohexadienones, 2,4,4,6-tetrabromo-6-endo-cyclization, 4, 377

oxidation
- thiols, 7, 760

Cyclohexadienyl radicals
- radical addition reactions

Cyclohexane
- acetoxylation
- transition metal catalysis, 7, 12
- aminooxidation, 7, 8
- aromatization, 7, 6
- autoxidation, 7, 11
- benzene alkylation with
 - Friedel–Crafts reaction, 3, 322
- electrochemical oxidation, 7, 793
- functionalization, 7, 7
- isomerization, 7, 5
- oxidation
 - chloro(tetraphenylporphyrin)manganese catalyst, 7, 12
- rearrangement, 7, 8
- synthesis
 - intramolecular acyloin coupling reaction, 3, 625
 - via [2 + 2 + 2] cycloaddition, 5, 1141
 - via ene reactions, 5, 9
 - via Michael addition, 4, 27

Cyclohexane, alkylideneene reactions
- Lewis acid catalysis, 5, 6
- reduction
 - diimide, 8, 476
- Cyclohexane, 1-alkyl-3-tosyl-reduction

- steric control, 8, 961

Cyclohexane, arythio-synthesis, 7, 14

Cyclohexane, 1-azido-2-trifluoroacetoxy-synthesis, 7, 491

Cyclohexane, 1-bromo-4-r-butyl-cyanohydrins, 1, 550

Cyclohexane, r-butyl-rearrangements
- cycloalkanes, 6, 895

Wittig rearrangement, 6, 883

Cyclohexane, 4-r-butylmethyleneproxylation
- heterogeneous catalysis, 8, 429

Cyclohexane, chloro-synthesis, 7, 14

Cyclohexane, 0-chloronitrosodiels–Alder reactions, 5, 418

Cyclohexane, cyano-intramolecular cyclization, 3, 48

Cyclohexane, cyclohexyl-microbial hydroxylation, 7, 58

Cyclohexane, cyclopropyldene-cycloaddition reactions
- carbon dioxide, metal catalyzed, 5, 1196

Cyclohexane, 1,2-dimethyl-oxidation
- peracids, 7, 13

Cyclohexane, 1,2-dimethylene-[4 + 3] cycloaddition reactions, 5, 603
- Diels–Alder reactions, 5, 338
- synthesis
 - Ramberg–Bäcklund rearrangement, 3, 879

Cyclohexane, 2,4-dioxo-carboxylic acid
dianion
- aldol cyclization, 2, 171

Cyclohexane, 1,2-divinyl-Cope rearrangement, 5, 794, 809, 821

Cyclohexane, methyl-electrophilic reactions, 7, 10
- oxidation, 7, 12

Cyclohexane, methylenene reactions
- Lewis acid catalysis, 5, 4
- epoxidation, 7, 363
- hydroboration
 - stereochemistry, 8, 707
- hydrogenation
 - heterogeneous catalysis, 8, 429
- rearrangement, 6, 901
- stereospecific rearrangement, 3, 919
- 3-substituted
 - epoxidation, 7, 363
- synthesis
 - via boron-stabilized carbanions, 1, 498

Cyclohexane, 5-methylene-3-vinylallylidenesynthesis, 7, 491

- via metal-catalyzed cycloaddimerization, 5, 1190

Cyclohexane, nitro-reduction, 8, 375

Cyclohexane, 1-vinyl-2-alkyl-synthesis
- via intramolecular ene reactions, 5, 17

Cyclohexane, 1-vinyl-2-alkylidenesynthesis
Cyclohexanecarbaldehyde

via intramolecular ene reaction, 5, 18
Cyclohexanecarbaldehyde
[3 + 2] cycloaddition reactions
with 1,3-dimethyl(tert-butyldimethylsilyl)allene, 5, 279
synthesis, 8, 291
Cyclohexanecarbaldehyde, 2-methyl-
synthesis
via hydroformylation, 4, 919
Cyclohexanecarboxylic acid, 4-tert-buty-

methyl ester
reaction with dimethylaluminum methylselenolate, 6, 466
Cyclohexanecarboxylic acid
methyl ester
acyloin coupling reaction, 3, 619
piperidine
decarboxylation, 8, 270
Cyclohexanecarboxylic acid, 2-oxo-

enzymic reduction
specificity, 8, 197
Cyclohexanecarboxylic acid chloride
synthesis
via cyclohexane, 6, 308
1,2-Cyclohexanediol, N,N',N''- tetramethyl-
hydroxylation
osmium tetroxide, 7, 442
1,2-Cyclohexanedicarboxylic acid
dimethyl ester
acyloin coupling reaction, 3, 623
intramolecular acyloin coupling reaction, 3, 621
synthesis

intramolecular acyloin coupling reaction, 3, 622
1,2-Cyclohexanediol

synthesis, 7, 444
oxidative cleavage, 7, 704–708
trans
synthesis, 7, 447
intramolecular pinacol coupling reactions, 3, 575
1,3-Cyclohexanediol
catalytic hydrogenation, 8, 814
1,2-Cyclohexanediol, 1,2-dimethyl-

pinacol rearrangement, 3, 724, 761
1,2-Cyclohexanediol, 1-methyl-

oxidative cleavage, 7, 708
1,3-Cyclohexanediol, trans,trans-2-nitro-
synthesis
Henry reaction, 2, 327
1,2-Cyclohexanediol, 4-vinyl-
oxidative cleavage, 7, 708
1,2-Cyclohexanedione
dianions
aldol reaction, 2, 199
reaction with arylbiguanides, 3, 832
rearrangement, 3, 822
1,3-Cyclohexanedione

enol ethers
acylation, 2, 835
enzymic reduction
specificity, 8, 201
synthesis
via Knoevenagel and Claisen condensations, 4, 2
1,4-Cyclohexanedione
Clemmensen reduction, 8, 313
hydrogenation
catalytic, 8, 142
1,3-Cyclohexanedione, 2-chloro-

ring contraction, 3, 871, 875
1,3-Cyclohexanedione, 5,5-dimethyl-
Clemmensen reduction, 8, 312
hydrogenation, 8, 551
1,3-Cyclohexanedione, 2-methyl-
alkylation, 3, 55
Michael addition, 4, 20
1,3-Cyclohexanediene, 4-pentyl-
synthesis
via Michael addition, 4, 6
Cyclohexanols, 2-alkyl-

reduction, 8, 43
Cyclohexanamines, 3,3,5-trimethyl-
reduction, 8, 43
Cyclohexanocumminium compounds, 2-methyl-
reduction, 8, 43
Cyclohexanols
catalytic hydrogenation, 8, 814
formation
ene reaction, 2, 540
type II intramolecular ene reactions, 2, 547
functionalized
synthesis, 7, 625
hydrozirconation
diastereoselectivity, 8, 689
isomerization
catalytic hydrogenation, 8, 142
oxidation
solid support, 7, 845
Cyclohexanols, 1-acetyl-
reductive cleavage
metal ions, 8, 992
Cyclohexanols, 2-alkyl-3-stanny-
synthesis, 7, 623
Cyclohexanols, trans-2-azido-
synthesis
via cyclohexene oxide, 6, 253
Cyclohexanols, 2-diethylaminosyn-
synthesis, 6, 89
Cyclohexanols, 1,2-divinyl-
Cope rearrangement, 5, 796
Cyclohexanols, 2-methyl-
oxidation
solid support, 7, 841
synthesis
epoxy ring opening, 3, 753
Cyclohexanols, 3-methylenesyn-
synthesis
ene reaction, 2, 547
Cyclohexanols, 2-nitroalkyl-
synthesis
Henry reaction, 2, 329
Cyclohexanols, 1-nitromethyl-
synthesis
Henry reaction, 2, 329
Cyclohexanols, 3,3,5-trimethyl-
isomerization
catalytic hydrogenation, 8, 141
Cyclohexanone
alpha-acetoxylation, 7, 154
aldol reaction, 2, 147
alkylation
asymmetric induction, 6, 725, 726
allylation
Wacker oxidation, 7, 455
\(t \)-butyldimethylsilyl enol ether
en reactions, 5, 1075
Darzens glycidic ester condensation, 2, 428
dimethyl acetals
selective reduction, 8, 217
dimethylhydrazone
lithiated, osmometry, 2, 507
lithiated, X-ray structures, 2, 507
4,4-disubstituted
 synthesis via Michael addition, 4, 26
2,2-disubstituted, chiral
 synthesis via Claisen rearrangement, 5, 832
enamines
axial alkylation, 3, 30
enol ethers
aldol reaction, stereoselectivity, 2, 197
enolates
reduction, 8, 937
glycol hydration
 catalytic, 8, 141
\(\alpha \)-hydroxylation
electrocatalytic method, 7, 158
isotopically substituted
Baeyer–Villiger reaction, 7, 672
keto aldehydes from, 1, 461
lithiated dimethylhydrazone
 crystal structure, 1, 28
lithium enolate
reaction with benzoaldehyde, 2, 234
moderately hindered
reduction, dissolving metals, 8, 119
nucleophilic addition reactions
lithium salts, 1, 315
stereoselectivity, 1, 67
one or no \(\alpha \)-substituents, reduction
dissolving metals, stereoselectivity, 8, 116
oxidation
Baeyer–Villiger reaction, 7, 675
oxime
catalytic hydrogenation, 8, 143
reduction, 8, 393
pyrrolidine enamine
dialkylation, 3, 29
methylation, 3, 30
reactions with alkyl lithium and alkyl Grignard reagents
stereoselectivity, 1, 79
reactions with boron-stabilized carbanions, 1, 498
reactions with 2-bromoacetone
samarium diiodide, 1, 259
reactions with dialkylsilyl-stabilized carbanions, 1, 501
reactions with diazomethane, 1, 850
reactions with organometallic compounds
stereoselectivity, 1, 333
reduction, 8, 924
aluminum amalgam, 8, 116
dissolving metals, 8, 112
dissolving metals, stereoselectivity, 8, 116
ionic hydrogenation, 8, 318, 319
stereoselectivity, 8, 5
Ritter reaction, 6, 270
sterically hindered
reduction, dissolving metals, 8, 118
substituted
expansion with ethyl diazoacetate, 1, 853
nucleophilic addition reactions, 1, 67
thiolate substitution
selectivity, 7, 125
tri-\(n \)-butyltin enolates
alkylation, 3, 7
Cyclohexanone, 2-alkyl-oxime
catalytic hydrogenation, 8, 143
Cyclohexanone, 3-allyl-1-enolates
alkylation, 3, 15
Cyclohexanone, 2-allyl-
Baeyer–Villiger reaction, 7, 675
expansion with diazomethane, 1, 851
synthesis
via Wacker oxidation, 7, 455
Cyclohexanone, 2-allyl-2-methyl-
synthesis
regioselective alkylation, 3, 28
Cyclohexanone, benzylidene-
oxime
Beckmann rearrangement, 7, 694
reduction
metal hydrides, 8, 315
Cyclohexanone, 1,3-bisdiazo-irradiation, 3, 905
Cyclohexanone, 4,4-bis(ethoxycarbonyl)-enamine
Michael addition, 4, 8
Cyclohexanone, 2-bromo-
reduction with bromoaceto phenone, 1, 202
Cyclohexanone, 2-bromo-2-methyl-
synthesis, 6, 710
Cyclohexanone, 2-bromo-6-methyl-
synthesis, 6, 710
Cyclohexanone, 3-r-butyl-
lithium enolate
methylation, 3, 15
Cyclohexanone, 4-r-butyl-
chiral lithium enolate
alkylation, 3, 13
dimethyl acetal
selective reduction, 8, 217
nucleophilic addition reactions
equatorial or axial, 1, 152
methyllithium, 1, 316
organometallic compounds, 1, 156
use of Lewis acid, 1, 283
reactions with \(n \)-butyllithium+ytterbium trichloride, 1, 276
reactions with methyl lithium
stereoselectivity, 1, 79
reactions with methylzinc, 1, 223
reactions with organocadmium compounds, 1, 226
reactions with organometallic compounds
Lewis acids, 1, 333
stereoselectivity, 1, 333
reactions with \(\alpha \)-selenoalkyllithium
stereochemistry, 1, 677
Cyclohexanone

reduction
dissolving metals, stereoselectivity, 8, 117
stabilized metal enolates
metallation, 3, 55
synthesis
via 4- t -butyl-1- ethylidencyclohexane, 1, 535
Cyclohexanone, 5- t -butyl-
α -methyl substituents
axial alkylation, 3, 14
Cyclohexanone, 2- n -butyl-2-methyl-
synthesis
alkylation of unsymmetrical enolate, 3, 8
Cyclohexanone, 1,2-[14 C]-2-chloro-
synthesis
reaction with sodium pentylate, 3, 840
Cyclohexanone, 2-chloromethylene-
synthesis
via dichlorocarbene, 4, 1004
Cyclohexanone, 2,3-dialkyl-
1-enolates
alkylation, 3, 15
synthesis, 3, 8
Cyclohexanone, 3,5-dialkyl-
lithium 1-enolate
alkylation, 3, 8
Cyclohexanone, 2-diazo-
photolysis, 3, 903
Cyclohexanone, 2,6-dibromo-
[4 + 3] cycloaddition reactions, 5, 608
Cyclohexanone, 2,4-di- t -butyl-
synthesis, 3, 26
Cyclohexanone, 2,3-dihydroxy-3,5,5-trimethyl-
synthesis
via thermolysis of triols, 1, 534
Cyclohexanone, 2,2-dimethyl-
lithium enolate
reaction with benzaldehyde, 2, 198
palladation, 7, 630
synthesis
alkylation of enolate, 3, 2
Cyclohexanone, 2,4-dimethyl-
cis-trans isomerism
via pyrrolidine enamine, 6, 709
lithium enolate
synthesis of cycloheximide, 2, 198
Cyclohexanone, cis-2,5-dimethyl-
Knoevenagel reaction
stereochemistry, 2, 352
Cyclohexanone, trans-2,5-dimethyl-
Knoevenagel reaction
stereochemistry, 2, 352
Cyclohexanone, 2,6-dimethyl-
synthesis, 3, 34
Cyclohexanone, 3,3-dimethyl-
α -acetoxylontation, 7, 154
Cyclohexanone, 2,2-diphenyl-
(E)-enone, 2, 148
Cyclohexanone, 4,4-diphenyl-
Clemmensen reduction
mechanism, 8, 310
Cyclohexanone, 4-ethoxycarbonyl-
rearrangement, 3, 783
Cyclohexanone, 2-ethyl-
synthesis, 3, 35
Cyclohexanone, 2-ethyl-4-methoxycarbonyl-
synthesis
Claisen condensation, 2, 817
Cyclohexanone, 2-halo-
eliminations
Wolff-Kishner reductions, 8, 341
Favorskii rearrangements, 3, 848
Cyclohexanone, 2-isopropyl-
expansion with diazomethane, 1, 851
Cyclohexanone, isopropyldiene-
[3 + 2] cycloaddition reactions
with 1-methyl-1-(trimethylsilyl)allene, 5, 278
Cyclohexanone, 2-methoxy-
titanium chloride complex
NMR, 1, 295
Cyclohexanone, 2-methoxycarbonyl-
dimethylhydrazone
lithiated, X-ray structures, 2, 508
lithiated anion, crystal structure, 1, 34
Cyclohexanone, methyl-
reactions with organolithium compounds
Lewis acids, 1, 333
reduction
aluminum amalgam, 8, 116
Cyclohexanone, 2-methyl-
cyclohexylimine
deprotonation, 6, 720
enamine
Michael addition, 4, 6
enolate anion
preparation of kinetic enol ether, 2, 599
enolates, 5, 8
enol ethers
alkylation, 3, 8
formylation, 2, 837
lithiated dimethylhydrazones
crystal structure, 3, 34
lithium enolate
alkylation, 3, 8
Mannich bases
regiochemistry, 2, 907
Michael addition, 4, 6, 20
reductive amination
selectivity, 8, 54
with ammonia, 8, 54
regioselective alkylation, 3, 8
ring expansion, 1, 873
silyl enol ether
[3 + 2] cycloaddition reactions, 5, 282
sulfenylation, 7, 125
synthesis
stereochemistry, 6, 725
TMS enol derivative
alkylation, 3, 28
TMS enol ethers
α -butylation, 3, 25
with diazomethane, 1, 851
Cyclohexanone, 3-methyl-
enamine
regioisomeric, 6, 710
reduction
dissolving metals, stereoselectivity, 8, 116
Cyclohexanone, 4-methyl-
reduction, 8, 934
selective reduction, 8, 17
Cyclohexanone, 2-methyl-6-allyl-
synthesis
regioselective alkylation, 3, 28
Cyclohexanone, 2-methyl-4-(2-butylnitro)-
synthesis, 8, 106, 107
Cyclohexanone, 3-methyl-2-nitro-
synthesis, 6, 106
Cyclohexanone, 2-methylsulfonyl-
reduction, 8, 15
Cyclohexanone, 2-methylthio-
reduction, 8, 15
Cyclohexanone, 2-methyl-3-(4-tosyloxybutyl)exocycloalkylation, 3, 20
Cyclohexanone, 2-phenyl-
Refomatsky reaction
synthesis, 3, 257
Cyclohexanone, 2-vinyl-
Cyclohexanone, 3-vinyl-
Cyclohexonene phenylimine, lithio-
2,2-Cyclohexano-4-oxopentanal
Cyclohexanone, p-silyl-
synthesis
Cyclohexanone, 4-substituted
dissolving metals, stereoselectivity, 8, 117
Cyclohexanone, 2-vinyl-
cyclooctenes from, 1, 880
Cyclohexanone, 3-vinyl-
synthesis, 7, 457
Cyclohexanone enamine
reaction with dichlorocarbene, 4, 1004
Cyclohexanone phenylimine, lithio-
crystal structure, 1, 28
3,3-Cyclohexano-4-oxopentanal
synthesis
via Claisen rearrangement, oxidation, 7, 456
1,2,4-Cyclohexatriene
synthesis
via electrocyclization, 5, 735
Cyclohexene
allylic oxidation, 7, 99
anodic oxidation, 7, 794
aziridination, 7, 470
bromination, 7, 539
[2 + 2 + 2] cycloaddition reactions, 5, 1130
diamination, 7, 484
disproportionation
hydrogenation, 8, 440
epoxidation, 7, 374
functionalized
synthesis, 7, 625
hydride donor
carbonyl compound reduction, 8, 320
hydrogenolysis, 8, 958
hydroalumination, 8, 739
hydroboration, 8, 716
stereochemistry, 8, 707
hydrobromination, 4, 279
hydroformylation, 4, 914
phosphite-modified rhodium catalysts, 3, 1022
hydrogenation
homogeneous catalysis, 8, 1022
hydroxylation, 7, 444
oxidation
Wacker process, 7, 451, 452
with heteropolyacids, 7, 462
oxidative cleavage
ruthenium tetroxide, 7, 587
oxidative rearrangement
solid support, 7, 845
Pauson-Khand reaction, 5, 1049
retrograde Diels-Alder reaction, 5, 552
synthesis
Ramberg-Bäcklund rearrangement, 3, 876
via [2 + 2 + 2] cycloaddition, 5, 1141
via vinyliclobutane rearrangement, 5, 1016
Cyclohex-2-ene, cis-1-acetoxy-4-chloro-
synthesis
via palladium(II) catalysis, 4, 565
Cyclohexene, 1-acetoxy-2-methyl-
reaction with tributylmethoxytin
preparation of organotin(IV) enol ethers, 2, 608
Cyclohex-2-ene, trans-1-acetoxy-4-trifluoroacetoxysynthesisthrough palladium(II) catalysis, 4, 565
Cyclohexene, acetylimine-
reduction
molybdenum complex catalyst, 8, 554
Cyclohexene, 1-acetyl-
synthesis, 1, 430
Cyclohexene, 1-alkoxy-
hydrogenation
Pd-catalyzed, 8, 429
Cyclohexene, 1-alkyl-
allylic oxidation, 7, 818
Cyclohexene, 6-azido-1-phenyl-
synthesis, 7, 502
Cyclohexene, 1-benzyloxide
syn-opening, 3, 741
Cyclohexene, 3-v-butyl-
hydroxylation, 7, 447
Cyclohexene, 4-v-butyl-
hydroxylation, 7, 447
Cyclohexene, 4-v-butyl-1-cyano-
Michael addition
benzenethiolate, 6, 140
Cy clohexene, 4-t-butyl-1-phenyl- hydrochlorination, 4, 273
Cy clohexene, chloro- addition reactions benzene selenenyl chloride, 7, 520
Cy clohexene, 3-chloro-2-fluoro- synthesis via dihalocyclopropyl compounds, 4, 1017
Cy clohex-2-ene, cis-1,4-diacetoxy- synthesis via palladium(II) catalysis, 4, 565
Cy clohexene, 1,2-dimethyl- hydrogenation, 8, 426
hydroxylation, 7, 445
Cy clohexene, 1,6-dimethyl- epoxidation, 5, 130
reduction diimide, 8, 476
Cy clohexene, 4,4-dimethyl-
oxidative rearrangement, 7, 817
Cy clohexenes, 3,5-dimethylene- via [2 + 2 + 2] cycloaddition, 5, 1141
Cy clohexene, 3,6-dimethylene- via [2 + 2 + 2] cycloaddition, 5, 1141
Cy clohexene, 1,2-divinyl- thermal cyclization, 5, 713
Cy clohexene, 3,4-epoxy- reaction with lithium dimethycuprate, 6, 9
Cy clohexene, 1,2-epoxy-3-hydroxy- reaction with lithium dimethycuprate regioselectivity, 6, 8
Cy clohexene, methoxy- cycloaddition reactions with benzonitrile, 5, 161
Cy clohexene, 1-methyl- acetoxylation electrochemical oxidation, 7, 790
allylic oxidation, 7, 100
ene reactions reaction with formaldehyde, 2, 533
hydroformylation, 4, 919
2-Cy clohexene, 1-methyl- allylic oxidation, 7, 101
Cy clohexene, 2-methyl- carbosulfenylation selectivity, 6, 142
Cy clohexene, 1-nitro- synthesis, 6, 107
Cy clohexene, 1-phenyl- hydroboration, 8, 722
nitro addition reactions, 7, 488
Cy clohexene, 1-phenyl-4-t-butyl- hydrobromination, 4, 280
Cy clohexene, 1-trimethylsiloxy-4-t-butyl- butylation diastereoselectivity, 3, 26
Cy clohexene, vinyl- dicarboxylation, 4, 948
hydrocarboxylation, 4, 939
Cy clohexene, 1-vinyl- diamination, 7, 486
Cy clohexene, 4-vinyl- anodic oxidation, 7, 796
1-Cy clohexene-3-ene oximes from, 4, 371
1-Cy clohexene-3-ene, 2-halo- butenolides from, 4, 371
3-Cy clohexene-3-ene, 2-halo- hydroformylation, 4, 922
1-Cy clohexene-3-ene, 2-halo- hydro- synthesis, 1, 564
1-Cy clohexene-3-ene, 2-halo- carbonitrile reactions with Yamamoto's reagent, 1, 124
1-Cy clohexene-3-ene, 2-halo- carbosulfenylation selectivity, 6, 142
1,2-Cy clohexene-3-ene, 2-halo- dimethyl ester hydrogenation, 8, 426
Cy clohexene oxide anodic oxidation, 7, 707
anti opening, stereoelectronic aspects, 3, 733
initiators, polyene cyclization, 3, 356
reaction with Grignard reagents, ring opening, 3, 754
rearrangement, 3, 760
rearrangement, lithium halide catalyzed, 3, 764
reduction metal hydrides, 8, 873
Cy clohexene oxide, 1,4-dialkyl- reduction lithium aluminum hydride, 8, 875
Cy clohexene oxide, 1,2-dimethyl- rearrangement, lithium halide catalyzed, 3, 764
rearrangement, lithium perchlorate catalyzed, 3, 761
Cy clohexene oxide, β-hydroxy- reduction metal hydrides, 8, 873
Cy clohexene oxide, 1-methyl- cyclization, 3, 342
syn-opening, 3, 741
reaction with magnesium bromide, 3, 757
rearrangement, 3, 753
rearrangement, lithium halide catalyzed, 3, 763
rearrangement, lithium perchlorate catalyzed, 3, 761
Cy clohexene oxide, 1-phenyl opening, 3, 734
Cy clohexene oxide, 2-(trimethylgermyl)- reduction metal hydrides, 8, 873
Cy clohexene oxide, 2-(trimethylsilyl)- reduction metal hydrides, 8, 873
Cy clohexene oxide, 2-(trimethylsilyl)- hydroformyl, 4, 280
Cy clohexene oxide, 3-(trimethylsilyl)- synthesis via copper catalyzed Grignard addition, 4, 91
2-Cy clohexenol aziridination, 7, 481
synthesis, 7, 413; 8, 166
via chiral reduction of cyclohexenone, 8, 169
3-Cy clohexenol synthesis via [3 + 3] annulation, 5, 1020
Cumulative Subject Index

Cyclohexenones

epoxidation, 7, 364
1-Cyclohexenol, 2-bromo-
synthesis
via dihalocyclopropyl compounds, 4, 1018
2-Cyclohexenol, 6-(N-substituted amino)-3-aryl-
synthesis, 6, 787
Cyclohexenol, vinyl-
allylic rearrangements, 7, 822
2-Cyclohexenone
addition reaction
Lewis acid catalysis, 1, 313
with organomagnesium compounds, 4, 89
γ-alkylation, 4, 674
asymmetric reduction, 8, 166
boron trifluoride complex
NMR, 1, 293, 294
conjugated
reduction, 8, 6
enantioselective alkylation
organocuprates, 4, 172
Grignard additions
copper catalyzed, 4, 92
hydrogenation
homogeneous catalysis, 8, 446
lithium enolates
methylation, 1, 688
reaction with α-cyanobenzylithium, 1, 235
reaction with Grignard reagents, 4, 254
reaction with lithium dialkylcuprates, 4, 173
reaction with organoauminum reagents
site selectivity, 1, 82, 95, 95
reaction with organometallic reagents, 1, 155
reduction
aluminum hydrides, 8, 542, 545
9-borabicyclo[3.3.1]nonane, 8, 537
synthesis, 1, 383
via Robinson annulation, 4, 6
2-Cyclohexenone, 2-acetyl-
Diels–Alder reactions, 5, 461
Cyclohexenone, 4-alkenyl-
photoaddition reaction, 5, 144
2-Cyclohexenone, 3-alkoxy-
lithium dienolates
α'-alkylation, 3, 21
Cyclohexenone, 4-alkoxyacarbonyl-
synthesis
Dieckmann reaction, 2, 807
Cyclohexenone, 4-alkyl-
photoaddition reaction, 5, 142
2-Cyclohexenone, 4-alkyl-
synthesis, 3, 21
2-Cyclohexenone, 3-amino-
extended dienolates
γ-alkylation, 3, 24
Cyclohexenone, 2-benzyl-3-methyl-
alkylation
Cope rearrangement, 5, 789
Cyclohexenone, 4-1-butyl-
photoaddition reaction, 5, 130
2-Cyclohexenone, 5-1-butyl-
reduction
K-selectride, 8, 536
2-Cyclohexenone, 4-(3-chloropropyl)-4-methyl-
6-(2-ethylallyl)-
cycloalkylation, 3, 23
Cyclohexenone, 3,4-dimethyl-
addition to allene
photochemical cycloaddition, 5, 130
 photocycloaddition reactions, 5, 131
2-Cyclohexenone, 5,5-dimethyl-
reduction
borohydride, 8, 536
2-Cyclohexenone, 4,4-diphenyl-
Clemmensen reduction, 8, 312
2-Cyclohexenone, 4,4-disubstituted
synthesis
via cyclohexadienyliron complexes, 4, 675
Cyclohexenone, α-epoxy-
synthesis
via retro Diels–Alder
2-Cyclohexenone, 2-hydroxy-
reduction
aluminum hydrides, 8, 545
Cyclohexenone, 4-isopropenyl-
photoaddition reaction, 5, 130
Cyclohexenone, methyl-
reduction
with 1,1-bis(methylseleno)-1-propyllithium, 1, 689
Cyclohexenone, 2-methyl-
[3 + 2] cycloaddition reactions, 5, 301
2-Cyclohexenone, 2-methyl-
hydrogenation
homogeneous catalysis, 8, 462
Cyclohexenone, 3-methyl-
aldol reaction, 2, 152
photocycloaddition reaction, 5, 125
reaction with methylmagnesium iodide
enolates, 2, 185
2-Cyclohexenone, 3-methyl-
Grignard additions
copper catalyzed, 4, 92
Michael addition, 4, 17
reduction
borohydride, 8, 536
transfer hydrogenation, 8, 552
2-Cyclohexenone, 5-methyl-
conjugate addition
organocuprates, 4, 187
Cyclohexenone, 3-nitro-
Diels–Alder reactions, 5, 320
Cyclohexenone, 5-substituted
synthesis
via Diels–Alder reactions, 5, 324
2-Cyclohexenone, 5-substituted
synthesis
via arene-metal complexes, 4, 543
2-Cyclohexenone, 3,3,5-trimethyl-
reduction
aluminum hydrides, 8, 545
1,4-dihydronicotinamide, 8, 562
2-Cyclohexenone, 3,5,5-trimethyl-
cleavage
ozonolysis with phase transfer agents, 7, 548
2-Cyclohexenone, 5-trimethylsilyl-
reaction with Grignard reagents
copper catalyzed, 4, 211
Cyclohexenones
α'-alkylation, 3, 21
aromatization, 7, 131
biochemical reduction, 8, 558
Clemmensen reduction, 8, 311
\([3 + 2]\) cycloaddition reactions, 5, 301
 with \(\text{H}1\)-butynyliron complexes, 5, 277
fused
 synthesis via ketone enolates, 4, 99
photocycloaddition reactions, 5, 125
pinacol coupling reactions, 3, 577
reaction with lithium dimethylcuprate
 enol ether preparation, 2, 599
ring contraction, 7, 832
spiroannulation, 3, 22
synthesis
 aldol cyclization, 2, 162
carbonylation, 3, 1025
via Diels–Alder reactions, 5, 329
via Michael reaction, 4, 2
tandem vicinal difunctionalization, 4, 245
\(\beta\)-unsubstituted
 reduction, 8, 536
Vilsmeier–Haack reaction, 2, 786
zirconium dienolates
 aldol reaction, 2, 303
3-Cyclohexenylamines
synthesis
 viaazaanion-accelerated rearrangement, 5, 1023
Cycloheximide
synthesis
 aldol reaction, 2, 198
Cyclohexylamine
 imines
deprotonation, 6, 720
oxidation
 \(m\)-chloroperbenzoic acid, 7, 737
Cyclohexylamine, \(\text{N}\)-methyl-4-\(\text{t}\)-butyl-
reaction with allyl organometallic compounds, 2, 983
Cyclohexyldiene, \(\text{t}\)-butyl-
 reduction, 8, 231
Cyclohexyldiene epoxides, \(\alpha\)-alkenyl-
 reaction with lithium homocuprates, 3, 226
Cyclohexyldiene, \(\text{N}\)-methyl-4-\(\text{t}\)-butyl-
reaction with allyl organometallic compounds
 stereochemistry, 2, 983
Cyclohexyl isocyanide
 reduction
dissolving metals, 8, 830
Cyclohexyl radicals
 addition to methyl acrylate, 4, 736
Cyclohexyne
 anthrace adduct
 retro Diels–Alder reaction, 5, 589
Cyclomethylenomycin A
 synthesis
 via Pauson–Khand reaction, 5, 1051
Cycloneosamandione
 synthesis, 7, 169
1,2-Cyclononadiene
 hydrobromination, 4, 284
 hydrochlorination, 4, 276
 hydrogenation
 palladium-catalyzed, 8, 435
 reaction with iodine azide, 7, 506
 synthesis
 via dihalocyclopropanes, 4, 1010
1,5-Cyclononadiene
 Cope rearrangement, 5, 794
 equilibrium, 5, 806
transannular cyclization, 3, 386
Cyclononatetraene
 thermal rearrangement, 5, 716
1,2,3-Cyclononatriene
 synthesis
 via dihalocyclopropanes, 4, 1010
1,2,6-Cyclononatriene
 hydrobromination, 4, 284
1,3,5-Cyclononatriene
 electrocyclization, 5, 702
 photoisomerization, 5, 709
 photolysis, 5, 737
1,3,6-Cyclononatriene
 synthesis
 via photoisomerization, 5, 709
Cyclononatrienols
 Cope rearrangement, 5, 806
6-Cyclononenol, 2,3-epoxy-
 synthesis, 7, 413
Cyclononenes
 synthesis
 via Cope rearrangement, 5, 796
Cyclooctadecane, 1,9-bis-(3-methoxycarbonylpropyl)-
 acyloin coupling reaction
 intramolecular, 3, 628
Cyclooctadienes
 bridged
 synthesis via Cope rearrangement, 5, 806
 monoeoxides
 transannular hydride shifts, 3, 735
 synthesis
 via \([4 + 4]\) cycloaddition, 5, 639, 640
 transannular reactions, 3, 383
1,3-Cyclooctadiene
 anodic oxidation, 7, 795
dimerization, 5, 66
hydrocarboxylation, 4, 945
hydrogenation
 homogeneous catalysis, 8, 450
oxidaion
 palladium(II) catalysis, 4, 559
photoaddition reactions
 with acetone, 5, 166
reaction with \(\text{N}\)-acyliminium ions, 2, 1070
 synthesis
 via Cope rearrangement, 5, 805
1,4-Cyclooctadiene
 hydrogenation
 homogeneous catalysis, 8, 450
1,5-Cyclooctadiene
 anodic oxidation, 7, 796
 bridged
 Cope rearrangement, 5, 816
cycloreversion reactions, 5, 64
dimerization, 5, 66
hydroboration, 8, 708, 714
hydrogenation
 heterogeneous catalysis, 8, 433
 homogeneous catalysis, 8, 449, 450
 ozonolysis, 8, 399
 synthesis
 via Cope rearrangement, 5, 791
 via divinylcyclobutane rearrangements, 5, 1025
Cumulative Subject Index

1,3-Cyclopentadiene

Transannular cyclization, 3, 381
1,5-Cyclooctadiene, 1,5-dimethyl-
transannular cyclization, 3, 382
2,4-Cyclooctadienol
 oxidative rearrangement, 7, 823
Cyclooctadienones
 synthesis via cyclobutenone ring opening, 5, 690
2,4-Cyclooctadienones
 dimerization, 5, 66
4H,5H,9H,10H-Cycloocta[1,2-b:6,5-b']difuran
 synthesis via [4 + 4] cycloaddition, 5, 639
Cyclooctane-carbaldehyde, 5-methylene-
transannular cyclization, 3, 383
1,2-Cyclooctanediol
 cis synthesis, 7, 444
Cyclooctanes
 fused synthesis via Cope rearrangement, 5, 806
 synthesis via cyclization of 1,8-dialdehydes, 3, 575
 via [4 + 4] cycloaddition, 5, 639
 via divinylcyclobutane rearrangements, 5, 1024
 via intramolecular ene reactions, 5, 24
 via Michael addition, 4, 6
Cyclooctanes, 1,2-divinyl-
 Cope rearrangement, 5, 810–812
Cyclooctanone
 enol ester from O-acylation, 2, 598
 reduction, 8, 950
 synthesis, 3, 781
Cyclooctanone, 2,8-dibromo-
 rearrangement, 3, 850
Cyclooctanone, 2,2,8-tribromo-
 rearrangement, 3, 850
Cyclooctatetraene
 cycloaddition reactions
dienes, 5, 634
 monoepoxide rearrangement, 3, 757
 synthesis via photoisomerization, 5, 205
tautomerism, 5, 715
1,3,5-Cyclooctatriene
 tautomerism, 5, 714
Cyclooctene
 epoxidation oxygen, 7, 383
 oxide solvolysis, 3, 735
 Pauson–Khand reaction, 5, 1049
 photoaddition reactions with acetone, 5, 166
 photocycloaddition reactions with toluene, 5, 655
 ring-opening metathesis polymerization, 5, 1120
 transannular electrocyclic cyclization, 3, 380
4-Cyclooctene, hydroperoxy-
synthesis, 7, 728
Cyclooctene, 6-iodo-
 reactions with lithium cuprates mechanism, 3, 213
Cyclooctene, 1-methyl-
hydroboration, 8, 714, 718
Cyclooctene, methylene-
 Cope rearrangement, 5, 794
 5-Cyclooctene, 3-methyleneallylidene-
 synthesis via metal-catalyzed cycloisomerization, 5, 1190
Cyclooctene, 1-nitro-
synthesis, 6, 107
Cyclooctene, 1-phenyl-
oxidation, 7, 384
Cyclooctenol
 acetate synthesis, 2, 598
Cyclooctenenones
 synthesis via Cope rearrangement, 5, 1028
4-Cyclooctenenones
 electrochemical transannulation, 3, 600
Cyclooctyne
 synthesis via oxidation of bis(hydrazones, 7, 742
Cyclopalladated complexes
 N,N-dialkylbenzylamine vinyl substitutions, 4, 837
 vinyl substitutions, 4, 835, 837
Cyclopalladation–oxidation, 7, 630
2-Cyclopenta-3,4-diene-1,5-dione
 synthesis via cyclization, 1, 553
2-Cyclopenta-3,4-diene-1,5-dione
 synthesis, 3, 51
Cyclopentadiene
 anodic oxidation, 7, 795
 cycloaddition reactions
 isopropenyl chromium complexes, 5, 1070
 propynyl chromium complexes, 5, 1072
 tropones, 5, 618, 621
 [4 + 3] cycloaddition reactions, 5, 603–605
 Diels–Alder reactions, 5, 380–383, 451
 comparison of promoters, 5, 345
 imines, 5, 403
 Lewis acid promoted, 5, 340
 water promoted, 5, 344
 Pauson–Khand reaction, 5, 1046
 retrograde Diels–Alder reactions, 5, 552
 selective reduction, 8, 567
 synthesis
 Ramberg–Bäcklund rearrangement, 3, 874, 875
 via [3 + 2] cycloaddition reactions, 5, 278, 1090
 via retro Diels–Alder reaction, 5, 568
1,3-Cyclopentadiene
 hydrochlorination, 4, 276
1,3-Cyclopentadiene, 1-amino-
synthesis via [2 + 2 + 2] cycloaddition, 5, 1131
Cyclopentadiene, hexachloro-
hydrogenolysis, 8, 898
Cyclopentadiene, hexamethyl-
cycloaddition with C6N-diphenyltrinitro, 4, 1075
Cyclopentadiene, 5-(methoxymethyl)-
 Diels–Alder reactions, 5, 353
Cyclopentadiene, phenyl-
 chromium tricarbonyl complex, 4, 527
1,3-Cyclopentadiene, C-5 substituted
Cyclopentadienone

Cumulative Subject Index

Cy
clopentadienone

Diels–Alder reactions, 5, 347

Cyclopentadienone
[4 + 3] cycloaddition reactions, 5, 603
substituted
synthesis via retro Diels–Alder reaction, 5, 568
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1133–1135

Cyclopentadienone, bis(trimethylsilyl)-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1134

Cyclopentadienone, 2,5-di-tert-butyl-3,4-dimethyl-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1135

Cyclopentadienone, 2,5-di-tert-butyl-3,4-diphenyl-
cycloaddition reactions
cyclooctatetraene, 5, 634
N-ethoxycarbonylazepine, 5, 634

Cyclopentadienone, 2,5-di-methyl-3,4-diphenyl-
cycloaddition reactions
cycloheptatriene, 5, 632
fulvenes, 5, 626
tropones, 5, 620, 622

Cyclopentadienone, tetra-t-butoxy-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1133

Cyclopentadienone, tetrakis(dimethylamin0)-
iron complex
synthesis, 5, 1133

Cyclopentadienone, tetrakis(trifluoromethyl)-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1134

Cyclopentadienone, tetraphenyl-
reduction, 8, 557
synthesis, 2, 142

Cyclopentadienone epoxides
synthesis
via retro Diels–Alder reactions, 5, 561

Cyclopentadieny1 anion
Vilsmeier–Haack reaction, 2, 780

Cyclopentadienylmethyl metal complexes
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1147

Cyclopentane
annelation, 1, 892
via free radical reaction, 5, 926
functionalization, 7, 7
reaction with transition metal complexes, 7, 3
reaction with tungsten
metal vapor synthesis, 7, 4
steroselective annulations
intramolecular diastereoselective additions, 2, 651
stereospecific synthesis, 3, 653
synthesis, 3, 647; 6, 127
intramolecular acyloin coupling reaction, 3, 623
via ene reactions, 5, 9
via intramolecular ene reactions, 5, 21
via metal-catalyzed cycloaddition, 5, 1200
via Michael addition, 4, 24
via photocycloaddition, 5, 657

Cyclopentane, acetyl-
synthesis
polyene cyclization, 3, 347

Cyclopentane, alkylidene-
synthesis
via [3 + 2] cycloaddition reactions, 5, 290
via metal-catalyzed codimerizations, 5, 1189

Cyclopentane, benzylidene-
synthesis, 1, 663

Cyclopentane, dimethylene-
synthesis, 5, 1107

Cyclopentane, 1,3-dimethylene-
synthesis
via metal-catalyzed cooligomerization, 5, 1195

Cyclopentane, 1,2-dimethylene-
3,3,4,4,5,5-hexamethylene-
[4 + 3] cycloaddition reactions, 5, 600

Cyclopentane, 2,2-dimethylmethylene-
synthesis
via metal-catalyzed cycloaddition, 5, 1190

Cyclopentane, (diphenylmethylene)-
synthesis
via metal-catalyzed cycloadditions, 5, 1189

Cyclopentane, divinyl-
synthesis
via palladium-ene reaction, 5, 48

Cyclopentane, 1,2-divinyl-
Cope rearrangement, 5, 794, 796, 806, 821

Cyclopentane, ethyldiene-
synthesis
via [3 + 2] cycloaddition reactions, 5, 290

Cyclopentane, (iodomethylene)-
synthesis
via radical cyclization, 4, 803

Cyclopentane, 3-methoxy carbonylmethylene-
synthesis
via metal-catalyzed cycloaddition, 5, 1190

Cyclopentane, methylene-
synthesis
via [3 + 2] cycloaddition reactions, 5, 287
via metal-catalyzed cycloadditions, 5, 1188
thio-Wittig rearrangement, 6, 895

Cyclopentane, 2-methylmethylene-
synthesis
via metal-catalyzed cycloaddition, 5, 1190

Cyclopentane, 2-methylvinyl-
synthesis
via magnesium-ene reaction, 5, 38
via nickel-ene reaction, 5, 56

Cyclopentane, silylmethylene-
synthesis
via metal-catalyzed cycloaddition, 5, 1190, 1192

Cyclopentane, sulfonylmethylene-
synthesis
via [3 + 2] cycloaddition reactions, 5, 305

Cyclopentane, vinyl-
synthesis
via [3 + 2] cycloaddition reactions, 5, 281

Cyclopentane, 1-vinyl-2-alkyl-
synthesis
via intramolecular ene reactions, 5, 10–15

Cyclopentane, 1-vinyl-2-alkyldiene-
synthesis
via intramolecular ene reactions, 5, 15–17

Cyclopentane, 2-vinyl-1-methylene-
synthesis
via intramolecular ene reaction, 5, 15

Cyclopentane, ylidene-
synthesis, 3, 251
Cyclopentanone

Cyclopentanone, 3-allyl-
synthesis
via carboxymagnesiuration, 4, 877

Cyclopentanone, dimethyl-
preparative electrolysis
from 6-hepten-2-one, 8, 134

Cyclopentanone, divinyl-
rearrangements, 1, 881

Cyclopentanone, cis-2-propargyl-
cyclofunctionalization, 4, 393

Cyclopentanol, 3-allyl-
synthesis
via palladium-ene reactions, 5, 55

Cyclopentanecarbaldehyde
synthesis, 3, 769

Cyclopentanecarboxylates, 2-hydroxy-
synthesis
via intramolecular Barbier cyclization, 1, 264

Cyclopentanecarboxylic acid, 1-hydroxy-
synthesis via metal-catalyzed codimerization, 5, 1191

Cyclopentanecarboxylic acid, 3-methylene-
synthesis
via [3+2] cycloaddition reactions, 5, 282
methyl ester
synthesis, 3, 903
polyfunctionalized
synthesis, 3, 848

Cyclopentanecarboxylic acid, 1-hydroxy-
2-isopropyl-5-methyl-
synthesis, 3, 831

Cyclopentanecarboxylic acid, 3-methylene-
esters
synthesis via [3+2] cycloaddition reactions, 5, 282
methyl ester
synthesis, 3, 903
polyfunctionalized
synthesis, 3, 848

Cyclopentanecarboxylic acid, 1-hydroxy-
2-isopropyl-5-methyl-
synthesis, 3, 831

Cyclopentanecarboxylic acid, 3-methylene-
esters
synthesis via metal-catalyzed codimerization, 5, 1191

Cyclopentanecarboxylic acid, 1-hydroxy-
2-isopropyl-5-methyl-
synthesis, 3, 831

Cyclopentanecarboxylic acid, 3-methylene-
esters
synthesis via metal-catalyzed codimerization, 5, 1191

Cyclopentane-1,2,4-trione
synthesis
ketone oxallylation, 2, 838

Cyclophanedimation
methyl-3-phenylsulfonyl orthopropionate, 6, 164
Cyclophanedimation monoterpenes
synthesis, 3, 850

Cyclopentanoids
fused
synthesis via cyclopropane ring opening, 4, 1048
polycondensed
synthesis via photoisomerizations, 5, 229
synthesis via [3+2] cycloaddition reactions, 5, 287, 561
via retro Diels–Alder reactions, 5, 561

Cyclopentanol, cis-2-alkenyl-
synthesis
ene reaction, 2, 547
Cyclopentanone

1-enolate
alkylation, 3, 17
synthesis
via \([4 + 3]\) cycloaddition, 5, 601

Cyclopentanone, \(\beta\)-substituted
synthesis
Knoevenagel reaction, 2, 363

Cyclopentanone, 3-(2-tosyloxyethyl)-
endocycloalkylation, 3, 19

Cyclopentanone, 2,2,5-trimethyl-
aldol reaction
isovaleraldehyde, 2, 154

Cyclopentanone, 2-undecyloxy mesylate
Beckmann rearrangement, 6, 770

Cyclopentanones
aldol reaction, 2, 141, 147
annulation
intramolecular Barbier process, 1, 262
boron trifluoride complex
NMR, 1, 293
dehydrogenation
use of phenylselenium trichloride, 7, 135
dimethyl acetics
selective reduction, 8, 217
enolate
Michael additions, 5, 1082
formation
type II intramolecular ene reaction, 2, 551
lithium enolates
crystal structure, 1, 26
X-ray diffraction analysis, 1, 1, 3
magnesium enolates
aldol reaction, 2, 199
polyalkylation
side reaction to monoalkylation, 3, 4
reactions with ethyl diazoacetate, 1, 849
reactions with organoaluminum reagents
steroselectivity, 1, 79
reduction
aluminum amalgam, 8, 116
dissolving metals, 8, 122
Reformatsky reaction
addition of carbon nucleophiles, 2, 282
Ritter reaction, 6, 270
substituted
nucleophilic addition reactions, 1, 67
synthesis, 1, 862

synthesis
carbonylation, 3, 1024
Dieckmann cyclization, 2, 796
ene reaction, 2, 544
Friedel–Crafts reaction, 2, 756
via \([2 + 2 + 2]\) cycloaddition, 5, 1130
via \([3 + 2]\) cycloaddition, 5, 283–286
via Michael addition, 4, 18

Cyclopentapyrazoles
synthesis, 3, 831

1H-Cyclopenta[c]pyrroles
synthesis via metal-catalyzed cycloaddition, 5, 1194
Cyclopenta[b]pyrrolidines
synthesis
Mannich cyclization, 2, 1041
1H-Cyclopenta[c]pyrrolo-1,3-diones, 5-alkylidenehexahydro-
synthesis via metal-catalyzed cycloaddition, 5, 1194
Cyclopentene, 1-acetoxy-
Pauson–Khand reaction, 5, 1048
Cyclopentene, 1-acetyl-2-methyl-
synthesis, 7, 8
cyclohexane acetylation, 2, 728
Cyclopentene, 1-aryI-
thermal ene reaction
mechanistic studies, 2, 539
Cyclopentene, 3-(3-butylnyl)-
Pauson–Khand reaction, 5, 1057, 1058
Cyclopentene, 3-chloro-
hydroboration, 8, 705
Cyclopentene, 1-chloro-2-hydroperfluoro-
hydrogenation, 8, 899
Cyclopentene, 1-chloro-2-iodohexafluoro-
hydrogenolysis, 8, 900
Cyclopentene, 1-chloroperfluoro-
reduction, 8, 897
Cyclopentene, dichloro-
synthesis via dichlorocyclopropyl compounds, 4, 1023
Cyclopentene, 1,2-dimethoxy-
synthesis, 5, 1083
Cyclopentene, 1,2-dimethyl-
hydrochlorination, 4, 272
Cyclopentene, 1,5-dimethyl-
reduction diimide, 8, 476
1-Cyclopentene, 1,2-disubstituted
ozonolysis, 4, 1099
Cyclopentene, 3,4-epoxy-
reaction with ethylaluminium alkynide, 3, 279
reaction with Grignard reagents, 3, 265
Cyclopentene, 1,3,3,4,4,5-heptafluoro-
reduction, 8, 897
Cyclopentene, 4-hydroxy-4-(1-hexynyl)-
synthesis, 3, 279
Cyclopentene, methoxy-
cycloaddition reactions
with benzonitrile, 5, 161
Cyclopentene, 1-methyl-
cyclopropanation, 5, 1085
hydrochlorination, 4, 272
Pauson–Khand reaction, 5, 1046
Cyclopentene, 3-methyl-
synthesis
Ramberg–Bäcklund rearrangement, 3, 874
Cyclopentene, 3-methylene-
annulation, 5, 774
Cyclopentene, 4-methylene-
synthesis via metal-catalyzed cycloaddition, 5, 1194
via retro Diels–Alder reactions, 5, 503
2-Cyclopentene, 1-methylimin0-3-methyl-5,5-diphenyl-
synthesis via metal-catalyzed cycloaddition, 5, 1195
Cyclopentene, 1-(4-pen nylnyl)-
Cyclopentene reaction, 5, 1057, 1062
Cyclopentene, 1-phenyl-hydmyboration, 8, 722
3-Cyclopentene, 2-phenylsulfonyl-methyl ester, acetate
synthesis, 3, 654
Cyclopentene, 3-substituted 1-vinyl-
Diels–Alder reactions, 5, 349
Cyclopentene, (trimethylsilyl)-
anannulations, 1, 596
Cyclopentene, vinyl-
synthesis
via nickel-catalyzed rearrangement, 5, 917
2-Cyclopenteneacetic acid
cyclofunctionalization, 4, 370
Cyclopentene-1-carboxylic acid
esters
via addition reactions with organozinc compounds, 4, 95
3,5-Cyclopentenediols
synthesis
via prostaiglandin precursor, 3, 155
2-Cyclopentene-1,4-dione
reduction, 8, 163
Cyclopentene-1,2-diones
via metal-catalyzed cycloaddition, 5, 1200
4-Cyclopentene-1,3-diones, 2-alkylidene-
synthesis
via cyclobutene ring opening, 5, 690
Cyclopentenes
annulation, 5, 951
via opening of cyclopropyl ketones, 5, 925
use of vinylcyclopropane, 5, 919
via carbonylation
via cobalt carbonyl catalyst, 3, 1024
[2 + 2 + 2] cycloaddition reactions, 5, 1130
via dianimation, 7, 484
via hydrocarboxylation
dicarboxylation, 4, 947
via irradiation
with m-xylene, 5, 651
via oxidation
Wacker process, 7, 451, 452
via Wacker process with heteropolyacids, 7, 462
via oxidative cleavage
via ozone, 7, 558
via oxide
via rearrangement, lithium halide catalyzed, 3, 764
via Pauson–Khand reaction, 5, 1046
via rearrangement
via vinylcyclopropane, 5, 907
via Ramberg–Bäcklund rearrangement, 3, 874
via selectivity, 5, 907
via [4 + 1] annulation, 5, 1008
[3 + 2] cycloaddition reactions, 5, 277
via Michael addition, 4, 16
via reaction of allenylsilanes with α,β-unsaturated
via carbonyl compounds, 1, 596
via vinylcyclopropane rearrangement, 5, 1012
via vinylcyclopropane thermolysis, 4, 1048
via cyclopentenocycloalkanones
via copper catalyzed Grignard addition, 4, 91
1-Cyclopentenol, 2,3-epoxy-
synthesis, 7, 413
2-Cyclopentenol, 4-oxo-
synthesis
via conjugate additions, 4, 211
via vinylallylic rearrangements, 7, 822
via synthesis
via retro Diels–Alder reactions, 5, 562
via 3-alkyl-
lithium dienolates
methylolation, 3, 22
Cyclopentenone, 3-alkyl-4-(hydroxyalkyl)-
synthesis
via Pauson–Khand reaction, 5, 1057
via Nazarov cyclization, 5, 777
via 3-amino-
extended dienolates
γ-alkylation, 3, 24
via Cyclpentenone, 5-aryl-
synthesis
via Pauson–Khand reaction, 5, 1045
via Cyclpentenone, 2-bromo-
reduction
via aluminum hydrides, 8, 545
via Cyclpentenone, 3-n-butyl-
alkyne acylation, 2, 725
via Nazarov cyclization, 5, 777
via Cyclpentenone, 4,4-dialkyl-
synthesis
via alkynyl acylation, 2, 725
via [3 + 2] cycloaddition reactions, 5, 285
via Cyclpentenone, 4,4-dialkyl-
synthesis, 3, 42
via Cyclpentenone, 4,5-dialkyl-
synthesis, 2, 726
via Cyclpentenone, 4,5-dihydroxy-
alkylation, 3, 11
via Cyclpentenone, 2,5-dimethyl-
synthesis
via vinylallene epoxidation, 5, 772
via Cyclpentenone, 4,4-dimethyl-
dimerization
via base catalyzed, 4, 239
synthesis
via Wacker oxidation, 7, 456
via Cyclpentenone, 4,4-disubstituted 3-methyl-
synthesis
via Nazarov cyclization, 5, 767
via Cyclpentenone, 2-ethoxycarbonyl-
2-Cyclopentenone

Cumulative Subject Index 538

2-Cyclopentenone, 4-hydroxy-conjugate additions
Lewis acids, 4, 143
synthesis, 2, 142; 3, 10
via Nazarov cyclization, 5, 771

2-Cyclopentenone, 5-methoxy-
conjugate additions
chiral organocopper compounds, 4, 227
tandem vicinal difunctionalization, 4, 245

2-Cyclopentenone, 4-methyl-
synthesis
via Nazarov cyclization, 5, 767

Cyclopentenone, 2-methylene-
synthesis
carbonylation of 1-iodo-1,4-dienes, 3, 1025

Cyclopentenone, 4-methylene-
synthesis
via [2+2+2] cycloaddition, 5, 1131

Cyclopentenone, 5-methylene-
synthesis
via Nazarov cyclization, 5, 780
via retro Diels–Alder reactions, 5, 560

2-Cyclopentenone, 2-pentyl-
synthesis
via double bond migration, 7, 457

2-Cyclopentenone, 5-pentyl-
synthesis
via Claisen rearrangement, oxidation, 7, 457

2-Cyclopentenone, 3-phenylthio-
synthesis
via Nazarov cyclization, 5, 778

2-Cyclopentenone, 5-phenylthio-
synthesis
via Nazarov cyclization, 5, 778

Cyclopentenones
addition reactions
with α-silyl ester enolates, 4, 107
α'-alkylation, 3, 21
anannulations
regiospecific, 1, 584
Wacker oxidation, 7, 455
[3+2] cycloaddition reactions, 5, 301
palladium catalyzed, 5, 281
dialkylation, 4, 255
dicarboxylation, 4, 948
α-enolate reaction with aldehydes, 2, 198
functionalized
synthesis via retro Diels–Alder reactions, 5, 560
isomerization, 5, 762
photo-cycloaddition reactions
stereochemical scrambling, 5, 128
reaction with 1-phenylselenoallyllithium
regiochemical control, 1, 691
reduction
aluminum hydrides, 8, 543
biochemical, 8, 558
dissolving metals, 8, 123
molecular orbital calculations, 8, 16
selective reduction
borohydrides, 8, 539
4-substituted
reactions with allylic sulfvinyl carbanions, 1, 521
synthesis, 1, 555; 3, 936; 5, 1105; 7, 797; 802, 819
allenylnorganoaluminum, 2, 89
from 2-chloro-1,3-cyclohexanediene, 3, 871
Ramberg–Bäcklund rearrangement, 3, 868, 874, 875
via conjugate addition to α-nitroalkenes, 4, 143
via [2+2+2] cycloaddition, 5, 1131–1133
via [3+2] cycloaddition, 5, 283–286
via cyclopropane ring opening, 4, 1046
dihalo-cyclopropyl compounds, 4, 1018
divinyl ketones, 1, 430
via hydration of dienynes/ring closure, 5, 752
via Nazarov cyclization, 5, 757
via Pauson–Khand reaction, 5, 1037
via three-carbon annulation, 1, 548
via vinylallene epoxidation, 5, 772
tandem vicinal difunctionalization, 4, 245
zirconium dienolanes
aldol reaction, 2, 303
Cyclopentylamines, 2-methyl-
reduction
stereoselectivity, 8, 55
Cyclopentylmethyl radicals
synthesis, 7, 731
Cyclopeptides
synthesis
Ugi reaction, 2, 1095
Cyclophanedienes
synthesis
via aryne, 4, 507
Cyclophanediones
synthesis, 6, 134
[m.m]-meta-Cyclophanediones
synthesis
via Sm2 reaction, 4, 477
Cyclophanes
synthesis, 3, 557, 591, 594
1,2-rearrangement, 3, 927
unsaturated
synthesis, 3, 877
m-Cyclophanes
synthesis
coupling reactions, 3, 452
via cycloaromatization reaction, 2, 622
Cyclopropa[c]cinnolines
synthesis
via nitritimine 1,1-cycloaddition, 4, 1084
Cyclopropanation
acrylaldehyde
via enolate alkylation, 4, 239
aikenes, 5, 1084
alkyl diazoacetate, 4, 1035
intramolecular, 4, 1040–1043
asymmetric, 4, 61, 1038
cobalt catalysts, 4, 1040
diastereoselectivity, 4, 1037
enantioselective, 4, 980, 987
sequential Michael ring closure, 4, 262
Simmons–Smith methylenating agent
hydroalumination adducts, 8, 756
via conjugate addition, 4, 258
Cyclopropane, 1-acetoxy-3-alkyldifluoro-
Cyclopropane, ring opening, 4, 1020
Cyclopropane, 1-alkyl-1-halo-
synthesis
via lithium carbenoids, 4, 1008
Cyclopropane, alkylidene-
reactions with alkenes
metal catalyzed, 5, 1191
synthesis, 1, 652; 3, 116
via lithium–halogen exchange, 4, 1008
Cyclopropane, allyl-
synthesis.
via boron-ene reaction, 5, 33
via cycloaddition of bicyclo[1.1.0]butanes, 5, 1185
Cyclopropane, allylic-
synthesis, 1, 652
via Peterson alkenation, 1, 786
Cyclopropane, 1-p-anisyl-2-vinyl-
rearrangement
Cyclopropane, aryl-
synthesis, 3, 120
Cyclopropane, 2,3-bis(alkoxycarbonyl)-1-(2-methyl-1-propenyl)-
synthesis
cyclopentene synthesis, 5, 1014
Cyclopropane, 1,1-bis(benzenesulfonyl)-
use in synthesis, 6, 161
Cyclopropane, 1,1-bis(methylthio)-
ketones from, 3, 124
Cyclopropane, 1,1-bis(phenylelveno)-
synthesis, 1, 638; 3, 136
Cyclopropane, 1,1-bis(seleno)-
synthesis, 1, 657
Cyclopropane, bromo-
reaction with lithium in diethyl ether
crystal structure, 1, 10
synthesis
via bromocarbene, 5, 1012
Cyclopropane, 1-bromo-1-tributylstannyl-
synthesis
by transmetallation, 3, 196
Cyclopropane, butylidene-
cycloaddition reactions
metal catalyzed, 5, 1191
cycloaddition reactions, 5, 1190
[3 + 2] cycloaddition reactions
nickel catalyzed, 5, 294
Cyclopropane, diphenylidene-
cycloaddition reactions, 5, 1189, 1190
with unsaturated ketones, 5, 1192
[3 + 2] cycloaddition reactions
nickel catalyzed, 5, 294
Cyclopropane, 1,1-diphenyl-2-isocyano-2-methyl-
reduction, 8, 830
Cyclopropane, 1,1-dithio-
synthesis, 3, 124
Cyclopropane, divinyl-
Cope rearrangement, 4, 1048
synthesis
via cyclopropanation, 4, 1049
Cyclopropane, 1,2-divinyl-
Cope rearrangement, 5, 791, 803–805, 820
enantiospecificity, 5, 973–976
mechanism, 5, 972
stereospecificity, 5, 973
substituent effects, 5, 973
rearrangements, 5, 971–996
ring cleavage
selectivity, 5, 912
tricyclic
Cope rearrangement, 5, 993–996
Cyclopropane, 1-ethoxy-1-lithio-
synthesis
metallation, 3, 194
Cyclopropane, 1-ethoxy-1-trimethylsiloxy-
cycloaddition reactions
aldehydes, metal catalyzed, 5, 1200
Cyclopropane, hexylidene-
[3 + 2] cycloaddition reactions, 5, 290
Cyclopropane, 1-hydroxyalkyl-
ring opening, 4, 1043
Cyclopropane, 1-(1’-hydroxyalkyl)-1-(methylseleno)-
rearrangement, 1, 717
Cyclopropane, isopropylidene-
cycloaddition reactions, 5, 1189, 1190
carbon dioxide, metal catalyzed, 5, 1196
Cyclopropane, dienyl-
rearrangement
palladium catalysis, 5, 917
Cyclopropane, difluoro-
ring opening, 4, 1020
Cyclopropanes, dihalo-
electrocyclic ring opening, 4, 1016–1020
elimination/addition reactions, 4, 1014–1016
elimination reactions, 4, 1014–1016
monoreduction
selective, 8, 806
ring expansion, 4, 1017–1020
solvolysis, 4, 1021
synthesis, 4, 999–1025
transformations, 4, 1006
Cyclopropane, dimethyl-
synthesis, 3, 216
Cyclopropane, 1-dimethylamino-2-vinyl-
rearrangement
activation energy, 5, 1007
Cyclopropane, 2,2-dimethyl-1-methylene-
codimerization
metal catalyzed, 5, 1191
cycloaddition reactions, 5, 1190
[3 + 2] cycloaddition reactions
nickel catalyzed, 5, 294
Cyclopropane, diphenylidene-
cycloaddition reactions, 5, 1189, 1190
with unsaturated ketones, 5, 1192
[3 + 2] cycloaddition reactions
nickel catalyzed, 5, 294
Cyclopropane, 1,1-diphenyl-2-isocyano-2-methyl-
reduction, 8, 830
Cyclopropane, 1,1-dithio-
synthesis, 3, 124
Cyclopropane, divinyl-
Cope rearrangement, 4, 1048
synthesis
via cyclopropanation, 4, 1049
Cyclopropane, 1,2-divinyl-
Cope rearrangement, 5, 791, 803–805, 820
enantiospecificity, 5, 973–976
mechanism, 5, 972
stereospecificity, 5, 973
substituent effects, 5, 973
rearrangements, 5, 971–996
ring cleavage
selectivity, 5, 912
tricyclic
Cope rearrangement, 5, 993–996
Cyclopropane, 1-ethoxy-1-lithio-
synthesis
metallation, 3, 194
Cyclopropane, 1-ethoxy-1-trimethylsiloxy-
cycloaddition reactions
aldehydes, metal catalyzed, 5, 1200
Cyclopropane, hexylidene-
[3 + 2] cycloaddition reactions, 5, 290
Cyclopropane, 1-hydroxyalkyl-
ring opening, 4, 1043
Cyclopropane, 1-(1’-hydroxyalkyl)-1-(methylseleno)-
rearrangement, 1, 717
Cyclopropane, isopropylidene-
cycloaddition reactions, 5, 1189, 1190
carbon dioxide, metal catalyzed, 5, 1196
Cyclopropane

[3 + 2] cycloaddition reactions, 5, 290
Cyclopropane, keto vinyl-free radical 1,6-addition reactions
alkyl boranes, 5, 926
rearrangement, 5, 909
Cyclopropane, lithiobromo-reaction with catechol borane, 4, 1008
Cyclopropane, (1-methoxy-2-phenylthio) synthesis
via Pummerer rearrangement, 6, 146
Cyclopropane, 1-methoxy-2-vinyl-rearrangement
activation energy, 5, 1007
Cyclopropane, methylene-addition to dichlorocarbene, 4, 1002
a-allylpalladium complexes from, 4, 587
codimerization
alkene, metal catalyzed, 5, 1193
cyclodimerization
alkynes, metal catalyzed, 5, 1194, 1195
cycloaddition reactions
carbon dioxide, metal catalyzed, 5, 1196
2-cyclopentenones, metal catalyzed, 5, 1193
metal catalyzed, 5, 1188, 1193
[3 + 2] cycloaddition reactions, 5, 288
diastereoselectivity, 5, 290
distal ring-opening, 5, 288
ketenimines, metal catalyzed, 5, 1195
metal catalyzed, 5, 1194
nickel catalyzed, 5, 293
palladium catalyzed, 5, 289
proximal ring-opening, 5, 288
oxidative cleavage, 7, 825
oxidative rearrangement, 7, 833
reaction with alkenes
metal catalyzed, 5, 1191
Cyclopropane, 1-methylene-2-vinyl-codimerization
with norbornene, 5, 1190
Cope rearrangement, 5, 794
cyclodimerization, 5, 1190
rearrangement, 5, 947
Cyclopropane, 2-methylmethylene-cycloaddition reactions, 5, 1190
Cyclopropane, cis-methylvinyl-flash vacuum pyrolysis, 5, 906
Cyclopropane, monothio-synthesis
via reductive dehalogenation, 4, 1006
Cyclopropane, 1-oxido-1-(1'-phenylenoxyalkyl)-rearrangement, 1, 715
Cyclopropane, oxyvinyl-ring expansion, 5, 919
Cyclopropane, 1-phenyl-1-methylseleno-synthesis, 1, 669
Cyclopropane, 1-phenyl-2,3-phenacyl-synthesis, 1, 655
Cyclopropane, phenylseleno-metallation, 1, 641
Cyclopropane, phenylthio-allylation, 3, 88
Cyclopropane, 1-phenylthio-1-(trimethylsiloxy)-synthesis
via silyl-Pummerer rearrangement, 6, 146
Cyclopropane, propenylidene-
[2 + 2] cycloaddition reactions
tetracyanoethylene, 5, 76
Cyclopropane, silavinyl-rearrangement, 5, 950
Cyclopropane, siloxy-coupling reactions
with Grignard reagents, 3, 460
with sp3 organometallics, 3, 455
Cyclopropane, siloxy-cleavage
iron(III) chloride, 2, 444
1,6-diketones from, 2, 445
homoenolate precursor, 2, 442
synthesis, 2, 443
Cyclopropane, 1-siloxy-2-carboxalkoxy-ring cleavage
via homoenolates, 4, 120
Cyclopropane, tetratomethyl-anodic oxidation, 7, 794
Cyclopropane, trialkylsilyloxy-rearrangement, 1, 879
Cyclopropane, 2-(trimethylsilyl)methylene-cycloaddition reactions, 5, 1190
with unsaturated ketones, 5, 1192
Cyclopropane, vinyl-π-allylpalladium complexes from, 4, 590
bonding, 5, 901
cycloaddition reactions, 5, 926
metal catalyzed, 5, 1200
palladium catalysis, 4, 593
[2 + 2] cycloaddition reactions, 5, 71
Cyclopropane, 1,6-sigmatropic shift
hydrogen, 5, 906
strain energy, 5, 901
α-sulfonyl carbanions
rearrangements, 5, 1012
synthesis, 5, 905
via metal-catalyzed cycloaddition, 5, 1197-1199
via photoisomerization, 5, 194
via ylide addition to carbonyl, 5, 951
thermolysis, 4, 1048
Cyclopropane, vinyldihalo-rearrangement
cyclopentadienes, 4, 1012
Cyclopropane, vinylmethylene-
synthesis
 via dihalocyclopropyl compounds, 4, 1015
Cyclopropane-1-acetaldehyde, 2,2-dimethyl-
3-(2'-oxo)-propyl-
dimethyl acetal
 synthesis, via ozonolysis of 3-carene, 7, 548
Cyclopropanecarbaldehyde, 1-(arythio)-
reduction
aluminum hydrides, 8, 544
Cyclopropanecarbodithioate, methyl
synthesis
 via methyl cycloaddioformate, 6, 456
Cyclopropanecarboxylic acid, 2-allyl-
methyl ester
 synthesis via cycloaddition of
bicyclo[1.1.0]butanes, 5, 1186
synthesis
 via magnesium-ene reaction, 5, 30
Cyclopropanecarboxylic acid, 2-silyloxy-
esters
reactions with N,N-dimethyl(methylene)iminium
salts, 2, 911
1-Cyclopropanecarboxylic acid, 2-hydroxymethyl-
1-amino-
synthesis, 1, 559
Cyclopropanecarboxylic acid, 2-siloxy-
ester
reactions with N,N-dimethyl(methylene)iminium
salts, 2, 911
reactions with carbonyl compounds, 2, 448
Cyclopropanecarboxylic acid anhydride
synthesis, 6, 311
Cyclopropanecarboxylic acids
 ethyl ester
 Friedel-Crafts reaction, 2, 756
 synthesis, 3, 848
 zinc carbendio, 2, 444
Cyclopropanedicarboxylates, 1-alkyl-2-halo-
synthesis
 via addition with organozinc compounds, 4, 95
1,1-Cyclopropanedicarboxylic acid, 2-alkenyl-
trihalomonomolecular alkylation, 3, 56
Cyclopropanediois
 synthesis
 intramolecular pinacol coupling, 3, 572
Cyclopropane-2,3-dioxopropionic acid
 ethyl ester
 rearrangement, 3, 831
Cyclopropane ketal
 synthesis
 via dihalocyclopropyl compounds, 4, 1015
Cyclopropanes
 bonding, 5, 900
charge-accelerated rearrangements, 5, 1006–1016
 cleavage, 2, 444
 catalytic hydrogenation, 4, 1043
[2 + 1] cycloadditions, 5, 1084
diradical opening, 5, 900
enantioselectivity, 4, 952
energetics, 5, 900
energy content
 effect on synthesis, 5, 904
formation
 arene–alkene photocycloadditions, 5, 649
metal homoeolate reaction, 2, 443
from Δ-pyrazolines, 4, 1102
functionalized
 synthesis, 4, 1031
lithiation, 1, 480
neighboring group
 epoxide ring opening, 3, 736, 752, 753
optically active
 synthesis via conjugate addition to oxazepines, 4, 206
oxidative rearrangement, 7, 823, 833
polarized
 1,3-dipolar synthetic equivalents, 5, 266
reactions with transition metal complexes, 7, 4
reactivity, 5, 901
ring expansion, 3, 785
stereochemistry, 4, 952
stereoselective synthesis
 Knoevenagel reaction, 2, 360
strain energy, 5, 900
substituents
 stereosepecificity, 4, 952
synthesis, 3, 163; 4, 951; 6, 556
Darzens glycidic ester condensation, 2, 432
from enones, 2, 431
reduction of malonate, 3, 620
via alkyldiene transfer, 4, 951–994
via diazo ketones, 6, 126
via 1,3-eliminative cyclization of γ-stannyl
alcohols, 7, 621
via enamines and diazomethylene, 6, 716
via Michael reaction, 4, 2
via reductive dehalogenation, 4, 1006
Wurtz reaction, 3, 422
Cyclopropanesulfomorpholine
synthesis, 3, 181
Cyclopropanesulfonic acid
 t-butyl esters
 synthesis, 3, 180
neopentyl ester
 synthesis, 3, 181
Cyclopropane-1,1,2-tricarboxylic acid
 triethyl ester
 synthesis via Michael reaction, 4, 2
Cyclopropanols
 oxidation
 lead tetraacetate, 7, 824
 oxidative cleavage, 7, 824
 rearrangement, 1, 874
synthesis
 via dissolving metal reductions, 8, 528
 via organosamarium compounds, 1, 261
Cyclopropanols, vinyl-
lithium salts
 rearrangements, 5, 1007
pyrolysis, 5, 920
salts
 synthesis, 5, 1007
Cumulative Subject Index

Cyclopropanone

- Cyclopropanone, 2,2-dimethyl-
 - [4 + 3] cycloaddition reactions, 5, 597
- Cyclopropanone, 2,3-dimethyl-
 - Lewis acid complexes
 - structure, 1, 287
- Cyclopropanone, diphenyl-
 - cycloaddition reactions
 - metal catalyzed, 5, 1200

Cyclopropanones

- cycloaddition reactions
 - metal catalyzed, 5, 1200
 - [4 + 3] cycloaddition reactions, 5, 597
 - N,N-dialkylhydrazones
 - preparation, 2, 505
- Favorstki rearrangement, 3, 840
 - reactions with diazomethane, 1, 847

Cyclopropenes

- synthesis
 - via Peterson alkenation, 1, 786
- Cyclopropene, 1,2-dibromo-
 - synthesis
 - via dihalocyclopropyl compounds, 4, 1015
- Cyclopropene, 3,3-dicyclopropyl-
 - cycloaddition reactions
 - metal catalyzed, 5, 1198
 - dimerization, 5, 65
- Cyclopropene, 3,3-difluoro-
 - synthesis
 - via retro Diels–Alder reactions, 5, 560
- Cyclopropene, 3,3-dimethoxy-
 - cycloaddition reactions
 - metal catalyzed, 5, 1199
 - dimerization, 5, 65
- Cyclopropene, 3,3-dimethyl-
 - cycloadditions, 5, 64
 - dimerization, 5, 65
- Cyclopropene, 3-methoxycarbonyl-
 - ring enlargement
 - cyclobutene synthesis, 5, 677
- Cyclopropenone, 3-acyl-
 - ring enlargement
 - cyclobutene synthesis, 5, 677
 - 1,3-dipolar synthetic equivalents, 5, 266
- Cyclopropenone ketals
 - synthesis via dihalocarbene, 4, 1005
- Cyclopropyl aldehydes
 - synthesis
 - via Curtius reaction, 6, 811
- Cyclopropyl bromides
 - reduction
 - lithium aluminum hydride, 8, 802
- Cyclopropylcarbinols
 - oxidative rearrangement, 7, 825
 - spiro-fused
 - oxidative rearrangement, 7, 834
- Cyclopropylcarbinols, dichloro-
 - solvolysis
 - divinyl ketones from, 5, 770
- Cyclopropylcarbinyl anion
 - reactivity, 5, 901
- Cyclopropylcarbinyl cation
 - reactivity, 5, 901
- Cyclopropylcarbinyl radical
 - reactivity, 5, 901
- Cyclopropyl compounds
 - [3 + 2] cycloaddition reactions
 - palladium catalyzed, 5, 281
- Cyclopropyl compounds, 1-bromo-
 - synthesis via brominative decarboxylation, 4, 1006
- Cyclopropyl esters
 - rearrangement, 5, 909
- Cyclopropylamines
 - rearrangements, 5, 909, 945
 - use in alkaloid synthesis, 5, 952
 - synthesis, 5, 946
Cyclopropyl ketones
rearrangement, 5, 909
Cyclopropyl-\(\pi\)-methane rearrangements
photoisomerizations, 5, 198
Cyclopropylselenonyl anions
synthesis, 1, 828
Cycloreversion reactions
cyclobutanes, 5, 64
Cyclosarkomycin
synthesis
via Pauson–Khand reaction, 5, 1051
Cyclosativene
synthesis, 7, 517
Cycloseychellene
synthesis
Prins reaction, 2, 542
Cyclosporin A
aldol reaction
synthesis of MeBMT, 2, 219
synthesis, 6, 385
1,8-Cyclotetradecadiene
synthesis
alkene metathesis, 5, 1119
Cyclooctadecene, 1-triethylsilyloxy-
synthesis, 8, 557
1,2-Cyclooctadiene
hydrobromination, 4, 284
hydrogenation
homogeneous catalysis, 8, 450
Cyclocoundecadiene
Cope rearrangement
equilibrium, 5, 810
1,2-Cyclocoundecadiene
reaction with iodine azide, 7, 506
Cyclocoundecanone, 2-bromo-
rearrangements, 3, 849
1,3,5-Cyclocoundecatriene
irradiation, 5, 717
Cycloundecene
hydroalumination, 8, 739
transannular cyclization, 3, 398
\(\pi\)-Cymene
solvent
reductive decarboxylation, 7, 720
Cysteine
protecting groups
use in peptide synthesis, 6, 664
Cysteine, \(N\)-benzoyl-
lithium borohydride modifier, 8, 169
Cysteine, 4-picoly-
 cleavage, 8, 974
Cysteine proteases
peptide synthesis, 6, 395
Cystine, \(N,N'\)-dibenzoyl-
lithium borohydride modifier, 8, 169
Cytidine 5'-monophosphonouraminic acid
synthesis
enzymatic methods, 2, 464
Cytochalasin B
synthesis
via Diels–Alder reaction, 5, 351
Cytochalasins
3,2-sigmatropic rearrangement
synthesis, stereocontrol, 3, 960
synthesis, 7, 183
via iterative rearrangements, 5, 894
via SmI\(_2\)-promoted macrocyclization, 1, 266
Cytochrome \(P-450\)
alkane hydroxylation, 7, 11
alkene epoxidation catalysis, 7, 382
camphor hydroxylation
catalyst, 7, 80
Cytosine
fluorination, 7, 535
Cytovaricin
synthesis, 1, 401
Dactylo! synthesis, 3, 404
DAHP synthetase
organic synthesis
use in, 2, 466
Dakins oxidation
aryl aldehydes
synthesis of phenols, 7, 674
Dakin-West reaction
N-acyl-β-amino ketones, 3, 889
α-Damascone
synthesis
via Grignard reagent and base, 1, 417
β-Damascone
microbial oxidation, 7, 77
δ-Damascone
synthesis
Knoevenagel reaction, 2, 370
Damsin
synthesis, 3, 20; 7, 313
Damsinic acid
synthesis
via Cope rearrangement, 5, 982
Dane salt
α-amido β-lactams from, 5, 95
Danishefsky’s diene
cycloadDITION reactions, 5, 1072
Diels–Alder reactions, 5, 329
Daphnane diterpenoids
synthesis
via Cope rearrangement, 5, 984
Daphneticin
synthesis, 3, 691
Darvon alcohol
lithium aluminum hydride modifier, 8, 164
Darens glycidic ester condensation
2, 409–439
aromatic nucleophilic substitution
competing reaction, 4, 432
asymmetric catalysts, 2, 435
asymmetric variants, 2, 435
cis/trans isomer ratios, 2, 414
intramolecular, 2, 427, 434
mechanism, 2, 411
modifications, 2, 427
phase-transfer conditions, 2, 429
solid–liquid systems, 2, 434
stereoochemistry, 2, 412
Darens–Nenitzescu reaction
alkene acylation, 5, 777
Dauconone
synthesis, 3, 586
Daucon
synthesis
via [4 + 3] cycloadDITION, 5, 609
Daunomycin
synthesis, 7, 341
Daunomycin, 11-deoxy-
synthesis
carbonyl group protection, 6, 880
Daunomycin, 4-dimethoxy-
synthesis
via arynes, 4, 497
Daunomycinone
synthesis, 5, 1096, 1098, 1099
via alkynylcerium reagents, 1, 242
via annulation, 1, 554
via Diels–Alder reaction, 5, 393
Daunomycinone, demethoxy-
synthesis, 7, 351, 352
Daunomycinone, 4-demethoxy-
synthesis, 5, 1096
via Diels–Alder reaction, 5, 375, 384
via oxyanion-accelerated rearrangement, 5, 1023
Daunomycinone, 7-deoxy-
synthesis
via chiral acetals, 1, 64
Daunomycinone, 11-deoxy-
synthesis, 1, 567; 5, 1096
Daunomycinone, dideoxy-
synthesis
via aromatic Claisen rearrangement, 5, 834
Daunomycinone, 1-methoxy-
synthesis
via Diels–Alder reactions, 5, 396
Daunosamine
amino sugars, 2, 323
synthesis, 1, 349
Diels–Alder reaction, 2, 689
Mannich reaction, 2, 924
via Baeyer–Villiger reaction, 7, 678
Dauricine
synthesis, 3, 687
Davanone
synthesis
aldol reaction, 2, 202
Davy’s reagent
thiocarboxylic ester synthesis, 6, 437
DB 2073
synthesis
via cyclobutene ring opening, 5, 689
via electrocyclization, 5, 732
DCC — see Carbodiimide, dicyclohexyl-
DDATHF
synthesis
via Diels–Alder reaction, 5, 492
Deacetylation
enzymatic, 6, 340
Dealkylation
Friedel–Crafts reaction, 3, 327
Deamination
amines
alcohol synthesis, 6, 3
diazenes, 8, 828
hydrazines
potassium superoxide, 7, 744
4-Deazafervenulin, 3-chloro-
synthesis, 7, 342
4-Deazafervenulin 2-oxide
reaction with Vilsmeier–Haack reagent, 7, 342
5-Deazafavin, 1,5-dihydro-
reduction
unsaturated carbonyl compounds, 8, 562
5-Deazaflavins
 reduction
 unsaturated carbonyl compounds, 8, 562
 synthesis, 4, 435

Debenzylation
 Friedel–Crafts reaction, 3, 328
 Friedel–Crafts reaction, 3, 329

Decaborane
 reduction
 acetics, 8, 214

trans-Decaladienone
 synthesis, 5, 1100

Decaladienones
 aromatization, 3, 810

9,10-Decalindiol
 oxidative cleavage, 7, 704, 708

Decalindione
 intramolecular aldolization, 2, 169

* cis*-Decalindione
 synthesis
 via Michael addition, 4, 27

Decalindiones
 enzymic reductions
 synthesis of hydroxy ketones, 8, 188

Decalins
 aromatization, 7, 7
 oxidation
 benzylic trimethylammonium permanganate, 7, 12
 synthesis
 intramolecular cyclization of cyanocyclohexanes, 3, 48
 polylene bicyclization, 3, 360
 polylene cyclization, 3, 350
 transannular ene reaction, 2, 553

* cis*-Decalins
 synthesis, 3, 360
 via Cope rearrangement, 5, 812

* trans*-Decalins
 synthesis, 3, 360

* trans*-Decalone
 synthesis
 via Michael addition, 4, 27

Decalone, α-acyl-
 ring contraction, 7, 686

Decalone, 9-methyl-
 synthesis
 exocycloalkylation, 3, 20
 Reimer–Tiemann reaction, 2, 773

Decalone, 10-methyl-
 lithium enolate
 alkylation, 3, 2, 15
 angular alkylation, 3, 16
 stabilized metal enolates
 metallation, 3, 55
 synthesis
 Reimer–Tiemann reaction, 2, 773

1-Decalone, 9-nitro-
 synthesis, 6, 107

Decalones
 reduction
 enol ether preparation, 2, 599
 synthesis
 regiospecific alkylation, 3, 11

5-Deazaflavins
 enzymic reduction
 specificity, 8, 197
 lithium 1(9)-enolate
 angular alkylation, 3, 16
 reduction
 dissolving metals, 8, 120
 dissolving metals/ammonia, 8, 112
 synthesis
 exocycloalkylation, 3, 20
 TMS enol ether
 phenylthiomethylation, 3, 26

2-Decalones
 enzymic reduction
 specificity, 8, 197
 lithium 2-enolate
 alkylation, 3, 16, 21
 lithium 1(2)-enolates
 methylation, 3, 15
 3-substituted enolates
 alkylation, diastereoselectivity, 3, 55

* cis*-β-Decalones
 synthesis
 via Cope rearrangement, 5, 814

Decanamide
 hydrogenation, 8, 248

Decane
 autoxidation, 7, 10

1,10-Decanedioic acid
 dimethyl ester
 intramolecular acyloin coupling reaction, 3, 626

1,2-Decanediol
 oxidative cleavage, 7, 706

Decanesulfonic acid, perfluoro-
 Friedel–Crafts reaction, 3, 298, 305

1-Decanol
 synthesis
 via hydrogenation, 8, 236

5-Decanone, 6-benzylidene-
 synthesis
 via photocycloaddition, 5, 163

Decarbonylation, 3, 1015–1041
 acyl radicals, 7, 718
 mechanism, 3, 1020, 1040
 reductive decarboxylation, 7, 721

Decarboxylation
 carboxyl radicals, 7, 717
 Decarboxylicative amination, 7, 729
 Decarboxylicative chalcogenation, 7, 725
 Decarboxylicative fluorination
 acyl hypofluorites, 7, 723
 Decarboxylicative halogenation, 7, 723
 Decarboxylicative iodoniation, 7, 724
 Decarboxylicative oxygenation, 7, 727
 Decarboxylicative phosphorylation, 7, 725
 Decarboxylicative selenation, 7, 726
 Decarboxylicative telluration, 7, 726

Decatrienes
 electrocyclization, 5, 743

1,6,8-Decatriene
 Diels–Alder reactions
 intramolecular, 5, 522

1,7,9-Decatriene
 Diels–Alder reactions
 intramolecular, 5, 519
 geminal substituents
1,7,9-Decatriene

Diels–Alder reactions, 5, 524
monosubstituted
Diels–Alder reactions, 5, 533

1,7,9-Decatriene, sulfonyl-
Diels–Alder reactions
intramolecular, 5, 522

Decatrienes
Diels–Alder reactions
diastereoselection, 5, 515–527
twist asynchronicity, 5, 516
heteroatom substituted
Diels–Alder reactions, 5, 527–532

Decatrienones
Diels–Alder reactions
boat-like transition states, 5, 539–543

Decatrien-3-ones
Diels–Alder reactions
intramolecular, 5, 519
stereoselectivity, 5, 518

1-Decene
benzene alkylation with
Friedel–Crafts reaction, 3, 304
epoxidation, 7, 375
oxidation
Wacker process, 7, 451, 452
synthesis, 3, 248

1-Decene, 10-nitro-
cyclization via nitrile oxide, 4, 1127

2-Decenoic acid, 10-hydroxy-
synthesis
Knoevenagel reaction, 2, 381

Decyanation
isocyandates
tributylstannane, 8, 830

5-Decyne
photolysis with benzaldehyde, 5, 163
reduction
dissolving metals, 8, 479

Defucogilvocarcin V
synthesis, 7, 347

Degradation reactions, 6, 795–825

Dehydrating agents
enamine synthesis, 6, 705

Dehydration
dienylium complexes, 4, 668
reduction
ketones, 8, 924

Dehydrodimerization
alkanes, 7, 5

Dehydrogenases
hydrogenation
unsaturated ketones, 8, 561

Dehydrogenation
activated C–H bonds
oxidation, 7, 119–146
alkanes
transition metal catalysis, 7, 6
nitrogen compounds, 7, 742
steroids
microbial, 7, 66, 67

Dehydrohalogenation
mechanism, 7, 122

Deiphenine
synthesis, 6, 402

Deltamethrin
synthesis via chiral cyanohydrins, 1, 546

Demercuration
acyloxymercuration
alkenes, 4, 314–316
alkoxymercuration
alkenes, 4, 309–312
amidomercuration
alkenes, 4, 294
aminomercuration
alkenes, 4, 290–292
azidomercuration
alkenes, 4, 297
hydroxymercuration
alkenes, 4, 300–305
peroxymercuration
alkenes, 4, 306
reduction, 8, 850

Demethylation
nucleoside 5'-phosphoric acid methyl ester, 6, 624

Dendrobatid alkaloids
synthesis enantioselective, 2, 1028
Eschenmoser coupling reaction, 2, 876

Dendrolasin
synthesis, 3, 99; 6, 145
from furan-3-carbaldehyde, 3, 195
reduction of sulfides, 3, 107
via carboalumination, 4, 893
via tandem Claisen–Cope rearrangement, 5, 879

Denudatin A
synthesis, 3, 694

Deoxygenation
alcohols, 8, 812
to alkanes, 8, 811
benzoates
photosensitization, 8, 817
carbonyl compounds
via hydrzones, 8, 328
epoxides, 8, 884
free-radical
alcohols, 8, 818

Deoxymercuration, 8, 853

Deplancheine
asymmetric synthesis, 3, 81
synthesis via iminium ion–vinylsilane cyclization, 1, 592

Depresosterol
synthesis
use of homoenoates, 2, 452

Deprotonation
donor radical cations, 7, 877
radical cations
bimolecular reaction, 7, 859

Depsideptides
strained cyclic synthesis, 6, 638

Deselenation
nucleophilic attack, 8, 847

Deselenative coupling
selenol esters, 6, 475

Desilylation
π-allyl complexes
[3 + 2] cycloaddition reactions, 5, 300
phosphonium salts
fluoride ion induced, 6, 175
Desmosterol
synthesis, 3, 427
Desmotroposantonin
synthesis, 3, 804
Desulfurization
o-aminobenzyl sulfide, 8, 976
benzyl compounds
rhodium complexes, 8, 963
definition, 8, 835
p-phenylsulfonylphenyl p-tolyl sulfide, 8, 914
Deuterium
labeling
hydrozirconation, 8, 691
Deuterolysis
demercuration, 8, 850
Dewar benzene
1,4-bridged
synthesis, 3, 872
rearrangement, 7, 854
Dexamethasone
synthesis
industrial scale, 6, 219
Dextrophan
synthesis, 3, 77
Diacetone alcohol
synthesis, 2, 140
1,4-Diacetoxylation
cycloheptadienes
palladium catalysis, 4, 686
palladium(II) catalysis, 4, 565
Diacylation
Friedel–Crafts reaction, 2, 712
C,N-Diacyliminium ions
addition reactions, 2, 1074
intramolecular reactions, 2, 1074
intramolecular reactions, 2, 1076
Diacyl peroxides
allylic oxidation, 7, 96
Dialdehydes
Henry reaction, 2, 326
intramolecular aldol reaction, 2, 156
Knoevenagel reaction, 2, 365
Diaryl phosphonates
synthesis
via $S_N 1$ reaction, 4, 473
Diacylation
1,2-dicarbanionic species, 4, 976
enolates
equilibration, 3, 4
2,3-Diacylation
alkadienoates, 4, 253
2,6-Diacylation
alkadienoates, 4, 253
cis-Diacylation
Michael acceptors, 4, 243
Diacylative enone transposition, 7, 615
Diacyl phosphates
esterification, 6, 615
Diacyl phosphonates
alkylation, 3, 201
Diacyl sulfates
amide alkylation, 6, 503
Diabenes
synthesis
via dihalocyclopropanes, 4, 1010
vic-Dials
synthesis, 7, 307
Diamantane
synthesis
Friedel–Crafts reaction, 3, 334
Diamination
alkenes
palladium(II) catalysis, 4, 560
Diamines
chiral auxiliary
aldol reaction, 2, 233
chiral catalysts
enantioselective addition of alkyl lithium to
aldehydes, 1, 72
synthesis, 7, 479
via alkenes, 7, 484
via aziridine ring opening, 7, 487
via reductive cleavage of cyclic hydrazines, 8, 388
1,2-Diamines
coupling reactions
with imines, 3, 564
reactions with iminium salts, 6, 515
synthesis, 6, 94
Diamines, vicinal
synthesis
via Diels–Alder reactions, 5, 426
2,2'-Diaminobiphenyl
phosphoric acid protecting group, 6, 625
Diamondoid hydrocarbons
synthesis
Friedel–Crafts reaction, 3, 334
Dianions
γ-acylation, 2, 832
Dianthranol
synthesis
via photolysis, 5, 729
Dianthrones
photolysis, 5, 729
Diaryl carboxylic acids
synthesis, 4, 434
Diarylborylethyl chloroantimonate
catalyst
Friedel–Crafts reaction, 2, 744
Diaryne
polyhalogenated arenes as equivalents, 4, 496
Diastereofacial differentiation
asymmetric synthesis, 3, 72
Diastereofacial selectivity
aldol reaction, 2, 217, 218
allyl organometallic compounds, 2, 2
reaction with amines, 2, 978
chiral auxiliaries
aldol reaction, 2, 232
Cram’s rule
chiral electrophiles, 2, 639
cyclopropanes, 4, 952
Diels–Alder reactions, 2, 677
Lewis acids, 2, 678
in enolate–imin condensations
Mannich reaction, 2, 922
Diastereoselective addition
achiral carbon nucleophiles
chiral alkenes, 4, 200–218
Diastereoselective reactions
allenyl organometallics, 2, 91–96
propargyl organometallics, 2, 91–96
Diastereoselectivity

Cumulative Subject Index

Diastereoselectivity
relative
allyl organometallics, 2, 3, 24–33
simple
allyl organometallics, 2, 2–24
Diazaalkenes
insertion reactions, 3, 1049
1,8-Diazaanthraquinone
synthesis, 7, 355
Diazaazulene
synthesis
via [6 + 4] cycloaddition, 5, 627
1,2-Diaza[3.1.0]hex-2-ene
synthesis
via diazoalkane cycloaddition, 4, 1103
Diaza bicyclooctane
in sulfide metallation, 3, 86
1,4-Diaza bicyclo[2.2.2]octane
reduction
aluminum hydrides, 8, 543
thioallyl anion preparation, 2, 71
1,2-Diaza-1,3-butadienes
Diels–Alder reactions, 5, 486
hetero
Diels–Alder reactions, 5, 486
1,3-Diaza-1,3-butadienes
Diels–Alder reactions, 5, 486
1,4-Diaza-1,3-butadienes
Diels–Alder reactions, 5, 486
2,3-Diaza-1,3-butadienes
Diels–Alder reactions, 5, 491
Diazanaphthalenes
oxidation
hydrogen peroxide and sodium tungstate, 7, 750
2,3-Diaza-5-norbornene
Pauson–Khand reaction, 5, 1050
Diaza[3.2.1]octane
synthesis
via azomethine imine, 4, 1096
1,3,2-Diaza phosphorinan, 2-benzyl-2-oxo-4-lithium carbanion
crystal structure, 1, 36
Diazaquinomycin A
synthesis, 7, 355
Diazaspiroalkanes
reduction, 8, 229
1,1-Diazene
synthesis
via oxidation of 1,1-disubstituted hydrazines, 7, 742
Diazenes
deamination, 8, 828
Diazo
synthesis, 7, 487
via acetals, 6, 254
via dihalides, 6, 247
Diazine
oxidation, 7, 750
1,2-Diazines
Diels–Alder reactions, 5, 491
synthesis
via retro Diels–Alder reactions, 5, 583
1,3-Diazines
Diels–Alder reactions, 5, 491
1,4-Diazines
Diels–Alder reactions, 5, 491
Diaziridine, 1-benzyl-
reaction with lithium dimethylcuprate, 6, 95
Diaziridines
synthesis
via imines and oximes, 1, 838
Diazirine, chloro-
synthesis
via oxidation of amidines, 7, 739
Diazirines
carbene precursors, 4, 967
synthesis
via imines and oximes, 1, 838
Diazooacetates
ketocarbenes precursors, 4, 1033
Diazooacetates
ketocarbenes precursors, 4, 1033
α-Diazo aldehydes
synthesis, 3, 890
Diazooalkanes
chain extension, 1, 844
[3 + 2] cycloaddition reactions
alkynyl complexes, 5, 1070
cyclopropane synthesis, 4, 953–961
1,3-dipolar cycloadditions, 4, 1101–1104
epoxidations, 1, 832
higher
synthesis, 6, 121
photochemical reactions with alkenes, 4, 954
properties, 6, 120
reactions with alkenes
metal-catalyzed, 4, 954–961
reactions with carboxylic acids, 6, 337
synthesis, 6, 120, 778
Diazooalkanes, aryl-
synthesis, 6, 121
Diazooalkenes
aryl-bridged
cyclizations, 4, 1153
cyclization, 4, 1151–1155
open-chain
cyclizations, 4, 1152
3-Diazaalkenes
cyclization, 4, 1156
Diazooalkynes
cyclization, 4, 1156
Diazocompounds
C—H insertion reactions, 6, 127
cyclization, 4, 1151–1157
decomposition
catalysts, 4, 1032
heteroatom–hydrogen insertion reactions, 6, 127
ketocarbenes from, 4, 1032
reaction with sulfenyl halides
formation of α-chlorosulfides, 7, 213
reduction
synthesis of hydrazines, 8, 382
reductive cleavage
synthesis of amines, 8, 383
synthesis
via oxidation of hydrazones, 7, 742
via oximes, 7, 751
synthetic applications, 6, 126
Diazocompounds, alkyl-
Diels–Alder reactions, 5, 430
Diazoco coupling
amide halide synthesis, 6, 499
Cumulative Subject Index

Dibenzo systems

Diazocycloalkenes
cyclizations, 4, 1154
2,3-Diazocycloalkenes
nitrogen extrusion, 5, 568
Diazocycloalkenes, photoisomerization, 3, 894
Diazocycloalkenes, rhodium-catalyzed, 3, 1051
Diazocycloalkenes, secondary synthesis, 3, 889
Diazocycloalkenes, via oxidation of 1,2-diketone monohydrzones, 7, 742
Diazocycloalkenes, α,β-unsaturated synthesis, 3, 890
Diazocycloalkenes, β,γ-unsaturated vinyllogous Wolff rearrangement, 3, 906
Diazocycloalkenes, α-Diazo ketones rearrangements, 3, 887
Diazocycloalkenes, synthesis, 3, 888
Diazocycloalkenes, epoxy preparation
Diazocycloalkenes, Darzens glycidic ester condensation, 2, 422
Diazocycloalkenes, ketocarbene precursors, 4, 1033
Diazocycloalkenes, dimethyl ester deoxygenation, epoxides, 8, 890
Diazocycloalkenes, cycloaddition reactions
fulvenes, 5, 630
reaction with alkenes
synthesis of substituted cyclopropanes, 6, 716
reaction with hydroalumination adducts, 8, 756
synthesis, 6, 120
Diazocycloalkenes, α-acyl-
reactions with aliphatic ketones hydroxide-catalyzed, 1, 846
Diazocycloalkenes, phenyl-
cycloaddition with styrene, 4, 1103
Diazocycloalkenes, phenylsulfanyl-
reactions with cyclohexanones, 1, 851
Diazocycloalkenes, trimethylsilyl-
[3 + 2] cycloaddition reaction alkenyl carbene complexes, 5, 1070
reaction with methyl tetrolate, 5, 1070
synthesis, 6, 121
trifluoroborane complex
2-methylcyclohexanone homologation, 1, 851
Diazocycloalkenes, vinyl-
ketocarbene precursors, 4, 1033
Diazocycloalkenes, synthesis of hydrazines, 8, 382
reductive cleavage, 8, 383
Diazonium salts — see also Arenediazonium salts
Diazonium salts, aryl-
coupling reactions with alkenes, 3, 497
hydride acceptors, 8, 91
synthesis, 7, 340
Diazonium tetrafluoroborate synthesis via diazotization, 7, 740
Diazonium tetrafluoroborate synthesis
via diazotization, 7, 740
Diazonium salts
amine deamination
bromination, 6, 211
chlorination, 6, 208
Diels-Alder reactions, 5, 430
fluorination, 6, 220
iodination, 6, 215
reduction, 8, 916
Dibenzocycloheptatriene
Dibenzocycloheptatriene
synthesis of substituted cyclopropanes, 6, 716
Dibenzocycloheptatriene, via cycloaddition, 5, 639
Dibenzocyclooctanone
hydrozone
Dibenzocyclooctanone
hydrozone
reduction, Henbest modification, 8, 336
Dibenzocyclooctanone
hydroxyster synthesis
Dibenzocyclooctanone
hydroxyster synthesis
Dibenzocyclooctanone
hydroxyster synthesis
Dibenzocyclooctanone
Dibenzocyclooctane
Dibenzothiepinones

Dibenzothiepinones
synthesis
Friedel–Crafts reaction, 2, 765

Dibenzothiophene
Birch reduction, 8, 629
electrochemical reduction, 8, 611
methylation, 3, 456

Dibenzoyl peroxydicarbonate
α-hydroxylation
oxazolidinones, 7, 184

Dibenzyamine, N-nitroso-
via oxidative deacylation, 7, 749

1,6-Diboracyclododecane
synthesis, 8, 707

Diborane
hydroboration, 8, 705
imine reduction, 6, 724
reaction with organometallic compounds, 7, 595
reduction
acyl halides, 8, 240, 263
carbonyl compounds, 8, 1, 315
carboxylic acids, 8, 237, 261
epoxides, 8, 875
lactones, 8, 269

1,1-Diboryl compounds
oxidation
alcohol formation, 7, 596
synthesis and cleavage, 1, 489

1,2-Diboryl compounds
oxidation
formation of alkenes, 7, 601
Diboryl enediolates
aldol reaction, 2, 245

Dibromides
geminal
double alkyl substitution, 3, 216
vicinal
reaction with dialkyl cuprates, 3, 216
reduction, 8, 797
reduction with tributylstannanes, 8, 798

α,α-Dibromo compounds
ketocarbenes from, 4, 1032

Dibromohydrins
rearrangement, 1, 874

Di-tert-butylamine
synthesis, 7, 737

Dibutylamine, N-chloro-
reaction with butadiene, 7, 505

Di-tert-butylsilylene group
diol protection, 6, 662

Dicarboxylation
definition, 4, 238

1,2-Dicarbanionic compounds
dialkylation, 4, 976

Dicarboxyl compounds
methylation
Tebbe reagent, 1, 743
monoprotection, 6, 684

1,2-Dicarboxyl compounds
Baeyer–Villiger reaction, 7, 684
diazo-coupling reactions, 3, 893
oxidation, 7, 153
oxidative cleavage, 7, 709
synthesis, 7, 439, 664

1,3-Dicarboxyl compounds

α-alkenylation, 7, 620
alkylation, 3, 54
α-alk-1-ynylation, 7, 620
aromatic S_{RN1} reactions, 4, 467
α-arylation
synthesis via S_{RN1} reaction, 4, 467
cyclic 2-diazo-
Wolff rearrangement, 3, 903
dehydrogenation, 2, 388
dianions
γ-alkylation, 3, 58
dienolates
γ-alkylation, 3, 1
selenenylation, 7, 131
synthesis
Eschenmoser coupling reaction, 2, 865

1,4-Dicarboxyl compounds
dehydrogenation
use of selenium dioxide, 7, 132
synthesis
conjugate addition, 2, 330
via Claisen rearrangement, 6, 860
via Wacker oxidation, 7, 455
synthesis, 5, 941
use of cyclopropanes, 5, 903

1,5-Dicarboxyl compounds
synthesis
conjugate addition, 2, 331
Eschenmoser coupling reaction, 2, 875, 876
from hydrazones, 2, 517
via Claisen rearrangement, 6, 860
via Wacker oxidation, 7, 458

1,2-Dicarboxyl compounds, 1-alkyl-2-aryl-
benzylcyclopropanes, 3, 829

1,3-Dicarboxyl compounds, alkylidene-
Diels–Alder reactions, 5, 467

1,3-Dicarboxyl compounds, arylidene-
Diels–Alder reactions, 5, 467

1,3-Dicarboxyl compounds, 2-ethynyl-
synthesis, 3, 286

1,3-Dicarboxyl compounds, 5-nitro-
Heny reaction
cyclization, 2, 334

1,3-Dicarboxyl compounds, 6-nitro-
Heny reaction
intramolecular, 2, 334

Dicarboxyl compounds, α-seleno-
oxidative syn elimination, 2, 388
synthesis, 2, 388

Dicarboxylation
alkenes, 4, 946–949
mechanism, 4, 946

Dicarboxylic acids
monodesoxyamination, 7, 727

1,4-Dicarboxylic acids
di-tert-butyliperoxyesters
pyrolysis, 7, 722
oxidative decarboxylation, 7, 722

Dichioramidine-T
reaction with trialkylborane, 7, 604

Dichlorides
geminal
solvolysis, divinyl ketones from, 5, 770
vicinal
reduction with tributylstannane, 8, 798

Dichlorine oxide
Cumulative Subject Index

Diels–Alder reactions

<table>
<thead>
<tr>
<th>Subject</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ene-type chlorination</td>
<td>7, 537</td>
</tr>
<tr>
<td>Dichlorohydrins</td>
<td>rearrangement</td>
</tr>
<tr>
<td>Dichromates</td>
<td>oxidation</td>
</tr>
<tr>
<td>Diconiferyl alcohol, dehydro-synthesis</td>
<td>3, 693</td>
</tr>
<tr>
<td>Dicranenone A</td>
<td>synthesis</td>
</tr>
<tr>
<td>Dichlorohydrins</td>
<td>rearrangement</td>
</tr>
<tr>
<td>Dichromates</td>
<td>oxidation</td>
</tr>
<tr>
<td>Diconiferyl alcohol, dehydro-synthesis</td>
<td>3,693</td>
</tr>
<tr>
<td>Dicranenone A</td>
<td>synthesis</td>
</tr>
<tr>
<td></td>
<td>via Cope rearrangement</td>
</tr>
<tr>
<td>Dicyanogen triselenide</td>
<td>oxidation</td>
</tr>
<tr>
<td>Dicyclopenta[a,d]cyclooctanes</td>
<td>synthesis</td>
</tr>
<tr>
<td>Dicyclopentadiene</td>
<td>hydroformylation</td>
</tr>
<tr>
<td></td>
<td>hydroxylation</td>
</tr>
<tr>
<td></td>
<td>oxidation</td>
</tr>
<tr>
<td></td>
<td>oxidative cleavage</td>
</tr>
<tr>
<td></td>
<td>reaction injection molding</td>
</tr>
<tr>
<td></td>
<td>reactions with nitrogen oxides</td>
</tr>
<tr>
<td></td>
<td>ring opening metathesis polymerization</td>
</tr>
<tr>
<td>Dicyclopentadiene, tetrahydro-isomerization</td>
<td>7, 5</td>
</tr>
<tr>
<td>Dicyclopentylamine</td>
<td>Mannich reaction with phenols</td>
</tr>
<tr>
<td>Dicyclohexylamine</td>
<td>Mannich reaction with phenols</td>
</tr>
<tr>
<td></td>
<td>kinetic resolution</td>
</tr>
<tr>
<td></td>
<td>kinetics</td>
</tr>
<tr>
<td>Dicyclohexyl tartrate</td>
<td>asymmetric epoxidation</td>
</tr>
<tr>
<td></td>
<td>kinetics</td>
</tr>
<tr>
<td>Dicyclohexylamine</td>
<td>Mannich reaction with phenols</td>
</tr>
<tr>
<td>Dicyclopentadiene</td>
<td>hydroformylation</td>
</tr>
<tr>
<td></td>
<td>hydroxylation</td>
</tr>
<tr>
<td></td>
<td>oxidation</td>
</tr>
<tr>
<td></td>
<td>oxidative cleavage</td>
</tr>
<tr>
<td></td>
<td>reaction injection molding</td>
</tr>
<tr>
<td></td>
<td>reactions with nitrogen oxides</td>
</tr>
<tr>
<td></td>
<td>ring opening metathesis polymerization</td>
</tr>
<tr>
<td>Dicyclopentadiene, tetrahydro-isomerization</td>
<td>7, 5</td>
</tr>
<tr>
<td>Dicyclopentylamine</td>
<td>Mannich reaction with phenols</td>
</tr>
<tr>
<td>Dicyclopropylimine</td>
<td>rearrangement</td>
</tr>
<tr>
<td>Didemnin</td>
<td>antibiotics</td>
</tr>
<tr>
<td>Dideoxygenation</td>
<td>vicinal</td>
</tr>
<tr>
<td>Dideuteriomethylation</td>
<td>modified Tebbe reagent</td>
</tr>
<tr>
<td>Dieckmann reaction</td>
<td>2, 806</td>
</tr>
<tr>
<td></td>
<td>ester groups</td>
</tr>
<tr>
<td></td>
<td>β-heteroatoms</td>
</tr>
<tr>
<td></td>
<td>in synthesis</td>
</tr>
<tr>
<td></td>
<td>mechanism</td>
</tr>
<tr>
<td>Baldwin’s rules</td>
<td>2, 807</td>
</tr>
<tr>
<td>regioselectivity</td>
<td>2, 808</td>
</tr>
<tr>
<td>retro</td>
<td>2, 855</td>
</tr>
<tr>
<td>ring size</td>
<td>2, 808</td>
</tr>
<tr>
<td>α-substitution</td>
<td>regioselectivity</td>
</tr>
<tr>
<td>β-substitution</td>
<td>regioselectivity</td>
</tr>
<tr>
<td>tandem reaction</td>
<td>2, 852</td>
</tr>
<tr>
<td>thioacarboxylic esters</td>
<td>6, 446</td>
</tr>
<tr>
<td>Diels–Alder reactions</td>
<td>activated dienes</td>
</tr>
<tr>
<td></td>
<td>activation enthalpy</td>
</tr>
<tr>
<td></td>
<td>activation entropy</td>
</tr>
<tr>
<td></td>
<td>anthracene with maleic anhydride</td>
</tr>
<tr>
<td></td>
<td>asymmetric</td>
</tr>
<tr>
<td></td>
<td>mechanisms</td>
</tr>
<tr>
<td></td>
<td>benzannulation</td>
</tr>
<tr>
<td></td>
<td>benzynes</td>
</tr>
<tr>
<td></td>
<td>stereochemistry</td>
</tr>
<tr>
<td></td>
<td>cationic heterodienes</td>
</tr>
<tr>
<td></td>
<td>chiral catalysts</td>
</tr>
<tr>
<td></td>
<td>absolute stereochemistry</td>
</tr>
<tr>
<td></td>
<td>clays as promoters</td>
</tr>
<tr>
<td></td>
<td>diastereoface selective</td>
</tr>
<tr>
<td></td>
<td>diastereoselectivity</td>
</tr>
<tr>
<td></td>
<td>relative</td>
</tr>
<tr>
<td></td>
<td>simple</td>
</tr>
<tr>
<td></td>
<td>enantioselective</td>
</tr>
<tr>
<td></td>
<td>endocyclic dienophiles</td>
</tr>
<tr>
<td></td>
<td>π-facial control</td>
</tr>
<tr>
<td></td>
<td>heterodienes</td>
</tr>
<tr>
<td></td>
<td>heterodienophiles</td>
</tr>
<tr>
<td></td>
<td>high pressure reactions</td>
</tr>
<tr>
<td></td>
<td>mechanism</td>
</tr>
<tr>
<td></td>
<td>imines</td>
</tr>
<tr>
<td></td>
<td>intermolecular</td>
</tr>
<tr>
<td></td>
<td>reactivity</td>
</tr>
<tr>
<td></td>
<td>intramolecular</td>
</tr>
<tr>
<td></td>
<td>asymmetric</td>
</tr>
<tr>
<td></td>
<td>carbonyl compounds</td>
</tr>
<tr>
<td></td>
<td>diastereoselectivity</td>
</tr>
<tr>
<td></td>
<td>Lewis acid catalyzed</td>
</tr>
<tr>
<td></td>
<td>inverse electron demand</td>
</tr>
<tr>
<td></td>
<td>Lewis acid catalysts</td>
</tr>
<tr>
<td></td>
<td>Lewis acid catalyzed reactions</td>
</tr>
<tr>
<td></td>
<td>conditions</td>
</tr>
<tr>
<td></td>
<td>mechanism</td>
</tr>
<tr>
<td></td>
<td>mechanism</td>
</tr>
<tr>
<td></td>
<td>medium promoted</td>
</tr>
<tr>
<td></td>
<td>neutral</td>
</tr>
<tr>
<td></td>
<td>normal</td>
</tr>
<tr>
<td></td>
<td>radical cyclizations</td>
</tr>
<tr>
<td></td>
<td>regiochemistry</td>
</tr>
<tr>
<td></td>
<td>retrograde</td>
</tr>
<tr>
<td></td>
<td>intramolecular</td>
</tr>
<tr>
<td></td>
<td>silica gel as promoter</td>
</tr>
<tr>
<td></td>
<td>stereochemistry</td>
</tr>
<tr>
<td></td>
<td>stereoface selective</td>
</tr>
<tr>
<td>tandem ene reactions</td>
<td>5, 1099</td>
</tr>
</tbody>
</table>
Dienamides

alkynes, 5, 7
thermal reactions
mechanism, 2, 664
transannular cycloadditions, 5, 532
ultrasound promoted, 5, 341–343
volume of activation, 5, 458
water promoted, 5, 344
zeolites as promoters, 5, 345

Dienamines
Diels–Alder reactions, 5, 331
Vilsmeier–Haack reaction, 2, 783
2,4-Diene-1,6-diones via
dienetricarbonyliron complexes, 4, 701

Dienes
activated
Diels–Alder reaction, 2, 662
reactions with aldehydes, 2, 661–706
acyloxymercuration, 4, 315
addition reactions
carbon-centered radicals, 4, 765
alkoxymercuration, 4, 311
alkylation
via iron carbonyl complexes, 4, 580–582
allylic hydroxy
stereospecific synthesis, 8, 727
 amidomercuration, 4, 295
arene alkylation
Friedel–Crafts reaction, 3, 322
arylation
palladium complexes, 4, 849
autoxidation, 7, 861
bicyclization, 5, 1172
boron-substituted
Diels–Alder reactions, 5, 335–337
carbolamination, 4, 887
carbolithiation, 4, 867–872
carbonyl derivatives
cycloaddition reactions, 6, 757
chiral
Diels–Alder reactions, 5, 348–350, 373–376
conjugated
addition reactions with selenium electrophiles, 7, 520
alkoxymercuration, 4, 311
aminomercuration–demercuration, 4, 291
anodic oxidation, 7, 795
[3 + 2] cycloaddition reactions, 5, 297
hydrobromination, 4, 283
hydrocarboxylation, 4, 945
hydrochlorination, 4, 276
hydroformylation, 4, 922
hydrogenation, 8, 433
hydrogenation mechanism, 8, 433
partial reduction, 8, 564
reactions with chlorosulfonyl isocyanate, 5, 105
Ritter reaction, 4, 293
stereospecific synthesis, 4, 1020
synthesis, 3, 878
thiation, 4, 317
conjugated acyclic
Pauson–Khand reaction, 5, 1044
cyclic
photoisomerizations, 5, 196
cyclic hydroboration, 8, 709, 711
cycloaddition reactions
fulvenes, 5, 626–630
tropones, 5, 618–625
[3 + 2] cycloaddition reactions, 5, 307
[4 + 3] cycloaddition reactions, 4, 1075; 5, 601
cyclopropanation
regioselectivity, 4, 1035
dialkoxylation
palladium(II) catalysis, 4, 565
1,4-diamination, 7, 504
from π-allylpalladium complexes, 4, 608–610
functionalized
carbomagnesiation, 4, 877
heteroatom-substituted
Diels–Alder reactions, 5, 328–339
heterodienophile additions, 5, 401–444
hydroalumination
locoselectivity, 8, 742
hydroboration, 8, 705, 707, 716
hydrofluorination, 4, 271
hydrogenation
regioselectivity, 8, 433
stereoselectivity, 8, 433
to saturated hydrocarbons
homogeneous catalysis, 8, 449
hydroiodination, 4, 288
hydroxymercuration–demercuration, 4, 303
hydrozirconation, 8, 676, 684
iron tricarbonyl complexes
acylation, 2, 721
metal-activated
heteroatom nucleophilic addition, 4, 565
monooxepines
rearrangement, 3, 770
'skipped'
synthesis, 3, 244, 265
nitrogen-substituted
Diels–Alder reactions, 5, 331–333
nonconjugated
alkoxymercuration, 4, 311
aminomercuration–demercuration, 4, 291
hydroboration, 8, 714
hydrobromination, 4, 283
hydrochlorination, 4, 276
hydroformylation, 4, 922
reactions with hydrogen sulfide, 4, 317
Ritter reaction, 4, 293
oxidation
singlet oxygen, 7, 97
oxidative rearrangement, 7, 832
oxygen-substituted
Diels–Alder reactions, 5, 329–331, 434
peroxymercuration–demercuration, 4, 307
polycyclic
photoisomerization, 5, 196
radical cyclization
carbon-centered radicals, 4, 789
reactions with π-allylpalladium complexes
regioselectivity, 4, 643
reactions with carbon electrophiles
transition metal catalysis, 4, 695–712
reactions with carboxylic acids, 4, 313
1,2-reduction to alkenes
homogeneous catalysis, 8, 449
Dienes

1,4-reduction to alkenes
- homogeneous catalysis, 8, 451
- regioselective hydroxylation, 7, 438
- silicon-substituted
 - Diels–Alder reactions, 5, 335–337
- sulfur-substituted
 - Diels–Alder reactions, 5, 333
- synthesis, 8, 727
 - 3,2-sigmatropic rearrangement, 3, 964
 - via hydroamination, 8, 757
 - via β-hydroxyalkyl selenides, 1, 705
 - via Julia coupling, 1, 800
- tin-substituted
 - Diels–Alder reactions, 5, 335–337

1,4-transfer of chirality
- palladium(II) catalysis, 4, 576
- unactivated
 - photocycloaddition reactions, 5, 145
- vinylation
 - palladium complexes, 4, 839, 855

1,2-Dienes
- chloropalladation, 4, 565

1,3-Dienes
- acylation
 - Friedel–Crafts reaction, 2, 720, 721
 - π-allylpalladium complexes from, 4, 587
- carbocupration, 4, 895
- conjugated
 - heteroatom nucleophilic addition, 4, 565
- coupling with carbene complexes, 5, 1084
- cyclic
 - [4 + 3] cycloaddition reactions, 5, 603–605
- cycloaddition reactions with alkynyl carbene complexes, 5, 1072
- 1,4-diazides from, 7, 504
- hydroboration, 8, 720
- hydrosilylation, 8, 778
- hydrozirconation
 - regioselectivity, 8, 685
- insertion reactions
 - allylpalladium compounds, 5, 35
- open-chain
 - [4 + 3] cycloaddition reactions, 5, 603
- photocycloaddition reactions, 5, 635–638
- protection, 6, 690
- reaction with π-allylpalladium complexes, 4, 601
- reaction with dihalocarbenes, 4, 1002
- reaction with 5-ethoxy-2-pyrrolidinone, 2, 1057
- reaction with iron carbene complexes, 5, 1088
- reaction with Kolbe radicals, 3, 647
- reaction with trifluoroacetate nitrate, 7, 505
- synthesis
 - copper catalysts, 3, 217
 - from alkenes, 3, 879
 - organopalladium catalysis, 3, 232
 - via allylic alcohols, 6, 154
 - via carboalumination, 4, 889
 - via cyclobutenes, 5, 683–686, 1030
 - via Pauson–Khand reaction, 5, 1039, 1043
- Vilsmeier–Haack reaction, 2, 782

(E)-1,3-Dienes
- synthesis
 - allylic anions, 2, 65
(Z)-1,3-Dienes
- synthesis
 - allylic anions, 2, 65

1,4-Dienes
- acyclic
 - photoisomerizations, 5, 195
- oxidation
 - pyridinium dichromate, 7, 276
 - photoisomerization, 5, 194–213
 - cis–trans, 5, 207
- retro-ene reaction, 5, 907
- synthesis, 3, 249
 - coupling reactions of allylic halides, 3, 473
 - via π-allylpalladium complexes in, 4, 595
 - via boron-ene reaction, 5, 34
 - via palladium-ene reactions, 5, 56

1,5-Dienes
- addition reactions
 - nitrogen nucleophiles, 4, 562
 - carboalumination, 4, 887
- cyclic
 - synthesis, 3, 429
 - medium rings
 - conformation, 3, 386
 - synthesis, 3, 428
 - organopalladium catalysis, 3, 231
 - phosphonium ylide alkylation, 3, 201
 - via palladium-ene reaction, 5, 48
 - thermal rearrangement, 5, 786

1,6-Dienes
- ene reactions, 5, 10–15

1,7-Dienes
- ene reactions
 - intramolecular, 5, 17
- synthesis, 1, 663

α,ω-Dienes
- cycloaddition with nickel(0) complexes, 5, 1131
- dihydroboration, 8, 714
- hydroboration, 8, 711
- synthesis
 - alkene metathesis, 5, 1117

(E,Z)-Dienes
- synthesis
 - via Horner reaction, 1, 779

Dienes, acetoxy-
- palladiumene reactions, 5, 46

Dienes, acyl-
- synthesis
 - carbonylation, 3, 1024
- 1,5-Dienes, 1-acyl-
 - Cope rearrangement catalysis, 5, 799
- 1,5-Dienes, 2-acyl-
 - Cope rearrangement catalysis, 5, 798
- 1,5-Dienes, 3-acyl-
 - Cope rearrangement catalysis, 5, 799

Dienes, N-acylamino-
- Diels–Alder reactions, 5, 331

1,3-Dienes, N-acylamino-
- synthesis
 - via thermal rearrangement, 6, 843

Dienes, 2-alkoxy-
- Diels–Alder reactions, 5, 348

1,3-Dienes, 1-amino-
- Diels–Alder reactions, 5, 331

Dienes, conjugated
- acylation
1,3-Dienes

Friedel–Crafts reaction, 2, 720
1,3-Dienes, 2-dialkylamino-
Diels–Alder reactions, 5, 331
1,4-Dienes, 2-ethoxy-
synthesis
via boron-ène reaction, 5, 34
1,3-Dienes, 3-hydroxy-
synthesis
via α,β-unsaturated aldehydes, 7, 458
1,3-Dienes, 1-iodo-
carbonylation
palladium catalysts, 3, 1030
1,4-Dienes, 1-iodo-
carbonylation
palladium catalyst, 3, 1025
Dienes, 1-(O-methylmande1oxy)-
Diels–Alder reactions, 5, 373
1,3-Dienes, 1-nitro-
synthesis
via electrophilic nitration, 4, 356
Dienes, phenylsulfonyl-
synthesis, 7, 519
1,3-Dienes, 2-(phenylsulfonyl)-
Diels–Alder reactions, 5, 333
Dienes, siloxy-
Diels–Alder reactions, 5, 329, 407
1,3-Dienes, 1-silyl-
formylation, 2, 728
synthesis
organopalladium catalysis, 3, 232, 223
1,3-Dienes, 2-(silylmethyl)-
Diels–Alder reactions, 5, 337–339
Dienes, silyloxy-
synthesis
via γ-silylated vinylcopper, 1, 428
1,3-Dienes, 2-(stannymethyl)-
Diels–Alder reactions, 5, 337–339
1,3-Dienes, 2-(thiomethyl)-
Diels–Alder reactions, 5, 337–339
Dienes, trimethylsilyloxy-
Diels–Alder reaction, 2, 663
Dienoates
synthesis
via nickel-ène reaction, 5, 36
Dienoic acids
synthesis, 3, 882
2,5-Dienoic acids
synthesis
nickel-catalyzed carbonylation, 3, 1027
Dierolates
addition reactions, 4, 106–111
cooper(I)
alkylation, 3, 50
diastereoselective alkylation
solvent effects, 3, 24
extended
alkylation, stereochemistry, 3, 23
monoalkylation, 3, 23
heteroannular extended
equatorial alkylation, 3, 24
Michael additions, 4, 30
α,β-unsaturated carboxylic acids
alkylation, 3, 50
Dienols
hydrazirconation
regioselectivity, 8, 686

1,5-Dienes

via vinyl epoxides, 6, 11
1,5-Dien-3-ols
synthesis
Wittig rearrangement, 3, 994
β,β'-Dienols
synthesis
via oxidation of β-hydroxy-γ-alkenyl selenides, 1, 709
β,β-Dienols
synthesis
via 1-lithio-3-alkenyl phenyl selenoxides, 1, 709
Dienone–phenol rearrangements, 3, 803–820
intracyclic migrations, 3, 804
Dienones
conjugated
synthesis, 6, 841
epoxidation, 7, 372
Robinson annulation, 4, 8
2,4-Dienes
rearrangements, 3, 803
α,β,β,γ-Dienones
synthesis
via conjugate additions, 4, 147
o-Dienones
synthesis
via Claisen rearrangement, 5, 834
Dienophiles
chiral
Diels–Alder reactions, 5, 350–352, 354–373
Diels–Alder reactions
intramolecular, 5, 531
Dienyl systems
Paterno–Büchi reaction, 5, 165–168
Dienynes
conjugated
one-pot synthesis, 3, 539
divinyl ketones from
cyclization, 5, 767
hydration, 5, 752
1,11-Dien-6-ynes
intramolecular [2 + 2 + 2] cycloaddition, 4, 1141
1,13-Dien-7-ynes
intramolecular [2 + 2 + 2] cycloaddition, 5, 1141
Diesters
synthesis
oxidative carbonylation of alkynes, 3, 1030
unsymmetrical
acylation, 2, 799
vicinal
reduction, 3, 614
β-Diesters
enolates
reaction with allylic acetate, 3, 56
metal enolates
alkylation, 3, 54
Diesters, 2-aryle-4-oxo-
synthesis
use of SAMP/RAMP, 2, 520
Diethylamine
Mannich reaction with phenols
steric hindrance, 2, 956
reaction with 2-naphthol and benzaldehyde
Mannich reaction, 2, 960
Diethylamine, trimethylsilyl-
alcohol protection, 6, 653
<table>
<thead>
<tr>
<th>Compound/Reaction</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethyl benzenedicarboxylate reduction</td>
<td>8, 243</td>
</tr>
<tr>
<td>Diethyl carbonate alkoxy carbonylation ketones</td>
<td>2, 839</td>
</tr>
<tr>
<td>Diethyl dicarbonate alkoxy carbonylation ketones</td>
<td>2, 839</td>
</tr>
<tr>
<td>Diethyl malonate proton donor electroreduction of retinal</td>
<td>8, 134</td>
</tr>
<tr>
<td>Diethyl phenylphosphonate synthesis via S_{RN1} reaction</td>
<td>4, 473</td>
</tr>
<tr>
<td>Diethyl phthalate reduction</td>
<td>8, 243</td>
</tr>
<tr>
<td>Diethyl tetradeoxane dioxide hydrogenation</td>
<td>8, 242</td>
</tr>
<tr>
<td>α,ω-Diethynyl monomers oxidative polymerization</td>
<td>3, 557</td>
</tr>
<tr>
<td>Difluoramine deamination</td>
<td>8, 829</td>
</tr>
<tr>
<td>Dihalides vicinal reduction</td>
<td>8, 803</td>
</tr>
<tr>
<td>Dihalocyclopropanation alkenes</td>
<td>4, 1002</td>
</tr>
<tr>
<td>Dihaloxydins rearrangement</td>
<td>1, 873</td>
</tr>
<tr>
<td>Dihydrofolate reductase inhibitors synthesis, Knoevenagel reaction</td>
<td>2, 385</td>
</tr>
<tr>
<td>p-Dihydroxyboryl benzoxycarbonyl group amine-protecting group cleavage</td>
<td>6, 639</td>
</tr>
<tr>
<td>Diiimidazole, carbonyl-amide synthesis</td>
<td>6, 389</td>
</tr>
<tr>
<td>Diiimidazole, N,N'-oxalyl-amide synthesis</td>
<td>6, 389</td>
</tr>
<tr>
<td>Diiimide, dideuterio-synthesis</td>
<td>8, 473</td>
</tr>
<tr>
<td>Diiimides disproportionation</td>
<td>8, 473</td>
</tr>
<tr>
<td>Diiimides alkoxy carbonylaroyl-Diels–Alder reactions</td>
<td>5, 486</td>
</tr>
<tr>
<td>Diiimides arylation-Diels–Alder reactions</td>
<td>5, 486</td>
</tr>
<tr>
<td>Diiimides diaryl-Diels–Alder reactions</td>
<td>5, 486</td>
</tr>
<tr>
<td>1,3-Diiimines</td>
<td></td>
</tr>
<tr>
<td>1,3-Diketones</td>
<td></td>
</tr>
<tr>
<td>reduction</td>
<td></td>
</tr>
<tr>
<td>dissolving metals</td>
<td>8, 124</td>
</tr>
<tr>
<td>Diisoeugenol, dehydro-synthesis</td>
<td>3, 693</td>
</tr>
<tr>
<td>Diisophorane Ritter reaction</td>
<td>6, 268</td>
</tr>
<tr>
<td>Diisopropylamine Mannich reaction with phenols steric hindrance</td>
<td>2, 956</td>
</tr>
<tr>
<td>Diisopropylysilylene group diol protection</td>
<td>6, 662</td>
</tr>
<tr>
<td>10-Diisopropylsulfonamide isobornyl esters β-lactams from</td>
<td>2, 924</td>
</tr>
<tr>
<td>Diisopropyl tartrate asymmetric epoxidation</td>
<td>7, 395</td>
</tr>
<tr>
<td>Diketene coupling reactions with sp^3 organometallics</td>
<td>3, 446</td>
</tr>
<tr>
<td>Diketone, α-(4-isobutylphenyl)β-methyl benzylic acid rearrangement</td>
<td>3, 829</td>
</tr>
<tr>
<td>Diketones</td>
<td></td>
</tr>
<tr>
<td>aldol cyclization, 2, 161–166</td>
<td></td>
</tr>
<tr>
<td>bicyclic</td>
<td></td>
</tr>
<tr>
<td>enzymic reduction, specificity</td>
<td>8, 201</td>
</tr>
<tr>
<td>decarbonylation, 3, 1041</td>
<td></td>
</tr>
<tr>
<td>dianions</td>
<td></td>
</tr>
<tr>
<td>aldol reactions, 2, 189</td>
<td></td>
</tr>
<tr>
<td>enzymic reduction, enantiotopic specificity, 8, 188</td>
<td></td>
</tr>
<tr>
<td>specificity, 8, 193</td>
<td></td>
</tr>
<tr>
<td>macrocyclic</td>
<td></td>
</tr>
<tr>
<td>transannular aldol cyclization reactions, 2, 169</td>
<td></td>
</tr>
<tr>
<td>monocyclic</td>
<td></td>
</tr>
<tr>
<td>enzymic reduction, specificity</td>
<td>8, 201</td>
</tr>
<tr>
<td>polycyclic</td>
<td></td>
</tr>
<tr>
<td>enzymic reduction, specificity</td>
<td>8, 201</td>
</tr>
<tr>
<td>Reformatsky reaction, 2, 283</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>bis-dithiane dialkylation</td>
<td>3, 128</td>
</tr>
<tr>
<td>1,2-Diketones</td>
<td></td>
</tr>
<tr>
<td>alicyclic</td>
<td></td>
</tr>
<tr>
<td>benzilic acid rearrangement, 3, 831</td>
<td></td>
</tr>
<tr>
<td>ring contraction rearrangement, 3, 831</td>
<td></td>
</tr>
<tr>
<td>aliphatic</td>
<td></td>
</tr>
<tr>
<td>benzilic acid rearrangement, 3, 831</td>
<td></td>
</tr>
<tr>
<td>alkynes from, 8, 950</td>
<td></td>
</tr>
<tr>
<td>aromatic</td>
<td></td>
</tr>
<tr>
<td>DMSO oxidation, 7, 295</td>
<td></td>
</tr>
<tr>
<td>Knoevenagel reaction, 2, 367</td>
<td></td>
</tr>
<tr>
<td>monoketals</td>
<td></td>
</tr>
<tr>
<td>reactions with arynes, 4, 496</td>
<td></td>
</tr>
<tr>
<td>reactions with π-allylnickel halides, 3, 424</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>carboxylation of lithium amides, 3, 1017</td>
<td></td>
</tr>
<tr>
<td>via acylstannanes, 1, 438</td>
<td></td>
</tr>
<tr>
<td>via benzoin condensation, 1, 546</td>
<td></td>
</tr>
<tr>
<td>via Kornblum oxidation, 7, 654</td>
<td></td>
</tr>
<tr>
<td>via organosamarium compounds, 1, 273</td>
<td></td>
</tr>
<tr>
<td>via Swern oxidation, 7, 300</td>
<td></td>
</tr>
<tr>
<td>1,3-Diketones</td>
<td></td>
</tr>
<tr>
<td>γ-alkylation, 3, 58</td>
<td></td>
</tr>
<tr>
<td>cleavage, 2, 855</td>
<td></td>
</tr>
<tr>
<td>cyclic enolates</td>
<td></td>
</tr>
<tr>
<td>alkylation, 3, 55</td>
<td></td>
</tr>
<tr>
<td>dianions</td>
<td></td>
</tr>
</tbody>
</table>
1,4-Diketones

Aldol reactions, 2, 189
disilyl enol ethers, 2, 605
enantioselective hydrogenation, 8, 151
Knoevenagel reaction
α,β-unsaturated products, 2, 357
Mannich reaction
with preformed iminium salts, 2, 904
metal enolates
alkylation, 3, 54
monoreduction, 8, 938
reduction, 8, 13
Clemmensen reduction, 8, 312
electrolysis, 8, 321
sulfenylation, 7, 125
synthesis
use of hydrazone anions, 2, 516
Vilsmeier–Haack reaction, 2, 786
1,4-Diketones
Clemmensen reduction, 8, 313
disilyl enol ethers
regioselectivity, 2, 606
synthesis
via acylation of organoxines, 1, 448
via benzoin condensation, 1, 542
via nickel-catalyzed acylation, 1, 452
via γ-oxo sulfone acetics, 6, 159
1,5-Diketones
acyclic
regiochemical cyclization, 2, 163
synthesis, 1, 558
via acylation of organoxines, 1, 448
1,6-Diketones
β,γ-unsaturated
photoisomerizations, 5, 227
synthesis
from silyloxy cyclopropane, 2, 445
1,2-Diketones, bisaryl
rearrangements, 3, 825
Diketones, diphenyl
alkynes from, 8, 951
1,3-Diketones, α-methylene-
synthesis
Mannich reaction, 2, 905
Dilactones
cyclization
via Friedel–Crafts reaction, 2, 711
synthesis
palladium-catalyzed carbylation, 3, 1032
Dilantin
anti--vulsant
synthesis, 3, 826
Dilithium alkylcyanono(2-thienyl)cuprate
alkylation, 3, 261
Dilithium cyanocuprates
1,2-additions, 1, 107
Dilithium tetrachlorocuprate
alkene dimerization, 3, 482
alkylation
Grignard reagents, 3, 244
vinyl Grignard reagent alkylation
catalyst, 3, 243
Wurtz coupling, 3, 415
Dilithium trialkylcuprates
reactions with tosylhydrazones, 1, 378
Dimanganese heptoxide
oxidation
ethers, 7, 236
Dimedone
allyl transfer
amine protection, 6, 641
Knoevenagel reaction
Michael reaction, 2, 352
synthesis
Claisen condensation, 2, 796
ketone acylation, 2, 843
via Michael addition, 4, 6
Dimethyl succinate
asymmetric cyclopropanation, 4, 976
Dimerization
α-alkenes
hydroalumination, 8, 744
disproportionation
radical anions, 7, 861, 884
dissolving metal
reductions, 8, 527
donor radical cations, 7, 879
radical cations
bimolecular reaction, 7, 859
Dimersoperiodate
oxidant
solid support, 7, 843
Di-π-methane rearrangements
chemoselectivity, 5, 206
ehetero--substituted, 5, 199–202
lamps and filters, 5, 212
mechanism, 5, 202–206
benzo-vinyl bridging, 5, 203
divinyl bridging, 5, 203
nomenclature, 5, 194
photochemical apparatus, 5, 212
photochemical hazards, 5, 213
photochemical reaction conditions, 5, 212
photoisomerizations, 5, 193–213
practical aspects, 5, 212
regioselectivity, 5, 209
scope, 5, 195–202
selectivity, 5, 206–211
stereoselectivity, 5, 210
synthetic utility, 5, 211
2-(3,5-Dimethoxyphenyl)-2-propoxy carbonyl group
protecting group
acid stability, 6, 637
cleavage, 6, 636
Dimethylamine
reaction with π-allylpalladium complexes
stereochemistry, 4, 623
Dimethylamine, N-chloro-
reactions with organoboranes, 7, 607
reaction with trialkyl borane, 7, 604
Dimethylamine, trimethylsilyl-
enamine synthesis
via cyclohexanone, 6, 705
2-Dimethylaminoo-4-nitrophenyl dihydrogen phosphate
phosphorylation, 6, 609
Dimethyl diazomalonate
reaction with benzaldehyde
carbonyl ylide intermediate, 4, 1090
Dimethyl fumarate
Diels–Alder reactions
Lewis acid promoted, 5, 339
Dimethyl itaconate
e ne reactions
Lewis acid catalysis, 5, 5
hydroformylation, 4, 925, 932
Dimethyl maleate
[3 + 2] cycloaddition reactions, 5, 300
Diels–Alder reactions, 5, 392
reduction, 8, 563
Dimethyl succinate
hydrogenation
homogeneous catalysis, 8, 454
Dimethyl sulfoxide
oxidation, 7, 769
Dimethyl tetratate
asymmetric epoxidation, 7, 395
Dimethyl terephthalate
hydrogenation
homogeneous catalysis, 8, 454
Dmsyl anions
S_{RN1} reactions, 4, 472
Dinitriles
Ritter reaction, 6, 265
synthesis
via displacement reaction, 6, 229
α,ω-Dinitriles
Ritter reaction
cyclization, 6, 280
Dinitriles, 2-aryl-4-oxo-
synthesis
use of SAMP/RAMP, 2, 520
2,4-Dinitrobenzenesulfonyl esters
carboxy-protecting groups
photoiytic cleavage, 6, 668
Dinitrogen tetroxide
nitration with, 6, 107, 110
oxidation
hydrazines, 7, 744
thiols, 7, 761
reaction with cumulenes, 7, 506
Dinitrogen trioxide
reactions with alkenes, 7, 488
Diolides
synthesis
via Mitsunobu conditions, 6, 368
Diols
monooxygenation, 8, 818, 820
ortho acid synthesis, 6, 560
oxidation
lactone synthesis, 7, 312
prochiral
oxidation by enzymes, 7, 316
synthesis
chiral, 1, 66
vicinal
epoxide synthesis, 6, 26
1,2-Diols
alkene protection, 6, 686
cleavage
chromium oxides, 7, 282
erythro
synthesis, 1, 191
protecting groups, 6, 659
reduction, 8, 814
regioselective benzylation, 6, 651
synthesis, 7, 645, 647
coupling reactions, 3, 597
from β,γ-epoxy alcohols, 3, 264
reductive coupling of carbonyl compounds, 3, 563
via dimesitylboryl carbaniions, 1, 499
1,3-Diols
monoethers
synthesis, 3, 979
protecting groups, 6, 659
synthesis, 7, 645, 649
via reduction of β-hydroxy ketones, 8, 8
via reaction of epoxides with boron-stabilized carbaniions, 1, 497
1,4-Diols
synthesis
alkenyltriallylboronates, 3, 799
Diols, 3-azido-
synthesis
Diols, bis(dialkylamino)-
synthesis, 8, 166
Diols, chloro-
synthesis
via asymmetric epoxidation, 7, 424
1,3-Diols, 4-phenylthio-
cyclization, 6, 25
1,4-Diols, 2-phenylthio-
reaction with dimethyl sulfate
cyclization, 6, 25
Diols, vicinal
oxidation
α-diketones, 7, 300
2,4-Dione, 3-substituted
synthesis
Knoevenagel reaction, 2, 358
1,3-Diones
synthesis
from 2,3-epoxyketones, 3, 771
1,6-Diones
synthesis
coupling of α,β-unsaturated carbonyl compounds, 3, 577
Diorganocuprates
properties, 4, 170
structure, 4, 170
1,1-Diorganometallics
oxidation, 4, 882
synthesis
via carbozincation, 4, 879
Diorganozinc reagents
enantioselective addition reactions, 1, 223
Diophenols
rearrangements, 3, 832
synthesis
via Claisen rearrangement, 5, 848
Dioxabicyclo[2.2.1]heptane
reduction, 8, 227
2,7-Dioxabicyclo[4.1.0]heptane
preparation
Darzens glycidic ester condensation, 2, 427
2,7-Dioxabicyclo[3.2.0]hept-3-ene
photocycloaddition reactions, 5, 170
synthesis
via photocycloaddition, 5, 168
2,7-Dioxabicyclo[3.2.0]hept-3-ene-6-carboxylic acid
Dioxabicyclo[3.3.1]nonane

Cumulative Subject Index 558

menthyl ester

 synthesis via photocycloaddition, 5, 169

Dioxabicyclo[3.3.1]nonane

 reduction, 8, 227

2,9-Dioxabicyclo[3.3.1]nonane

 synthesis via Wacker oxidation, 7, 451

3,7-Dioxabicyclo[3.3.0]octane

 synthesis use of disilyl enol ether, 2, 617

6,8-Dioxabicyclo[3.2.1]octane

 reduction, 8, 227

 synthesis, 7, 828

3,7-Dioxabicyclo[3.3.0]oct-1(5)-ene

 synthesis via retro Diels–Alder reactions, 5, 579

Dioxaborinane, trimethyl-

 hydroboration, 8, 719

1,3,2-Dioxaborinanes

 reactions with allyl organometallics, 2, 32

Dioxalones enolates diastereoselective alkylation, 3, 40

1,4-Dioxane, 2,2,3-trimethoxy-

 synthesis, 6, 560

1,3-Dioxanes carbonyl group protection, 6, 677

 chiral carbonyl equivalent Lewis acid promoted reactions, 1, 347

 reduction, 8, 221, 659

 synthesis Prins reaction, 2, 528

1,3-Dioxanes, 5,5-dibromo-

 carbonyl group protection removal, 6, 677

1,2-Dioxanes, trans-3,6-disubstituted

 synthesis via mercuricyclization of hydroperoxides, 4, 390

1,3-Dioxanes, 5-methylene-

 carbonyl group protection removal, 6, 677

1,6-Dioxaspiro[4,5]decane

 reduction, 8, 220

1,4-Dioxaspiro[4,5]decane, 6-acetyl-6-allyl-

 oxidative cleavage sodium periodate and osmium tetroxide, 7, 564

Dioxaspiro[3,3]heptanes synthesis via photocycloaddition, 5, 167

1,7-Dioxaspiro[5,5]undecane, 2-ethyl-8-methyl-

 synthesis, 7, 625

1,7-Dioxaspiro[5,5]undecane, 4-hydroxy-

 synthesis, 7, 237

1,7-Dioxaspiro[5,5]undecane, 2-hydroxymethyl-

 8-methyl-

 synthesis, 7, 635

1,3-Dioxathiane nucleophilic addition reactions chiral auxiliary, 1, 62

1,4-Dioxenes synthesis, 3, 651

Dioxetane alkene oxygenation, 7, 96

1,2-Dioxetanes excited states thermal generation, 5, 198

 reduction with glutathione, 8, 398

 p-Dioxin
detoxification, 7, 845

Dioxin, 2-chloro-

 acid chloride synthesis, 6, 305

Dioxindole, 3-phenyl-

 synthesis, 3, 835

Dioxinine

 conjugate additions dialkylcuprates, 4, 207

Dioxirane, dialkyl-

 epoxidizing agent, 7, 374

Dioxirane, dimethyl-

 epoxidation alkenes, 7, 167

 oxidant reaction with quadricyclane, 3, 736

 oxidation primary amines, 7, 737

 pyridine, 7, 750

 secondary amines, 7, 745

 oxygen atom transfer, 8, 398

Dioxirane, methyl-

 oxygen atom transfer, 8, 398

Dioxiranes

 alkane oxidation, 7, 13

 synthesis via potassium peroxyxymonsulfate, 1, 834

Dioxolane, amino-

 synthesis, 6, 572

1,3-Dioxolane, 2-aryl-

 reduction sodium borohydride, 8, 215

1,3-Dioxolane, 2-(2-bromoethyl)-

 Grignard reagents acylation, 1, 452

1,3-Dioxolane, 4-bromomethyl-

 carbonyl group protection removal, 6, 677

1,2-Dioxolane, cis-3,5-dialkyl-

 synthesis via mercuricyclization of hydroperoxides, 4, 390

1,3-Dioxolane, 2-dialkylamino-

 reduction, 8, 221

1,3-Dioxolane, 2,4-diimethyl-

 reduction, 8, 221

1,3-Dioxolane, 2,2,4,4-tetramethyl-

 reduction, 8, 221

1,3-Dioxolane, 2-thioxo-

 reduction, 8, 221

1,3-Dioxolane, 2,2-dimethyl-4-methylene-

 reduction, 8, 221

1,3-Dioxolane, 2-thietane-

 transacetalization carbonyl group protection, 6, 677

1,3-Dioxolane, 2,2-dimethyl-4-methylene-

 lithium allenolates synthesis, 2, 109

1,3-Dioxolane, 2-ethoxy-

 decomposition, 6, 687

1,3-Dioxolane, 2,2,4,4,5,5-hexamethyl-

 reduction, 8, 221

1,3-Dioxolane, 2-(2-methoxyphenylethyl)-2-methyl-

 acylloin coupling reaction, 3, 619

1,3-Dioxolane, 2-phenyl-

 fragmentation chiral protection, 6, 687

 rearrangement, 6, 687

1,3-Dioxolane, 2,2,4,4-tetramethyl-

 reduction, 8, 221

1,3-Dioxolane, 2-thioxo-
Cumulative Subject Index

Dipropargylamines

desulfurization
alkene protection, 6, 686
1,3-Dioxolane, 2-vinyl-reduction
lithium aluminum hydride, 8, 213
1,3-Dioxolanes
carbonyl group protection, 6, 677
reduction, 8, 221, 659
Dioxolanones
chiral
aldol reaction, 2, 208
enolates
aldol reaction, 2, 206
1,3-Dioxolan-4-ones
addition reactions with nitroalkenes, 4, 109
Michael additions
nitroalkenes, 4, 218
thermolysis
carbonyl ylide generation, 4, 1089
1,3-Dioxolan-2-ylum cations
hydroxylation
alkenes, 7, 445
anti hydroxylation
alkenes, 7, 447
reaction with silyl ketene acetics, 2, 804
1,3-Dioxole, 2,2-diisopropyl-cycloaddition reactions
ethyl pyruvate, 5, 160
1,3-Dioxole, 2,2-dimethyl-phocycloaddition reaction
methyl phenyl glyoxylate, 5, 160
Dioxolenes
iron complexes
reaction with organocopper compounds, 3, 218
Dioxolenum ions
Diels–Alder reactions
intramolecular, 5, 519
Dioxolenones
phocycloaddition reactions, 5, 134, 137
1,3-Dioxoles
photolysis, 5, 154
Dioxygen trapping
Paterno–Büchi reaction, 5, 155
Dipentene
allylic oxidation, 7, 99
Dipeptides
hydroxyethylene isosteres
synthesis via Carroll rearrangement, 5, 836
N-methylation
retrograde Diels–Alder reaction, 5, 552
synthesis
via asymmetric hydrogenation of dehydropeptides, 460
Diphenic acid
Schmidt reaction, 6, 820
Diphenoxquinone
synthesis, 3, 664
Diphenylamine
synthesis
via SN1 reaction, 4, 471
Diphenylamine-2,2'-dicarboxylic acids
Friedel–Crafts reaction, 2, 759
Diphenylidonium-2-carboxylates
aryne precursors, 4, 488
Diphenylphosphinyl group
amine-protecting group, 6, 644
Diphenyl phosphorazidate
acyl azide synthesis, 6, 251
Diphenyl sulfoxide
oxidation, 7, 769
Diphenylthiophosphinyl group
amine-protecting group, 6, 644
Diphenyl sulfide
imidoyl halide synthesis, 6, 523
reaction with amides, 6, 495
Diphenylphosphoryl cations
synthesis, 6, 190
1,2-Diphosphines
chiral catalysts
asymmetric hydrogenation of alkenes, 8, 459
1,4-Diphosphines
chiral catalysts
asymmetric hydrogenation of alkenes, 8, 459
Diphosphonates, methylidene-synthesis
Knoevenagel reaction, 2, 363
Diphosphorus tetraiodide
deoxygennation
epoxides, 8, 886
iodination
alkyl alcohols, 6, 213
reaction with dimethylformamide, 6, 495
Diploida gossypii
epoxidation, 7, 429
Diploidialde A
synthesis
Eschenmoser coupling reaction, 2, 890
Diploidialde B
synthesis
via Wacker oxidation, 7, 454
Diploidialdes
synthesis, 3, 286
Diploicin
synthesis
manganese dioxide oxidation, 3, 688
1,3-Dipolar additions
regiospecificity, 4, 1070
Dipolar cycloaddition
diazoalkanes, 6, 126
1,3-Dipolar cycloaddition reactions, 5, 247
absolute stereoselection, 5, 260
frontier molecular orbital theory, 4, 1073
intramolecular, 4, 1069–1094
intermolecular, 4, 1111–1116
mechanism, 4, 1070–1072
nitrone, 4, 1076–1078
nonconcerted, 4, 1073–1075
regioselectivity, 5, 247
relative stereoselection, 5, 254
stepwise mechanism, 4, 1072
stereoselectivity, 5, 254
stereospecificity, 4, 1072
synthetic equivalents, 5, 266
[3 + 2] Dipolar cycloadditions
regiochemical control, 4, 1073
1,3-Dipole
classification, 4, 1071
cycloaddition reactions, 4, 730
fulvenes, 5, 630
tropones, 5, 625
structure, 4, 1070
Dipropargylamines
Dipyridones

Cumulative Subject Index

560

intramolecular cycloaddition reactions, 5, 1154
Dipyridones
photodimerization, 5, 638
1,2-Dipyridylidinylethane
alkene hydroxylation
osmium tetroxide, 7, 442
Diquinane enone
photodimerization, 5, 638
1,2-Dipyrrolidinylethane
alkene hydroxylation
osmium tetroxide, 7, 442
Diquinane
synthesis
via intramolecular ene reaction, 5, 11
via photoisomerizations, 5, 226
via rhodium-catalyzed rearrangement, 5, 916
o-Diquinomethanes
Diels–Alder reactions, 5, 524
Disaccharides, furanosyl
Diels-Alder reactions,
synthesis
stereoselectivity, 4, 384
Diselene, diaryl
reaction with carbon monoxide, 6, 467
Diselene, dimesityl
oxidation
allylic alcohols, 7, 307
Diselene, diphenyl
reaction with lithium enolates,
reduction, 6, 463
Ritter reaction, 6, 289
use in selenenylation, 7, 131
Diselene, 2,2′-dipyridyl
addition reactions with alkenes, 7, 495
Diselienes
oxidation, 7, 769
primary alcohols, 7, 310
Diselenoacetal
acyl anion equivalents, 1, 571
Diselenoketal
deselenation
nickel boride, 8, 848
tin hydrides, 8, 846
7,8-Disilabicyclo[2.2.2]octa-2,5-dienes
thermolysis
via retro Diels–Alder reaction, 5, 587
Disilane, 1,1,1-trichloro-2,2,2-trimethyl-
reaction with π-allylpalladium complexes
stereochemistry, 4, 626
Disilazane, hexamethyl-
alkylation, 6, 653
amine synthesis, 6, 83
nomenclature, 2, 182
Disilazene, hexamethyl-
nomenclature, 2, 183
Disilenes
generation
via retro Diels–Alder reaction, 5, 587
Disiloxane, 1,3-bis(dimethylethynyl)-
oxidative coupling, 3, 557
Disiloxane, 1,1,3,3-tetramethyl-
hydroxylation, 8, 19
1,4-Disilylecyclohexa-2,5-dienes
diacylation
Friedel–Crafts reaction, 2, 717
Disparlure
synthesis, 3, 224, 286, 644
Dispermol
synthesis, 7, 331
Disproportionation
Friedel–Crafts reaction, 3, 327
Dissolving metal conjugate reduction
synthesis
α-alkylated ketones, 4, 254
Dissolving metals
reduction
acyl halides, 8, 240
amides, 8, 248
aromatic rings, 8, 489–519
benzo[b]furans, 8, 626
benzo[b]thiophenes, 8, 629
benzylic compounds, 8, 971
C=–X to CHXH, 8, 107–126
carbonyl compounds, 8, 307–323
carboxylic acids, 8, 236
chemoselectivity, 8, 113, 530
conjugated dienes, 8, 564
enones, 8, 524
epoxides, 8, 880
esters, 8, 242
furans, 8, 607
amines, 8, 123
indoles, 8, 614
isocyanides, 8, 830
lactones, 8, 247
mechanism, 8, 525
nitriles, 8, 252
oximes, 8, 124
pyridines, 8, 595
pyrones, 8, 605
stereochemistry, 8, 525
stereoselectivity, 8, 116
stereoselectivity, unsaturated hydrocarbons, 8, 478
thioketones, 8, 126
thiophenes, 8, 609
unsaturated hydrocarbons, 8, 478
Distannoxane, hexabutyl-
oxidation
tsulfides, 7, 764
Disuccinoyl peroxide
anti hydroxylation
alkenes, 7, 446
Disulfides
hydrogenolysis, 8, 914
reduction
sodium borohydride, 8, 369
synthesis
via thiols, 7, 758
tandem vicinal difunctionalization, 4, 262
thiol protection, 6, 665
Disulfides, dialkyl
reactions with trialkylboranes, 7, 607
Disulfides, diaryl
reactions with trialkylboranes, 7, 607
Disulfides, diphenyl
thiol carboxylic esters
synthesis, 6, 439
Disulfones
desulfurization
eliminative, 8, 839
1,1-Disulfones
alkylation, 3, 176
N,N-Disulfonimides
reduction, 8, 827
Ditellurides
oxidation, 7, 774
Diterpene alkaloids
synthesis
via arynes, 4, 500
via benzoazoclobutene ring opening, 5, 693

Diterpenes
microbial hydroxylation, 7, 64
Diterpenoids
Homer–Wadsworth–Emmons reaction, 1, 763
tetracyclic
synthesis, 3, 715

1,3,2-Dithiaborinane
dimethyl sulfide complex
carboxylic acid reduction, 8, 261

1,3,2-Dithiaborolane
hydroboration, 8, 719, 720

1,4-Dithiadiphenylsulfide
oxidation, 7, 766

1,3,2,4-Dithiadiphosphetane 2,4-disulfide
thiocarboxylic ester synthesis, 6, 437

1,3-Dithiane, 2-aryl-metal complexes
substitution reactions, 4, 539
reaction with 2-cyclohexenone, 1, 511

1,3-Dithiane, 2-chloro-
reaction with aryl Grignard reagents, 3, 242
synthesis
via sulfide chlorination with NCS, 7, 207

1,3-Dithiane, 2-dichloromethyl-
dihydrohalogenation
synthesis of ketene dithioacetals, 6, 134

1,3-Dithiane, 2-ethylidene-
alloylium derivative
reaction with aldehydes, 1, 511

1,3-Dithiane, 2-ethyl-
alloylium derivative
synthesis
via sulfide chlorination with NCS, 7, 207

1,3-Dithiane, 2-hydroxymethyl-
reactions with epoxycyclohexanone, 1, 511

1,3-Dithiane, 1-lithio-
reaction with epoxides, 3, 127

1,3-Dithiane, 2-lithio-
in synthesis, 3, 126
reaction with nitroarenes, 4, 428
reaction with oxiranes, 3, 128

1,3-Dithiane, 2-metallo-
in synthesis, 3, 124

1,3-Dithiane, 2-methyl-
metal complexes
addition reactions, 4, 535

1,3-Dithiane, 2-phenyl-
carbanions, 1, 511

1,3-Dithiane, 2-(1-propan-1-yl)-
crotyllium derivative
reactions with aldehydes, 1, 512

1,3-Dithiane, 2-(p-substituted)aryl-2-lithio-
reactions with t-butylbenzene, 4, 537

1,3-Dithiane S,S'-dioxides
reaction with butyllithium, 1, 526

1,3-Dithianes
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiocarbamates
acetyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithioacrylates, methyl
synthesis
via thioacryl anion as precursor, 6, 448

Dithioacetic acid
synthesis
via thioxocarboxylic ester as precursor, 6, 448

Dithioacetals
S,S'-dioxides
additions to C=X bonds, 1, 526

Dithioacetals S-oxides
additions to C=X bonds, 1, 526

Dithioacetals
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines
reaction with allylsilanes, 2, 580
reaction with allylstannanes
carbon–sulfur bond cleavage, 2, 581
reaction with vinylsilanes, 2, 582

Dithiozoxines, α-oxoketene
conjugate additions
organocuprates, 4, 191

Dithiozoxines
methacrylates, methyl
synthesis
via flash vacuum thermolysis, 6, 455

Dithiozoxides
synthesis
via carbon disulfide, 6, 428

Dithiozoxides, S-(dialkylaminomethyl)-
iminium salts
generation in situ, 1, 370

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines, S,S'-dioxides
additions to C=X bonds, 1, 526

Dithiozoxines S-oxides
additions to C=X bonds, 1, 526

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines
methacrylates, methyl
synthesis
via flash vacuum thermolysis, 6, 455

Dithiozoxides
synthesis
via carbon disulfide, 6, 428

Dithiozoxides, S-(dialkylaminomethyl)-
iminium salts
generation in situ, 1, 370

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines, S,S'-dioxides
additions to C=X bonds, 1, 526

Dithiozoxines S-oxides
additions to C=X bonds, 1, 526

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines, S,S'-dioxides
additions to C=X bonds, 1, 526

Dithiozoxines S-oxides
additions to C=X bonds, 1, 526

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586

Dithiozoxines, S,S'-dioxides
additions to C=X bonds, 1, 526

Dithiozoxines S-oxides
additions to C=X bonds, 1, 526

Dithiozoxines
acyl anion equivalents, 1, 544, 563
carbonyl group protection, 6, 677
reduction, 8, 989
vinylsilane terminated cyclizations, 1, 586
Dithiocarbonates

deoxygenation, 8, 818
Dithiocarbonates, S-allyl
nucleophilic addition to π-allylpalladium complexes
regioselectivity, 4, 641
Dithiocarbonates, O-allyl S-alkyl-
nucleophilic addition to π-allylpalladium complexes
regioselectivity, 4, 641
crystochemistry, 4, 624
Dithiocarbonates, O-allyl S-methyl
Claisen-type rearrangement palladium(II) catalysis, 4, 564
Dithiocarbonates, S,S-dimethyl, 6, 846
reactions with carbanions, 6, 446
Dithiocarboxylates
thioacylation
amines, 6, 423
Dithiocarboxylation
arenes, 6, 456
carbonanions, 6, 456
Dithiocarboxylic acids
 synthesis
 via acylation of hydrogen sulfide, 6, 455
 via dithiocarboxylation of arenes and carbonanions, 6, 456
thioacylation
amines, 6, 421
Dithiocarboxylic esters
 synthesis, 6, 453
 via thioacylation of thiols, 6, 453
Dithiocinnamates, methyl
 synthesis, 6, 455
Dithioenolates
addition reactions, 4, 106–111
Dithioesters
Diels–Alder reactions, 5, 438
reduction, 8, 303
thioacylation
alcohols and phenols, 6, 449
Dithioformic acid, cyano-
methyl ester
 Diels–Alder reactions, 5, 439
Dithioketals
carbonyl group protection, 6, 677
desulfurization, 8, 836
alkali metals, 8, 842
LAH–CuCl2, 8, 840
Dithiolactones
 synthesis, 6, 453
 via acylation of hydrogen sulfide, 6, 455
 via dithiocarboxylation of arenes and carbonanions, 6, 456
 via thioacylation of thiols, 6, 453
 γ-Dithiolactones, β,γ-unsaturated
 synthesis
 allenylsilver compounds, 2, 85
1,3-Dithiolane, 2-allylidene-
cycloreversion
 synthesis of thioketenes, 6, 426
1,3-Dithiolane, 2,2-diaryl-
desulfurization
 organolithium compounds, 8, 847
1,2-Dithiolane, 4-methylthio-
synthesis
 via bromine addition to alkene, 4, 345
Dithiolanes
carbonyl group protection, 6, 679
1,3-Dithiolanes
reduction, 8, 231
Dithioles
reduction, 8, 659
1,3-Dithiolones
intramolecular cycloadditions, 4, 1163
3H-1,2-Dithiol-3-ones
 synthesis of thioamides, 6, 421
Dithiomalonates, S,S′-dialkyld
 synthesis, 6, 437
Dithiomalonates, O,O-diethyl
 transesterification, 6, 454
Dithiooxalate, O,O′-diethyl
 reaction with glycols
 synthesis of thiooxoesters, 6, 449
Dithiooxamides
 synthesis
 via thiolysis of imidoyl chlorides, 6, 428
 via thiolysis of 1,1,1-trihalides, 6, 432
thioacylation
 primary amines, 6, 425
Dithioparabanic acid
 O,N-acetals
 synthesis, 6, 576
Dithiophosphinic acids, diphenyl-
thioacylation
 alcohols, 6, 449
Dithiophosphoric acid
thiolysis, 6, 432
Dithiopropionic acid
 deprotonation
 aldon reaction, 2, 214
Dithiosuccinyl group
 amine-protecting group, 6, 643
[6]Ditriaxane, dimethyl-
synthesis, 6, 777
Divided cells
electrosynthesis, 8, 130
Dixanthates
 vicinal
 radical decomposition, 6, 687
1,3-Diyl trapping reaction
 intermolecular
 trimethylenemethane, 5, 240
intramolecular
 trimethylenemethane, 5, 241
 trimethylenemethane, 5, 239
Diynes
bicyclization, 5, 1171
zirconium-promoted, 5, 1164
conjugated
 hydration, 4, 300
hydroboration, 8, 716
 synthesis, 3, 525, 554
hydroalumination
locoselectivity, 8, 742
hydroboration
 protonolysis, 8, 727
intramolecular cycloaddition reactions
bicyclic 2-pyrone synthesis, 5, 1157
semihydrogenation, 8, 433
silylated
Friedel–Crafts acylation, 2, 725
563

Cumulative Subject Index

Durene

synthesis
 phase-transfer catalysts, 3, 559
1,4-Diynes
synthesis
 organocopper compounds, 3, 223
1,5-Diynes
 Cope rearrangement, 5, 797
α,ω-Diynes
cycloaddition reactions
 isocyanates, 5, 1156
intramolecular cycloaddition reactions
 nitriles, 5, 1154
1,3-Diynes, 1-trimethylsilyl-
synthesis, 3, 553
9,11-Dodecadien-1-ol
acetate
 synthesis, 2, 76
 synthesis via retro Diels–Alder reaction, 5, 567
1,11-Dodecadien-3-one, 7-acetoxy-
trisannelation reagent
 synthesis, 7, 461
9,11-Dodecadien-1-yl acetate
 synthesis, 1, 680
Dodeca-3,5-diyne-1-ol
 synthesis, 3, 273
Dodecahedrane, 1,16-dimethyl-
synthesis
 Friedel–Crafts reaction, 3, 334
Dodecahedranes
 Ritter reaction, 6, 283
 synthesis
 via cyclofunctionalization of cycloalkenes, 4, 373
 via Diels–Alder reaction, 5, 347
 via Nazarov cyclization, 5, 768
 via Pauson–Khand reaction, 5, 1062
Dodecanal
 reduction
titanocene dichloride, 8, 323
Dodecanamide
 reduction, 8, 249
Dodecan, 1-bromo-
Kornblum oxidation
 solvent, 7, 654
Dodecanedioic acid, 4,9-dioxo-
synthesis
 via dialdehydes, 1, 547
Dodecanenitrile
 hydrogenation, 8, 252
Dodecanol, 3,7,11-trimethyl-
synthesis
 via asymmetric hydrogenation, 8, 463
6-Dodecanone
 reduction
titanocene dichloride, 8, 323
Dodecanone, dibromo-
rerarrangement, 3, 851
Dodeca-2,6,10-triene-1,12-diol
 asymmetric epoxidation, 7, 404
1-Dodecene
 oxidation
 Wacker process, 7, 450, 451
1-Dodecyl acetate
 reduction
silanes, 8, 246
 Dodecylamine, dimethyl-
 α-deprotonation, 1, 476; 3, 65
 Doering–Moore–Skattebøl reaction
 allene synthesis, 4, 1009–1012
 Doering reaction
 dichlorocarbene addition, 4, 1000
 β-Dolabrin
 synthesis
 via tricarbonyl(tropone)iron complex, 4, 707
Dolastane
 synthesis, 3, 488
Domesticine
 synthesis
 photochemical oxidation, 3, 677
D-Dopa
 synthesis
 via L-serine, 1, 413
L-Dopa
 manufacture, 2, 406
 synthesis
 via enzymic hydroxylation, 7, 79
 via microbial methods, 7, 78
 via L-tyrosine, 7, 678
 Dopamine β-monoxygenase
 oxidation, 7, 99
 Dopamine receptor stimulating compounds
 synthesis, 7, 831
 Double asymmetric synthesis
 aldon reactions, 2, 2, 248
 Double diastereofacial selectivity
 Diels–Alder reaction, 2, 686
 Double diastereoselection
 aldon reaction, 2, 232
 Double stereodifferentiation
 consonant, 2, 232
 dissonant, 2, 232
 matched pairs, 2, 232
 mismatched pairs, 2, 232
 Douglas fir tussock moth
 sex pheromone
 synthesis, 3, 161
 Dowex 3, 50
 catalyst
 Friedel–Crafts reaction, 3, 296
Drimanes
 synthesis
 via Diels–Alder reaction, 5, 331
 Dimatriene sulfoxide
 synthesis
 via electrocyclization, 5, 735
 Drimenyl acetate
 allylic oxidation, 7, 90
 Drimnanes
 synthesis
 farnesol bicyclization, 3, 342
Drynap
 reductions
 nitro compounds, 8, 365
Dubamine
 synthesis, 3, 514
Dunnione
 rearrangement, 3, 828
Durene
 thallation, 7, 872
Durene, acetyl-
Dyes

Friedel–Crafts reaction
reversibility, 2, 745
Dyes
synthesis
Knoevenagel reaction, 2, 387
Dynemicin A

Cumulative Subject Index

Dysidenin, dimethyl-
synthesis
via electrocyclization, 5, 736
Dysidenin, dimethyl-
synthesis
Ugi reaction, 2, 1096
Ebelactone A
synthesis
via Ireland rearrangement, 5, 842

Ecdysone
synthesis
Wittig rearrangement, 3, 1000
Ecdysone, 20-hydroxy-side chain
synthesis, 8, 537

Echinocandin D
synthesis, 2, 256
via reductive alkylation of azides, 8, 386

Edman degradation
immobilization of enzymes
Ugi reaction, 2, 1104

Egomaketone
synthesis, 6, 455
palladium-catalyzed carbonylation, 3, 1023

Eicosatetraenoic acid, 12-hydroxy-synthesis
via ketocarbenoids and furans, 4, 1059
1-Eicosene
oxidative cleavage
phase transfer assisted, 7, 578

Eight-membered rings
synthesis
aldol condensation, 2, 651
aldol reaction cascade, 2, 623
via [4 + 4] cycloaddition, 5, 635

Elaeocarpine
Mannich base, 2, 894

Elaeokanines
synthesis, 6, 756
via acylaminium ion terminated cyclization, 1, 592
via pyrolytic dehydroxysulfenylation, 1, 515
via retro Diels–Alder reaction, 5, 567

Elaidic acid
Kolbe electrolysis, 3, 642
Elaiophylin
synthesis, 1, 569; 2, 263
Elbs persulfate oxidation
hydroquinones, 7, 340

Eldanolide
synthesis, 1, 565; 3, 796
via cerium reagents, 1, 240

Electrochemical oxidation, 7, 789–811
alkenes
palladium(II) catalysis, 4, 553
amount of electricity, 7, 793
constant current method, 7, 792
controlled potential method, 7, 792
diaphragm, 7, 792
ethers, 7, 247
organoboranes, 7, 602
supporting electrolytes, 7, 793
techniques, 7, 792

Electrochemical pinacolization
aromatic compounds, 3, 567

Electrochemical reduction
acyl halides, 8, 240
alkyl halides
chromium(II) salt catalyst, 8, 797
allylic compounds, 8, 974
amides, 8, 248, 294
aromatic rings, 8, 517
asymmetric
carbonyl compounds, 8, 134
imines, 8, 137
benzo[\theta]thiophene, 8, 630
carbonyl compounds, 8, 307
carboxylic acids, 8, 236
cleavage
\(\alpha\)-halo ketones, 8, 987
C—N bonds, 8, 995
demercuration, 8, 857
dimerization, 8, 527
epoxides, 8, 884
esters, 8, 242
indirect
\(\alpha,\beta\)-unsaturated ketones, 8, 532

Electrochemical reductive cleavage
C—S bonds, 8, 994
\(\alpha\)-oxygenated carbonyl compounds, 8, 992

Electrochemistry
aldol reaction, 2, 138
Ritter reaction, 6, 281

Electrocyclic processes
higher order, 5, 743

Electrocyclization
1,3,5-hexatrienes, 5, 706–730
orbital correlation diagram, 5, 703
six-electron
1,3,5-hexatriene, 5, 699
stereochemistry, 5, 703–706

Electrode reaction
indirect
electrosynthesis, 8, 131

Electrodes
electrochemical oxidation, 7, 792
Electrohydrodimerization
enones, 8, 532

Electrolysis
carbonyl compounds, 8, 321
oxidation, 7, 791

Electron acceptors
reduction potentials, 7, 854

Electron transfer
acceptor radical anions, 7, 884
donor radical cations, 7, 882
radical anions
bimolecular reaction, 7, 861
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron-transfer oxidation</td>
<td>7, 849-889</td>
</tr>
<tr>
<td>radical cations</td>
<td>7, 860</td>
</tr>
<tr>
<td>radicals, 4, 726</td>
<td></td>
</tr>
<tr>
<td>Cumulative Subject Index</td>
<td>566</td>
</tr>
<tr>
<td>radical ions, 7, 854</td>
<td></td>
</tr>
<tr>
<td>synthetic transformations, 7, 873</td>
<td></td>
</tr>
<tr>
<td>thermal activation, 7, 862</td>
<td></td>
</tr>
<tr>
<td>Electron transfer reduction</td>
<td></td>
</tr>
<tr>
<td>alcohols, 8, 815</td>
<td></td>
</tr>
<tr>
<td>C-halogen bonds, 8, 985</td>
<td></td>
</tr>
<tr>
<td>C-O bonds, 8, 991</td>
<td></td>
</tr>
<tr>
<td>C-S bonds, 8, 993</td>
<td></td>
</tr>
<tr>
<td>enones, 8, 524</td>
<td></td>
</tr>
<tr>
<td>Electrooxidation</td>
<td></td>
</tr>
<tr>
<td>halide salts, 7, 537</td>
<td></td>
</tr>
<tr>
<td>Electrophilic addition</td>
<td></td>
</tr>
<tr>
<td>acceptor radical anions, 7, 884</td>
<td></td>
</tr>
<tr>
<td>radical anions</td>
<td></td>
</tr>
<tr>
<td>bimolecular reaction, 7, 861</td>
<td></td>
</tr>
<tr>
<td>Electrophilic aromatic substitution</td>
<td></td>
</tr>
<tr>
<td>arenne radical cations, 7, 870</td>
<td></td>
</tr>
<tr>
<td>Electrophilic coupling</td>
<td></td>
</tr>
<tr>
<td>nucleophilic addition</td>
<td></td>
</tr>
<tr>
<td>carbanions, 4, 237-263</td>
<td></td>
</tr>
<tr>
<td>Electrophilic oxidation</td>
<td></td>
</tr>
<tr>
<td>electron-transfer oxidation versus, 7, 868</td>
<td></td>
</tr>
<tr>
<td>Electredoxyductive cyclization</td>
<td></td>
</tr>
<tr>
<td>Schiff bases, 8, 136</td>
<td></td>
</tr>
<tr>
<td>Electroosynthesis</td>
<td></td>
</tr>
<tr>
<td>principles, 8, 129</td>
<td></td>
</tr>
<tr>
<td>β-El迷线</td>
<td>7, 94</td>
</tr>
<tr>
<td>Elemol</td>
<td></td>
</tr>
<tr>
<td>synthesis, 3, 431; 6, 145; 8, 945</td>
<td></td>
</tr>
<tr>
<td>α-El迷线carbonyl group derivatization, 8, 451</td>
<td></td>
</tr>
<tr>
<td>Eleutherinol</td>
<td></td>
</tr>
<tr>
<td>synthesis, 2, 171</td>
<td></td>
</tr>
<tr>
<td>Ellipticine</td>
<td></td>
</tr>
<tr>
<td>synthesis via Diels–Alder reaction, 5, 384</td>
<td></td>
</tr>
<tr>
<td>via electrolycycloization, 5, 721</td>
<td></td>
</tr>
<tr>
<td>Ellipticine, 9-hydroxy-</td>
<td></td>
</tr>
<tr>
<td>synthesis via Baeyer–Villiger reaction, 7, 684</td>
<td></td>
</tr>
<tr>
<td>Elloidisine</td>
<td></td>
</tr>
<tr>
<td>synthesis Ugi reaction, 2, 1097</td>
<td></td>
</tr>
<tr>
<td>Elsholtzia ketone</td>
<td></td>
</tr>
<tr>
<td>synthesis, 3, 999</td>
<td></td>
</tr>
<tr>
<td>Elsholziole, dehydro-</td>
<td></td>
</tr>
<tr>
<td>synthesis alkenylsilane acylation, 2, 713</td>
<td></td>
</tr>
<tr>
<td>Emde degradation</td>
<td></td>
</tr>
<tr>
<td>amines, 6, 70</td>
<td></td>
</tr>
<tr>
<td>pyridines, 8, 597</td>
<td></td>
</tr>
<tr>
<td>Emodin</td>
<td></td>
</tr>
<tr>
<td>synthesis dianion γ-acylation, 2, 832</td>
<td></td>
</tr>
<tr>
<td>Enalapril</td>
<td></td>
</tr>
<tr>
<td>synthesis, 6, 384</td>
<td></td>
</tr>
<tr>
<td>Enals</td>
<td></td>
</tr>
<tr>
<td>Michael acceptors, 4, 261</td>
<td></td>
</tr>
<tr>
<td>Enamides</td>
<td></td>
</tr>
<tr>
<td>asymmetric hydrogenation</td>
<td></td>
</tr>
<tr>
<td>homogeneous catalysis, 8, 460</td>
<td></td>
</tr>
<tr>
<td>cycloadition with dihalohcarbenes, 4, 1004</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 322–324</td>
<td></td>
</tr>
<tr>
<td>α-hydroxylation, 7, 170</td>
<td></td>
</tr>
<tr>
<td>ozonolysis, 7, 171</td>
<td></td>
</tr>
<tr>
<td>protonation, 2, 1052</td>
<td></td>
</tr>
<tr>
<td>tandem vicinal difunctionalization, 4, 249</td>
<td></td>
</tr>
<tr>
<td>Vilsmeier–Haack reaction, 2, 783</td>
<td></td>
</tr>
<tr>
<td>Enamides, N,N-diaryl-</td>
<td></td>
</tr>
<tr>
<td>reactions with Grignards reagents, 4, 257</td>
<td></td>
</tr>
<tr>
<td>Enamidines</td>
<td></td>
</tr>
<tr>
<td>Vilsmeier–Haack reaction, 2, 792</td>
<td></td>
</tr>
<tr>
<td>Enamines</td>
<td></td>
</tr>
<tr>
<td>addition of carbene complexes, 4, 980</td>
<td></td>
</tr>
<tr>
<td>alkylation, 3, 28; 6, 714</td>
<td></td>
</tr>
<tr>
<td>reversibility, 3, 29</td>
<td></td>
</tr>
<tr>
<td>allylation</td>
<td></td>
</tr>
<tr>
<td>palladium catalysis, 4, 654</td>
<td></td>
</tr>
<tr>
<td>anodic oxidation, 7, 798</td>
<td></td>
</tr>
<tr>
<td>carboxyl group derivatization, 6, 705</td>
<td></td>
</tr>
<tr>
<td>chiral</td>
<td></td>
</tr>
<tr>
<td>conjugate additions, 4, 221–226</td>
<td></td>
</tr>
<tr>
<td>via allylamines, 6, 866</td>
<td></td>
</tr>
<tr>
<td>[2 + 2] cycloadition reactions, 5, 71</td>
<td></td>
</tr>
<tr>
<td>[3 + 2] cycloadition reactions iron catalyzed, 5, 285</td>
<td></td>
</tr>
<tr>
<td>cyclohexanone</td>
<td></td>
</tr>
<tr>
<td>axial alkylation, 3, 30</td>
<td></td>
</tr>
<tr>
<td>dicarbonyl compound monoprotection, 6, 684</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 322–324</td>
<td></td>
</tr>
<tr>
<td>hindered aldehyde C-alkylation, 3, 30</td>
<td></td>
</tr>
<tr>
<td>hydrogenation</td>
<td></td>
</tr>
<tr>
<td>heterogeneous catalysis, 8, 439</td>
<td></td>
</tr>
<tr>
<td>hydrogenolysis, 8, 915</td>
<td></td>
</tr>
<tr>
<td>α-hydroxylation, 7, 170</td>
<td></td>
</tr>
<tr>
<td>infrared spectra, 6, 711</td>
<td></td>
</tr>
<tr>
<td>Knoevenagel reaction, 2, 367</td>
<td></td>
</tr>
<tr>
<td>Michael addition, 4, 5</td>
<td></td>
</tr>
<tr>
<td>NMR</td>
<td></td>
</tr>
<tr>
<td>carbon 6, 13, 712</td>
<td></td>
</tr>
<tr>
<td>nitrogen 6, 15, 708</td>
<td></td>
</tr>
<tr>
<td>proton, 6, 712</td>
<td></td>
</tr>
<tr>
<td>photoelectron spectra, 6, 711</td>
<td></td>
</tr>
<tr>
<td>properties</td>
<td></td>
</tr>
<tr>
<td>chemical, 6, 707</td>
<td></td>
</tr>
<tr>
<td>protonation, 6, 717</td>
<td></td>
</tr>
<tr>
<td>reactions, 6, 713</td>
<td></td>
</tr>
<tr>
<td>with alkynic esters, 4, 45</td>
<td></td>
</tr>
<tr>
<td>with aroyes, 4, 510</td>
<td></td>
</tr>
<tr>
<td>with dihalohcarbenes, 4, 1004</td>
<td></td>
</tr>
<tr>
<td>with isocyanates, 5, 103</td>
<td></td>
</tr>
<tr>
<td>with molecular bromine, 6, 710</td>
<td></td>
</tr>
<tr>
<td>reduction, 8, 938</td>
<td></td>
</tr>
<tr>
<td>hydrides, 8, 55</td>
<td></td>
</tr>
<tr>
<td>stereochemistry, 8, 55</td>
<td></td>
</tr>
<tr>
<td>regiochemistry, 6, 709</td>
<td></td>
</tr>
<tr>
<td>proton NMR, 6, 712</td>
<td></td>
</tr>
<tr>
<td>Simmons–Smith reaction, 4, 968</td>
<td></td>
</tr>
<tr>
<td>stereochemistry, 6, 716</td>
<td></td>
</tr>
<tr>
<td>structures, 6, 707</td>
<td></td>
</tr>
<tr>
<td>synthesis, 6, 705</td>
<td></td>
</tr>
</tbody>
</table>
via amide methylation using Tebbe reagent, 5, 1124
via palladium(II) catalysis, 4, 560
via retro Diels–Alder reactions, 5, 558
via Wittig–Horner type reaction, 6, 69
ultraviolet spectra, 6, 711
Vilsmeier–Haack reaction, 2, 783
X-ray structure
single-crystal, 6, 708
Enamines, \(N,N\)-bis(trimethylsilyl)-
anion formation
methylthiium, 6, 722
Enamines, chloro-
acyloxyminium salts, 6, 493
cyclic
generation of 2-aminoallyl cations, 5, 597
[4 + 3] cycloaddition reactions, 5, 608
Favorskii rearrangement, 3, 857
reactions with amines, 6, 520
reactions with carboxylic acids, 1, 424
reactions with hydrogen halides, 6, 497
synthesis, 5, 109
Enamines, \(-\text{cyano-}
addition reactions
with cycloalkenones, 4, 117
cleavage, 2, 857
Enamines, \(\alpha\)-halo
reaction with carboxylic acids, 6, 493
Enamines, morpholinol
\(\alpha\)-acetoxylation, 7, 170
Enamines, nitro-
addition reactions, 4, 124
Enamines, tetramethyl-\(\alpha\)-chloro-
\(\beta\)-lactams from, 5, 112
Enamines, \(N\)-tosyl-
synthesis
via palladium(II) catalysis, 4, 561
Enamines, \(N\)-trimethylsilyl-
anion formation
methylthiium, 6, 722
Enamino ketones
synthesis, 6, 770
Enaminones
addition reactions, 4, 123
reduction
borohydrides, 8, 540
Enantioselective reactions
achiral carbon nucleophiles
achiral substrates, 4, 228–231
alkylation, 3, 35
allenyl organometallics, 2, 96
propargyl organometallics, 2, 96
Endiandric acids
synthesis, 3, 558
via electrocyclization, 5, 743
Endomyces reessii
\(\beta\)-hydroxylation, 7, 56
oxidative rearrangement, 7, 829
Endoperoxides
synthesis
via mercuricyclization of hydroperoxides, 4, 390
Endothiopeptides
synthesis
via thioacylation, 6, 420, 423
Ene carbamates
protonation, 2, 1052
Vilsmeier–Haack reaction, 2, 783
Enediols
synthesis
via retro Diels–Alder reactions, 5, 557
Ene diones
synthesis
via palladium catalysis, 4, 611
Enediyynes
synthesis
cobalt-catalyzed cyclizations, 3, 255
1-Ene-6,12-diynes
intramolecular cycloadditions, 5, 1144
7-Ene-1,13-diynes
intramolecular cycloadditions, 5, 1144
Enephosphinilation ketones, 6, 782
Ene reactions, 2, 527–558
aliphatic Friedel–Crafts reaction
mechanism, 2, 708
alkenes
enophiles, 5, 1–25
Lewis acid catalysis, 5, 4–6
alkynes
Lewis acid catalysis, 5, 7–9
carbene complexes, 5, 1075
enantioselective, 5, 13
intermolecular, 2, 528; 5, 2–9
intramolecular, 2, 540
alkenes, 5, 9–20
ever, 5, 20–23
type I, 2, 540
type II, 2, 547
Lewis acid catalysis, 5, 1
formaldehyde, addition to alkenes, 2, 530
regioselectivity, 2, 534
tandem Claisen rearrangement, 5, 11
tandem Diels–Alder reaction
alkynes, 5, 7
thermal
alkenes, 5, 2–4
alkynes, 5, 6
cis/trans selectivity, 5, 3
endo/exo selectivity, 5, 3
formaldehyde, 2, 529
regioselectivity, 5, 3
transannular, 2, 553; 5, 20
with singlet oxygen, 7, 818
type I
asymmetric induction, 2, 541
1,2-disubstituted double bonds, 2, 541
type III
acetals, 2, 553
Enkephalins
synthesis
kinetically controlled, 6, 399
Enmein
synthesis
via Birch reduction, 8, 496
Enoates
conjugate additions
isopropylmagnesium bromide, 4, 172
Diels–Alder reactions, 5, 354–359
reactions with \(\alpha\)-selenoalkyl metals
regiochemistry, 1, 682
Enol acetates
alkali metal enolates
Enolates

reaction, 2, 108
anodic oxidation, 7, 797
dihalocyclopropanation, 4, 1005
electrochemical acetoxylation, 7, 170
α-hydroxylation
ketones, 7, 167
iodination, 7, 121
nitration, 6, 106
Vilsmeier–Haack reaction, 2, 783

Enolates

2-acetidinone synthesis, 5, 100–102
acyclic, carboxylic acid derivatives
diastereoselective alkylation, 3, 42
addition reactions
carbon-centered radicals, 4, 765
with alkene π-systems, 4, 99–113
addition to π-allylpalladium complexes, 4, 591–594
regioselectivity, 4, 632
stereochemistry, 4, 616–618
aggregation
geometry, 3, 4
alkylation, 3, 1–58
stereochemistry, 3, 12
C- alkylation
tandem vicinal difunctionalization, 4, 240
allylation
palladium-catalyzed regioselective, 3, 12
α-allyloxy
Wittig rearrangement, 3, 996
aluminum
masked, facially selective sigmatropic protocol, 1, 91
amination, 6, 118
carbonyl compounds
halogenation, 7, 120
carboxylic acids
cycloalkylation, 3, 48
chiral
conjugate additions, 4, 217–221
endocyclic
stereochemical alkylation, 3, 41
equilibration
alkylation, 3, 4
equivalents
uses, 4, 238
fluorinated
formation, 2, 115
α-fluoro-
synthesis, 2, 103
generation in situ
acylation, 2, 830
geometry
prediction, 2, 101
Group I
aldol reactions, 2, 181–235
Group II
aldol reactions, 2, 181–235
Group III
aldol reactions, 2, 239–275
halogen-substituted
reaction with trialkyloboranes, 2, 242
α-hydroxylation, 7, 159
lithium
α-alkylation, 3, 3
Michael addition, 4, 258
preformed
acylation, 2, 830

Claisen condensation, 2, 799
reactions, 2, 797
reactions with arynes, 4, 496
reactions with aziridines
synthesis of γ-amido ketones, 6, 96
reactions with N,N-dimethyl(methylene)iminium salts, 2, 909
reaction transition states
stereochemistry, 1, 2
regio-defined
aldol reactions, 2, 182
selenenylation
low temperature reaction, 7, 129
α-silyl-
synthesis, 2, 103
stabilized
intramolecular alkylation, 3, 55
stereoisomers
nomenclature, 2, 100
stERICALLY congested
stereoselectivity of alkylation, 3, 15
structures
experimental studies, 2, 100
thermodynamic/kinetic control, 2, 101
2-substituted
distortion, 3, 14
sulfenylation, 7, 124
α-sulfinyl acetate
aldol reactions, asymmetric, 2, 227
synthesis, 2, 99–128
metallic potassium, 2, 105
synthesis from carbonyl compounds
α-heteroatom-substituted, 2, 186
tetrasubstituted
from ketenes, 2, 196
transmetallation
tri-n-butyltin chloride, 3, 10
trapped
acylation, 2, 832
vinyllogous
aldol reactions, 2, 152
Enol carboxylates
coupling reactions
with sp³ organometallics, 3, 444
Enol esters
acid halide synthesis, 6, 307
alkyl
formation, 2, 596
conversion to enolates, 2, 184
halogenation, 7, 530
reaction with arylsulfonyl peroxides, 7, 169
reaction with carbonyl compounds
use of Lewis acid catalysts, 2, 612
α-sulfonyloxidation, 7, 171
Enol ethers
2-acetidinone synthesis, 5, 100–102
addition reactions, 2, 595–625
aldol reactions, 2, 611
anodic oxidation, 7, 797, 803
asymmetric synthesis, 2, 629–657
coupling reactions
with sp³ organometallics, 3, 444
cyclic
photoreactions with benzonitrile, 5, 161
cycloaddition reactions
alkynic carbene complexes, 5, 1067
dicarbonyl compound monoprotection, 6, 684
disilyl
dicarbonyl compound monoprotection, 6, 684
disilyl
ene reactions, 5, 1075
germyl
formation, 2, 610
dicarbonyl compound monoprotection, 6, 684
reactions, 2, 624
halogenation, 7, 121, 530
α-hydroxy
intramolecular hydroxysilylation, 7, 645
Mannich reaction, 2, 1013
organotin(IV)
oxidation
pyridinium chlorochromate, 7, 267
oxidative rearrangement, 7, 816
polysilyl
synthesis, 2, 605
preformed
acetylation, 2, 830
reaction with acetals, 2, 612
reaction with N-acyliminium ions, 2, 1064
reaction with benzenequinony chloride, 7, 520
reaction with carbonyl compounds
catalyzed, 2, 612
reaction with dihalocarbenes, 4, 1005
rearrangements, 3, 789
reduction, 8, 937
Simmons–Smith reaction, 4, 968
stannyl
from enol silyl ethers, 2, 609
reactions, 2, 624
synthesis, 2, 607
steroids
dehydrogenation, 7, 136
synthesis, 2, 595–625
allylic anions, 2, 66
via esters using Tebbe methylenation reagent, 5, 1123
tin(II)
formation, 2, 609
Vilsmeier–Haack reaction, 2, 783
Enol ethers, alkyl
dicarbonyl compound monoprotection, 6, 684
eine reactions, 5, 1075
formation, 2, 596
α-hydroxylation
ketones, 7, 167
Enol ethers, trimethylsilyl
dicarbonyl compound monoprotection, 6, 684
rhodium enolates
aldol reaction, 2, 310
synthesis from α-trimethylsilyl epoxides
reaction with Grignard reagents, 3, 759
trichlororotitanium enolates
syn selective aldol reaction, 2, 310
Enolization
kinetic
rhodocarbonyl compounds, 2, 247
Enol lactones
dicarbonyl compound monoprotection, 6, 684
synthesis
tricarbonyl compound monoprotection, 6, 684
Enol phosphates
1,2-addition reactions
organometallics, 3, 444
organoaluminium compounds, 1, 92
coupling reactions
Enol sulfonates
with sp3 organometallics, 3, 444
enol equivalents, 2, 610
reaction with dialkylcuprates, 3, 218
reduction
titanium salts, 8, 531
Enol pyruvates
Mannich reaction, 2, 904
Enols
alkylation, 3, 1–58
ee reactions
intramolecular, 5, 20–23
hydrogenolysis, 8, 910
oxidative rearrangement, 7, 816, 828
reactions with α-selenoalkyl metals
regiochemistry, 1, 682
silylated
oxidative rearrangements, 7, 816
synthesis
via retro Diels–Alder reactions, 5, 557
Enol silanes
aldol reaction
rhodium(I) catalyzed, 2, 311
cyclic
reaction with aldehydes, stereoselectivity, 2, 632
heterostrom substituted
reaction with aldehydes, 2, 642
reaction with aldehydes, diastereoselectivity, 2, 643
reaction with acetals
Lewis acid mediated, 2, 635
reaction with N-acyliminium ions, 2, 1066, 1067, 1070
reaction with aldehydes
diastereoselectivity, 2, 630, 646
fluoride catalyst, 2, 633
fluoride ion catalyzed, 2, 634
reaction with N,N-dimethyl(methylene)iminium salts
Mannich reaction, 2, 905
reaction with chiral acetals
diastereoselectivity, 2, 651
reaction with chiral α-alkoxy aldehydes
diastereoselectivity, 2, 643
reaction with chiral azetinones
Lewis acid mediated, 2, 649
reaction with chiral α-methyl aldehydes
diastereoselectivity, 2, 640
reaction with dimethyl acetals
diastereoselectivity, 2, 635
reaction with glycine cation equivalents, 2, 1075
reaction with imines
Lewis acid mediated, 2, 635
Enol silanes, nonstereogenic
reaction with aldehydes
diastereoselectivity, 2, 640, 644
reaction with chiral α,β-dialkoxy aldehydes
reaction with aldehydes, diastereoselectivity, 2, 644
Enol silanes, stereogenic
reaction with aldehydes
diastereoselectivity, 2, 641, 645
reaction with chiral azetinones
Lewis acid mediated, 2, 649
reaction with chiral α,β-dialkoxy aldehydes
diastereoselectivity, 2, 644
Enol stannanes
reaction with π-allylpalladium complexes, 4, 591
Enol sulfonates
coupling reactions
Enol triflates

with sp³ organometallics, 3, 444

Enol triflates coupling reactions
with lithium diarylcuprates, 3, 492
with lithium divinylcuprates, 3, 487
with sp³ organometallics, 3, 445

vinylation
palladium complexes, 4, 859

vinyl carbanion equivalents, 1, 195

Enones
acyclic
reaction with tris(trimethylsilyl)aluminum, 1, 83
tandem vicinal difunctionalization, 4, 243
β-alkylthio-α,β-unsaturated
formylation, 2, 838
anti-Bredt’s bridgehead
evidence for, 4, 31
asymmetric reduction
Lewis acid coordination, 1, 319

conjugate additions
organocuprates, 4, 179
conjugated
Barbier reaction, 1, 263
cyclopropanes from, 2, 431

hydroxysilylation, 8, 781

reaction with hydroxylamination adducts, 8, 758
reaction with zinc ester dieneolates, 2, 287
reaction with zinc ester enolates, 2, 285

synthesis, 3, 844
cuprate complex
spectroscopy, 4, 171
cyclic
conjugate additions with chiral sulfanyl anions, 4, 226

synthesis, 7, 711
deoxygenation, 8, 545
β-dialkylylamino conjugated
reduction, 8, 540
α,β-dialkylation
conjugate addition–enolate alkylation, 3, 8
electrochemical reduction
yohimbine hydrochloride, 8, 532
epoxidation, 4, 35
from β-mercurio ketones, 2, 443
hydrogenation
catalytic, 8, 533
hydroxysilylation
asymmetric, 8, 784
Michael additions
protection, 6, 687
partial reduction, 8, 523–568
photochemical addition to alcohols
radical reactions, 4, 753

reactions with allylic sulfanyl carbanions, 1, 520
reactions with α-selenoalkyl metals
regiochemistry, 1, 682
reduction
chemoselectivity, 8, 15
synthesis
allylic oxidation, 7, 113
via vinyl epoxides, 6, 11
vicinal dialkylation, 3, 8

α,β-Enones
addition reactions
with organomagnesium compounds, 4, 83
with organozinc compounds, 4, 95

alicyclic
addition reactions with organomagnesium compounds, 4, 89
conjugate additions
trimethylaluminum, 4, 140
vinylation
Grignard additions
copper catalyzed, 4, 91
protection device
β-stannylenol silylenol ether, 7, 619

β,γ-Enones
bridged
photoisomerizations, 5, 224–228
bridged bicyclic
photoisomerizations, 5, 228
photoisomerizations, 5, 215

reactions with organocerium reagents, 1, 240
γ,δ-Enones
synthesis via conjugate additions, 4, 147

Enones, γ-acetoxy-
reaction with lithium dimethylcuprate, 4, 171
Enones, α-alkoxy-
reduction
lithium aluminum hydride, 8, 8

Enones, β-alkoxy-
cyclic
synthesis via Michael addition, 4, 44
α,β-Enones, β-alkylthio-
addition reactions, 4, 126
conjugate additions
organocuprates, 4, 190
Enones, β’-amino-
divinyl ketones from
cyclization, 5, 766
Enones, chloro-
synthesis via dihalocarbene, 4, 1005
via dihalocyclopropyl compounds, 4, 1018
Enones, β’-chloro-
divinyl ketones from
cyclization, 5, 766
Enones, β,β-disubstituted
Michael addition, 4, 17
tandem vicinal difunctionalization, 4, 244
Enones, α-fluoro-
synthesis
via electrophilic fluorination, 4, 344
Enones, β-halo
addition reactions, 4, 125
Enones, α’-hydroxy-
divinyl ketones from
cyclization, 5, 766
Enones, β-hydroxy-
preparation, 2, 674
Enones, β-iodo-
conjugate additions
organocuprates, 4, 173
α,β-Enones, β-iodoacetoxo-
intramolecular cyclization via silyl ketene acetals, 4, 161
Enones, β’-substituted
divinyl ketones from
cyclization, 5, 766
Enones, β-(2-vinylcyclopropyl)-
synthesis, 5, 979
Enynes

acyclic
- Pauson–Khand reaction, 5, 1053–1055
- acyclic heteroatom-containing
 Pauson–Khand reaction, 5, 1055
bicyclization, 5, 1165–1170
 zirconium-promoted, 5, 1163–1183
bicyclization–carbonylation, 5, 1165
carbomagnesiation, 4, 875
 conjugated
 synthesis, 3, 878
cyclic
 Pauson–Khand reaction, 5, 1057–1060
fluorinated
 synthesis, 3, 525
 functionalized
 carbomagnesiation, 4, 877
 hydroboration, 8, 717
 intramolecular cycloaddition with isocyanides, 5, 1132
 in vitamin D synthesis, 3, 545
 reaction with Fischer carbene complexes, 5, 1104
 reaction with lithium organometallics, 4, 868
 semihydrogenation, 8, 432
 skipped
 synthesis, 3, 274
 stereospecific synthesis, 3, 539
 synthesis
 palladium catalysis, 3, 217
 via hydroalumination, 8, 757
 via Sakurai–Hosomi allylsilane conjugate addition, 5, 1166
1,3-Enynes
 synthesis
 from alkynes, 3, 880
 lithium propargyls, 2, 91
 stereoselective, 3, 522
1,4-Enynes
 synthesis
 via boron-ene reaction, 5, 34
1,5-Enynes
 Cope rearrangement, 5, 797
 synthesis, 3, 104, 107
 organopalladium catalysis, 3, 231
1,6-Enynes
 cyclization via intramolecular ene reaction
 palladium catalysis, 5, 16
 ene reactions
 intramolecular, 5, 15–17
1,7-Enynes
 ene reactions
 intramolecular, 5, 18
α,ω-Enynes
 intramolecular cycloaddition reactions, 5, 1143
Enynes, 1-chloro-
 stereospecific synthesis, 3, 539
Enynes, dithienyl-
 synthesis, 3, 527
Enynes, halo-
 hydroiodination, 4, 289
Enynols
 divinyl ketones from
cyclization, 5, 768
Enzymes
 aldol reaction
 use in, 2, 456

Epicampherenone

cofactors
 regenerating systems, 2, 456
deactivation
 oxidation, 2, 456
dehydrogenation
 carbonyl compounds, 7, 145
experimental methodology
 reduction, 8, 185
immobilization
 Ugi reaction, 2, 1104
oxidation
 diols, 7, 316
 sulfides, 7, 194
unactivated C–H bonds
 polycyclic, 7, 79
peptide synthesis, 6, 395
reduction
 carbonyl compounds, 8, 185
diastereotopic face distinctions, 8, 192
epoxides, 8, 884
 specificity, 8, 193
unsaturated carbonyl compounds, 8, 558
sources
 reduction, 8, 184
substrate specificity, 2, 456
use in organic chemistry
 cofactor regeneration, 2, 456
 hollow fiber reactors, 2, 456
membranes, 2, 456
 stability, 2, 456
use in synthesis
 immobilization, 2, 456
Ephedrine

Diels–Alder reactions
 intramolecular, 5, 545
 lithium aluminum hydride modifier, 8, 166
 Mannich reaction, 2, 962
reaction with 2,2'-bis(bromomethyl)-1,1'-binaphthyl
 N-alkylation, 6, 71
 synthesis
 via benzoin condensation, 1, 543
 via conjugate addition, 4, 227
Ephedrine, N-methyl-
 asymmetric reduction
 aluminum hydrides, 8, 546
 chiral silyl ketene acetas from
 aldol condensation, 2, 930
 N-ethylniline complex
 reduction, unsaturated carbonyl compounds, 8, 545
 lithium aluminum hydride modifier, 8, 166
 silyl ketene acetas, derivatives of
 reaction with imines, 2, 638
 stereoselective reactions, 2, 636
Ephedrine amides
 enolates
 diastereoselective alkylation, 3, 45
Ephedrine amides, N-methyl-
 β-substituted α,β-unsaturated
 addition reactions with organomagnesium compounds, 4, 85
6α-Epipretazettine
 synthesis, 3, 683
4-Epibrefeldin C
 synthesis
 via alkénylchromium reagents, 1, 200
Epicampherenone
 synthesis
14-Epicorynoline

via [3 + 2] cycloaddition reactions, 5, 286
14-Epicorynoline
synthesis
via Diels–Alder reaction, 5, 500

Epiewesine
synthesis
Mannich reaction, 2, 1032
via iminium ion–vinylsilane cyclization, 1, 592

Epiepoformine
synthesis
via retro Diels–Alder reactions, 5, 564

Epiepoxydon, 1, 819–839
synthesis
via retro Diels–Alder reactions, 5, 564
5-Epi-α-eudesmol
synthesis
via nitrone cyclization, 4, 1115

Epimodhephene
synthesis
via intramolecular ene reactions, 5, 22

Epinephrine (adrenalin)
vicinal amino alcohols
biological importance, 2, 323

Epiophinocarpine
synthesis
from trans tetracyclic lactams, 2, 946

Epipentenomycin
synthesis
via retro Diels–Alder reactions, 5, 561

Epiprecapnelladiene
synthesis
via photocycloaddition, 5, 139
15-Epi-Δ12(prostaglandin E)
synthesis, 8, 561

Epi-β-santalene
synthesis, 3, 427

4-Epishikimate, methyltriacetyl-
asymmetric synthesis, 6, 161
4-Epishikimic acid
synthesis
via Diels–Alder reaction, 5, 373

Episulfides
formation
Eschenmoser coupling reaction, 2, 867
Ritter reaction, 6, 277

Episulfonium ions
synthesis, 7, 493

Epoformine
synthesis
via retro Diels–Alder reactions, 5, 564

Epoxidation, 1, 819–839
addition reactions, 7, 357–385
alkenes, 7, 390
solid support, 7, 841
asymmetric methods, 7, 389–436
titanium-catalyzed, 7, 390
chemoselective, 7, 384
intramolecular, 1, 822
peracids, 7, 375
steroids
microbial, 7, 66
template-directed, 7, 43

Epoxides (see also Oxiranes)
α-acetoxy steroidal
rearrangement, 3, 739
alkenes
protection, 6, 685
alkylation, 3, 262
alkynides, 3, 277
with sulfur- and selenium-stabilized carbanions, 3, 86
allylic
rearrangement, 3, 762
α-amino
rearrangement, 3, 740
amino alcohol synthesis, 7, 493
arene alkylation
Friedel–Crafts reaction, 3, 309
asymmetric
diols, 7, 390
preparation, 2, 435
azide synthesis, 6, 253
bromination, 6, 211
carbene precursors, 4, 961
α-carbonyl
rearrangement, 3, 738
chlorination, 6, 207
α-chloro
acid-catalyzed rearrangement, 3, 739
thermal rearrangement, 3, 739
cleavage
samarium triiodide, 1, 260
deoxygenation, 8, 884
α-electron withdrawing group
rearrangement, 3, 746
fluorination, 6, 219
formation
semipinacol rearrangement, 3, 778
Friedel–Crafts reactions, 3, 769
homochiral
synthesis, 7, 429
hydrogenation
heterogeneous catalysis, 8, 439
iodination, 6, 214
nucleophilic opening
titanium-assisted, 7, 405
opening
anti, 3, 734
hydroxy neighboring group, 3, 735
stereochemistry, 3, 733
syn, 3, 734
ortho acid synthesis, 6, 560
oxidative rearrangement, 7, 826
reactions with dialkoxyboryl carbanions, 1, 496
reactions with hydroalumination adducts, 8, 758
reactions with lithiodithiane, 1, 569
reactions with nitriles, 6, 271
reactions with organocerium compounds, 1, 233
reactions with organocopper compounds, 3, 223
reactions with organometallic compounds
alcohol synthesis, 6, 4
Lewis acid promotion, 1, 342
reactions with α-selenoalkyllithium, 3, 91
rings
acid-catalyzed, 3, 733–771
protic acid catalyzed, 3, 734
reduction, 8, 871–891
ring opening
boron trifluoride catalyzed, 3, 741
magnesium halide catalysis, 3, 754
mechanism in aqueous acid, 3, 736
nitrogen nucleophiles, 6, 88
regioselectivity, 7, 390
with Grignard reagents, 3, 466
stereospecific deoxygenation
selenoamides, 6, 481
α-substituted
rearrangement, 3, 738
synthesis
via 1-chloroalkyl p-tolyl sulfoxide, 1, 526
via cyclofunctionalization of allylic alcohols, 4, 367
via Darzens glycidic ester condensation, 2, 409
via β-hydroxalkyl selenides, 1, 712, 718, 721
via β-substituted alcohols, 6, 25
α-trimethylsilyl
dehydroxylation
reaction with Grignard reagents, 3, 759
β-trimethylsilyl
synthesis, 3, 759
α,β-unsaturated
preparation, 2, 421
Epoxides, acyclic vinyl
reaction with organocopper compounds, 3, 226
Epoxides, α-lithio
from transmetallation, 3, 198
Epoxides, nitro-
reduction
sodium borohydride, 8, 874
Epoxides, vinyl
π-allylpalladium complexes from, 4, 589
cyclic
ring opening, 6, 9
reaction with nitrogen nucleophiles, 6, 86
reaction with organocuprates, 3, 225
ring opening, 7, 491
organometallic reagents, 6, 9
Epoxynon
synthesis
via retro Diels–Alder reactions, 5, 564
2,3-Epoxysqualene
synthesis, 3, 178
Equilenin
synthesis
ketone oxalylation, 2, 838
Equilenin, 11-oxo-
methyl ether
synthesis via conjugate addition, 4, 215
Equilenin ketal
Birch reduction
dissolving metals, 8, 497
Equilibrium constants
aldol additions, 2, 134
Equisetin
synthesis
via Ireland rearrangement, 5, 843
Eremophilane
biosynthesis, 3, 388
synthesis, 8, 528
Eremophilone
hydrogenation
Wilkinson catalyst, 8, 445
synthesis
rearrangement of allylic epoxides, 3, 762
Ergoline, 2-bromo-
reduction
borohydrides, 8, 618
Ergosterol
acetate
oxidative halogenation, 7, 529
diene protection, 6, 691
25,28-dihydroxylated
synthesis, 3, 983
selective reduction, 8, 565
Ergot alkaloids
synthesis
Mannich reaction, 2, 967
via INOC reaction, 4, 1080
Erigeron
synthesis
via Diels–Alder reaction, 5, 329
Eriolinin
synthesis, 8, 925
Erlenmeyer azlactone synthesis, 2, 395, 402–407
lead acetate, 2, 402
Eruic acid
Kolbe electrolysis, 3, 642
Erybidine, O-methyl-
synthesis, 3, 816
Erysodienone
synthesis, 3, 816
use of alkaline ferricyanide, 3, 681
Erythramine
related structure
synthesis via azomethine ylide cyclization, 4, 1140
Erythrina alkaloids
synthesis, 3, 505; 6, 746
electron transfer induced photocyclizations, 2, 1038
via Diels–Alder reactions, 5, 323
Erythrinan
skeloton
synthesis via azomethine ylide cyclization, 4, 1136
synthesis
N-acyliminium ions, 2, 1056
cis-Erythrinan, 15,16-dimethoxy-
synthesis, 2, 1038
Erythro compounds
aldol diastereomers
thermodynamics, 2, 153
Erythromycin
oxime
Beckmann reaction, 7, 698
partial synthesis
stereocontrol, 3, 960
synthesis
Woodward, 2, 214, 221
zirconium enolates, 2, 303
Erythromycin A
oxime
Beckmann rearrangement, 6, 766
d-Erythronolactone
reduction
disiamylborane, 8, 269
Erythronolide A
synthesis, 1, 430
aldol reaction, 2, 205
aldol reaction of lithium enolate, 2, 219
use of lithium enolate, 2, 194
via sulfur ylide reagents, 1, 824
Erythronolide A, 9,9-dihydro-
synthesis, 7, 246
via macrolactonization, 6, 370
Erythronolide B
synthesis, 1, 430; 3, 288
via Baeyer–Villiger reaction, 7, 678
Erythronolide B

Cumulative Subject Index

via cyclofunctionalization of cyclohexadienone, 4, 372

Erythronolide B, 6-deoxy-
synthesis, 2, 253
Diels–Alder reaction, 2, 700
via cuprate acylation, 1, 436
via macrolactonization, 6, 372

Erythronolides
synthesis, 1, 564
via Grignard addition, 1, 408
via Horner–Wadsworth–Emmons reaction, 1, 772
via macrolactonization, 6, 371
via reactions of organocuprates and homochiral aldehydes, 1, 125
via Wittig reaction, 1, 757

Erythro–threo diastereoselectivity
Michael addition, 4, 21

Eschenmoser amide acetal selectivity
variant of Claisen rearrangement, 5, 836–838

Eschenmoser coupling reaction, 2, 865–890
carbon–carbon bond formation, 2, 869
Knoevenagel modification, 2, 873
mechanism, 2, 867
Robinson annelation, 2, 885
sulfide contraction, 2, 869
synthesis, 2, 876
thio–Wittig modification, 2, 874
Eschenmoser fragmentation, 8, 948
definition, 6, 1043

Eschenmoser’s salt
Mannich reaction, 2, 899

Eserethole
synthesis
via azomethine ylide cyclization, 4, 1088, 1136

Esperamicin
synthesis, 3, 545
copper catalysts, 3, 217
via electrocyclization, 5, 736

Esperamicin A
synthesis, 3, 27

Estafiatin
synthesis, 7, 363

Ester enolates
acyclic
alkylation, 3, 42
addition reactions, 4, 106–111
alkenes, palladium(II) catalysis, 4, 572
arylation, 4, 466
stereoselectivity, 2, 200
synthesis, 2, 101

Ester enolates, bromo
Darzens glycidic ester condensation, 2, 427

Esterification
alkylative, 6, 335

Esters
activated
macrolactonization, 6, 373
synthesis, 6, 323–376
acyclic
synthesis via retro Diels–Alder reactions, 5, 573
tandem vicinal difunctionalization, 4, 247–249
acylation, 2, 795–863; 6, 328
thiols, 6, 443
acylation of organometallic reagents, 1, 416
acyclon coupling reaction
heterogeneous conditions, 3, 614
homogeneous conditions, 3, 615
necessary reaction conditions, 3, 614
preferred reaction conditions, 3, 617
with ketones, 3, 630
alcohol protection, 6, 657
alkenic
divinyl ketones from, 5, 776
α-alkoxy-
(Z)- and (E)-enolates, 2, 102
β-alkoxy-α,β-unsaturated
addition reactions, 4, 125
alkylidenation
dihaloalkane reagents, 5, 1125
alkyl-substituted bromo Reformatsky reaction, 2, 289
β-(alkylthio)-α,β-unsaturated
addition reactions, 4, 126
α-amino
hydrogenation, 8, 242
zinc ester enolates, preparation, 2, 296
β-amino
synthesis via palladium(II) catalysis, 4, 560
arene alkylation
Friedel–Crafts reaction, 3, 309
aromatic carboxylic
Birch reduction, 8, 505
asymmetric epoxidation
compatibility, 7, 401
asymmetric hydroxylation, 7, 181
boron trifluoride complex
NMR, 1, 292
α-bromo
Reformatsky reaction, cerium metal, 2, 312
carboxy-protecting groups, 6, 665
chiral
diastereoselective additions, 4, 200–202
chiral α-alkoxy
lithium enolates, 2, 227
chiral β-amino thiol enolates
diasterofacial preference, 2, 225
cleavage
deprotection, 6, 665
lithium chloride, 6, 206
cyclic
tandem vicinal difunctionalization, 4, 249
Darzens glycidic ester condensation
phase-transfer catalysis, 2, 429
dehydrogenation, 7, 144
use of benzeneseleninyl chloride, 7, 135
β,β-diketo
reduction, 8, 9
β,β-disubstituted
Michael addition, 4, 17
electrochemical amidation, 6, 392
epoxide synthesis
diazomethane, 1, 832
β-halo-α,β-unsaturated
addition reactions, 4, 125
hindered aryl
anti aldols, 2, 201
deprotonation, 3, 194
homochiral β-hydroxy
synthesis via conjugate addition to sultams, 4, 204
hydrogenation, 8, 242
α-hydroxalkyl-α,β-unsaturated
synthesis via heteronucleophile addition, 4, 34
α-hydroxylation, 7, 179
syn-3-hydroxy-2-methyl
synthesis, 2, 252
γ-hydroxy-α,β-unsaturated
hydroxylation, 7, 439
iodination, 6, 214; 7, 121
α-iodo
Reformatsky reaction, cerium metal, 2, 312
Julia coupling, 1, 803
lithium enolates
crystal structures, 1, 30
methylenation
Tebbe reaction, 1, 747, 5, 1123
α-methylthio
deprotonation, 2, 103
mixed
acylation, 2, 799
ortho ester synthesis, 6, 560
polyunsaturated
tandem vicinal difunctionalization, 4, 253
reactions with benzophenone dianion
organoytterbium compounds, 1, 280
reactions with organoaluminum reagents, 1, 92
reduction
alkali metals, 3, 613
metal hydrides, 8, 266
silanes, 8, 824
stannane, 8, 824
to aldehydes, 8, 292
Reformatsky reaction, 2, 296
selenenylation, 7, 129, 131
sulfenylation, 7, 125
selective, 7, 125
sulfynylation, 7, 127
α-sulfanyl-β-hydroxy
aldol reaction, 2, 227
α-sulfonfyl-α,β-unsaturated
synthesis, Knoevenagel reaction, 2, 362
synthesis, 6, 323–376
carbonylation, 3, 1028
via ethers, 7, 236
via hydration of alkynes, 4, 300
via oxidative cleavage of alkenes, 7, 574
tandem vicinal dialkylation, 4, 261
tandem vicinal difunctionalization, 4, 246–249
α-trimethylsilyl
Reformatsky reaction, 2, 294
β-trimethylsilyl(amo)no
cyclization, 2, 935
unactivated
aminolysis, 6, 389
Esters, p-alkoxybenzyl
anchoring groups, 6, 671
Esters, alkynic
hydrostannation, 8, 548
hydrozirconation, 8, 683
reaction with allylic alcohols, 6, 856
tandem vicinal difunctionalization, 4, 247
Esters, allenic
hydrochlorination, 4, 277
tandem vicinal difunctionalization, 4, 249
thermal rearrangement
to dienoic ester, 6, 867
Esters, α-amino-α,β-unsaturated
functionalized, synthesis, 6, 67
Esters, bis(trimethylsilyl)

Peterson alkenation, 1, 791
Esters, t-butyl
synthesis, 6, 337
Esters, dialkoxybenzyl
anchoring groups, 6, 671
Esters, α-diazo
C—H insertion reactions, 3, 1054
higher
synthesis, 6, 125
synthesis, 6, 122, 124
Esters, dienoic
thermal rearrangement
via β-allenic ester, 6, 867
Esters, β-enamino
synthesis
Knoevenagel reaction, Meldrum's acid, 2, 356
Esters, α-fluoro-α,β-unsaturated
Oshima–Takai reaction, 1, 751
Esters, α-halo
Darzens glycidic ester condensation, 2, 432
reduction
Alpine borane, 7, 603
Esters, hydroxy
Ritter reaction, 6, 268
synthesis, 6, 877
Esters, 1-hydroxy chiral
synthesis, 1, 66, 86
oxidation
synthesis of α-keto esters, 7, 324
Esters, 2-hydroxy
alkylation, 3, 43
chiral titanium enolates
enantioselective synthesis, 2, 309
dianions
alkylation, 2, 225
enantioselective
aldol reaction, acetylliron complex, 2, 315
synthesis
via organoaluminum reagents, 1, 84
Esters, 4-hydroxy
dianions
aldol reaction, 2, 225
synthesis
homoaldol reaction, 2, 445
Esters, 1,2-keto
synthesis
Knoevenagel reaction, oxidation, 2, 360
Esters, 1,3-keto
aldol reaction, 2, 209
γ-alkylation, 3, 58
diazo transfer, 6, 125
intermolecular pinacolic coupling reactions
organosamarium compounds, 1, 271
intramolecular Barbier cyclization
samarium diiodide, 1, 264
Knoevenagel reaction, 2, 359
synthesis, 3, 783, 784
Esters, 1,4-keto
synthesis
homoenolates, 2, 449
Esters, 1,6-keto
synthesis
zinc homoenolate, 2, 448
synthesis, Reformatsky reaction, 2, 296
Esters, β-keto-2-[2-(trimethylsilyl)methyl]-
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esters</td>
<td>576</td>
</tr>
<tr>
<td>cycloaddition reactions, 5, 247</td>
<td></td>
</tr>
<tr>
<td>Esters, α-keto-β,-γ-unsaturated</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 461</td>
<td></td>
</tr>
<tr>
<td>Esters, α-nitroso-synthesis, 6, 104</td>
<td></td>
</tr>
<tr>
<td>Esters, γ-oxocarboxylic acid</td>
<td></td>
</tr>
<tr>
<td>alcohol protection</td>
<td></td>
</tr>
<tr>
<td>cleavage, 6, 658</td>
<td></td>
</tr>
<tr>
<td>Esters, α,-β-unsaturated</td>
<td></td>
</tr>
<tr>
<td>metallation, 1, 642</td>
<td></td>
</tr>
<tr>
<td>Esters, γ-oxy-α-unsaturated</td>
<td></td>
</tr>
<tr>
<td>coupling reactions</td>
<td></td>
</tr>
<tr>
<td>with alkenyl halides, 3, 443</td>
<td></td>
</tr>
<tr>
<td>Esters unsaturated</td>
<td></td>
</tr>
<tr>
<td>Reformatsky reaction, 2, 294</td>
<td></td>
</tr>
<tr>
<td>Esters, α,-β-unsaturated</td>
<td></td>
</tr>
<tr>
<td>addition of carbene complexes, 4, 980</td>
<td></td>
</tr>
<tr>
<td>chelated</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 365–367</td>
<td></td>
</tr>
<tr>
<td>conjugate additions, 4, 184</td>
<td></td>
</tr>
<tr>
<td>conjugate addition to lithium</td>
<td></td>
</tr>
<tr>
<td>bis(phenylmethyliisily)cuprate, 2, 186</td>
<td></td>
</tr>
<tr>
<td>dehydration, 7, 142</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 461</td>
<td></td>
</tr>
<tr>
<td>enzymic reduction, 8, 205</td>
<td></td>
</tr>
<tr>
<td>Grignard additions, copper catalyzed, 4, 91</td>
<td></td>
</tr>
<tr>
<td>hydrobromination, 4, 282</td>
<td></td>
</tr>
<tr>
<td>hydroformylation, 4, 925</td>
<td></td>
</tr>
<tr>
<td>Michael acceptors, 4, 261</td>
<td></td>
</tr>
<tr>
<td>reactions with $1,1$-bis(seleno)alkyllithium, 1, 694</td>
<td></td>
</tr>
<tr>
<td>reactions with organolithium compounds, 4, 72</td>
<td></td>
</tr>
<tr>
<td>stereochemistry, 7, 396</td>
<td></td>
</tr>
<tr>
<td>synthesis, 3, 865</td>
<td></td>
</tr>
<tr>
<td>Ramberg–Bäcklund rearrangement, 3, 870</td>
<td></td>
</tr>
<tr>
<td>synthesis from β-hydroxyalkyl selenides, 1, 705</td>
<td></td>
</tr>
<tr>
<td>synthesis via retro Diels–Alder reaction, 5, 553</td>
<td></td>
</tr>
<tr>
<td>Esters, β,-γ-unsaturated</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>coupling reactions, 3, 443</td>
<td></td>
</tr>
<tr>
<td>synthesis via tandem vicinal difunctionalization, 4, 249</td>
<td></td>
</tr>
<tr>
<td>Esters, vinyl</td>
<td></td>
</tr>
<tr>
<td>cycloaddition reactions, 5, 255</td>
<td></td>
</tr>
<tr>
<td>Darzens glycidic ester condensation, 2, 421</td>
<td></td>
</tr>
<tr>
<td>Estradiol</td>
<td></td>
</tr>
<tr>
<td>bistrimethylsilyl ether</td>
<td></td>
</tr>
<tr>
<td>reductive silylation, 8, 518</td>
<td></td>
</tr>
<tr>
<td>synthesis via benzocyclobutene ring opening, 5, 693</td>
<td></td>
</tr>
<tr>
<td>Estradiol, 2-hydroxy-synthesis, 7, 331</td>
<td></td>
</tr>
<tr>
<td>Estra-1,3,5(10)-trien-17β-ol, 3-methoxy-acetate</td>
<td></td>
</tr>
<tr>
<td>reaction with mercury(II) acetate, 7, 331</td>
<td></td>
</tr>
<tr>
<td>Estratrieneone</td>
<td></td>
</tr>
<tr>
<td>synthesis, 7, 338</td>
<td></td>
</tr>
<tr>
<td>Estrogenic steroids</td>
<td></td>
</tr>
<tr>
<td>synthesis via arynes, 4, 501</td>
<td></td>
</tr>
<tr>
<td>Estrogens</td>
<td></td>
</tr>
<tr>
<td>synthesis, 7, 331</td>
<td></td>
</tr>
<tr>
<td>Estrone</td>
<td></td>
</tr>
<tr>
<td>Birch reduction</td>
<td></td>
</tr>
<tr>
<td>dissolving metals, 8, 493</td>
<td></td>
</tr>
<tr>
<td>cyclization, 3, 371</td>
<td></td>
</tr>
<tr>
<td>methyl ether</td>
<td></td>
</tr>
<tr>
<td>synthesis, 3, 1061</td>
<td></td>
</tr>
<tr>
<td>synthesis, 7, 338</td>
<td></td>
</tr>
<tr>
<td>polyene bicyclization, 3, 360</td>
<td></td>
</tr>
<tr>
<td>polyene cyclization, 3, 366</td>
<td></td>
</tr>
<tr>
<td>via Baeyer–Villiger reaction, 7, 682</td>
<td></td>
</tr>
<tr>
<td>via benzocyclobutene ring opening, 5, 693</td>
<td></td>
</tr>
<tr>
<td>via Cope rearrangement, 5, 790</td>
<td></td>
</tr>
<tr>
<td>8α-Estrone</td>
<td></td>
</tr>
<tr>
<td>Mannich reaction</td>
<td></td>
</tr>
<tr>
<td>with iminum salts, 2, 902</td>
<td></td>
</tr>
<tr>
<td>Estrone, C,18-bisnor-13α,17α-dehydro-</td>
<td></td>
</tr>
<tr>
<td>synthesis via photoisomerization, 5, 232</td>
<td></td>
</tr>
<tr>
<td>Estrone methyl ether synthesis via conjugate addition, 4, 215</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
</tr>
<tr>
<td>ethylation</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 333</td>
<td></td>
</tr>
<tr>
<td>Ethane, 2-arylnitro-double deprotonation</td>
<td></td>
</tr>
<tr>
<td>Henry reaction, 2, 337</td>
<td></td>
</tr>
<tr>
<td>Ethane, azido-synthesis</td>
<td></td>
</tr>
<tr>
<td>via ethyl iodide, 6, 245</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-bis(oxazolinyl)-dilithation, 4, 976</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-diaryl-dimerization, 3, 673</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-dibromomethane-alkyl bromination, 7, 121</td>
<td></td>
</tr>
<tr>
<td>reduction</td>
<td></td>
</tr>
<tr>
<td>dissolving metals, 8, 526</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-dibromomethano-alkane bromination, 7, 15</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-dihalo-arene alkylation</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 318</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-dihalo-2-phenyl-arene alkylation</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 318</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-disoscyano-1,2-diphenyl-reduction, 8, 831</td>
<td></td>
</tr>
<tr>
<td>Ethane, dimethoxy-alkyl metal stabilized carbanions</td>
<td></td>
</tr>
<tr>
<td>crystal structure, 1, 5</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,2-diphenyl-synthesis, 3, 638</td>
<td></td>
</tr>
<tr>
<td>Ethane, hexafluorosynthesis, 3, 640</td>
<td></td>
</tr>
<tr>
<td>Ethane, hexamethyl-synthesis, 3, 415</td>
<td></td>
</tr>
<tr>
<td>Ethane, nitro-ol addition reaction with enolates, 4, 104</td>
<td></td>
</tr>
<tr>
<td>Ethane, pentaalkoxy-synthesis, 6, 556</td>
<td></td>
</tr>
<tr>
<td>Ethane,2-substituted-1,1-dimethyl-1-nitro-reduction, 8, 375</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1-trifluoro-2,2-diaryl-synthesis</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 311</td>
<td></td>
</tr>
<tr>
<td>Ethanol, 1,1-dicyclohexyl-quinolin, 3, 796</td>
<td></td>
</tr>
<tr>
<td>Ethanol, 1,1-dicyclohexyl-quinolin, 3, 797</td>
<td></td>
</tr>
<tr>
<td>Ethanol, 1,1-dicyclohexyl-quinolin, 3, 879</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>oxidative cleavage of alkenes</td>
<td>7, 588</td>
</tr>
<tr>
<td>synthesis of dibioacetals</td>
<td></td>
</tr>
<tr>
<td>9,10-Ethanoanthracene, 9,10-dihydro-retro Diels–Alder reaction</td>
<td>5, 589</td>
</tr>
<tr>
<td>Ethanol, 2-amino-2-phenyl-hydrogenation</td>
<td>8, 146</td>
</tr>
<tr>
<td>Ethanol, 2-aryl-synthesis</td>
<td></td>
</tr>
<tr>
<td>via microbial methods</td>
<td>7, 76</td>
</tr>
<tr>
<td>Ethanol, 2-bromo-acetate</td>
<td></td>
</tr>
<tr>
<td>reaction with aryl Grignard reagents</td>
<td>3, 243</td>
</tr>
<tr>
<td>reaction with aryl Grignard reagents</td>
<td>3, 243</td>
</tr>
<tr>
<td>Ethanol, 1-cyclohexyl-hydrogenation</td>
<td></td>
</tr>
<tr>
<td>catalytic</td>
<td>8, 141</td>
</tr>
<tr>
<td>Ethanol, α-(2-hydroxyphenyl)-lactate</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction</td>
<td>3, 311</td>
</tr>
<tr>
<td>Ethanol, 1-(4-methylphenyl)-Birch reduction</td>
<td></td>
</tr>
<tr>
<td>dissolving metals</td>
<td>8, 515</td>
</tr>
<tr>
<td>Ethanol, 1-phenyl-absolute configuration</td>
<td>8, 160</td>
</tr>
<tr>
<td>hydrogen donor</td>
<td></td>
</tr>
<tr>
<td>styryl ketones</td>
<td>8, 552</td>
</tr>
<tr>
<td>transfer hydrogenation</td>
<td>8, 552</td>
</tr>
<tr>
<td>Ethanol, 2-phenylthio-1,2-diphenyl-synthesis</td>
<td></td>
</tr>
<tr>
<td>via benzylphenyl sulphide</td>
<td>1, 506</td>
</tr>
<tr>
<td>Ethers</td>
<td></td>
</tr>
<tr>
<td>acyclic</td>
<td>6, 22</td>
</tr>
<tr>
<td>alcohol protection</td>
<td>6, 647</td>
</tr>
<tr>
<td>π-allylpyrrol complexes from</td>
<td>4, 588</td>
</tr>
<tr>
<td>arene alkylation</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction</td>
<td>3, 309</td>
</tr>
<tr>
<td>asymmetric epoxidation</td>
<td>7, 401</td>
</tr>
<tr>
<td>bridged-ring</td>
<td></td>
</tr>
<tr>
<td>synthesis via cyclofunctionalization</td>
<td>4, 373</td>
</tr>
<tr>
<td>cleavage</td>
<td></td>
</tr>
<tr>
<td>lithium bromide</td>
<td>6, 210</td>
</tr>
<tr>
<td>lithium chloride</td>
<td>6, 206</td>
</tr>
<tr>
<td>cyclic</td>
<td>6, 22</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>cyclic allylic</td>
<td></td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td>3, 1008</td>
</tr>
<tr>
<td>cyclic propargylic</td>
<td></td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td>3, 1008</td>
</tr>
<tr>
<td>epoxidation directed by</td>
<td>7, 367</td>
</tr>
<tr>
<td>hydride donors</td>
<td></td>
</tr>
<tr>
<td>to carbonium ions</td>
<td>8, 91</td>
</tr>
<tr>
<td>hydrobromination</td>
<td>4, 282</td>
</tr>
<tr>
<td>iodination</td>
<td>6, 214</td>
</tr>
<tr>
<td>oxidation</td>
<td></td>
</tr>
<tr>
<td>activated C—H bonds</td>
<td>7, 235–248</td>
</tr>
<tr>
<td>mechanism</td>
<td>7, 236</td>
</tr>
<tr>
<td>selectivity</td>
<td>7, 238</td>
</tr>
<tr>
<td>reactions with aynes</td>
<td>4, 507</td>
</tr>
<tr>
<td>rearrangements</td>
<td>6, 874</td>
</tr>
<tr>
<td>diastereocntrol</td>
<td>6, 880</td>
</tr>
<tr>
<td>(E)/(Z) selectivity</td>
<td>6, 875</td>
</tr>
<tr>
<td>saturated aliphatic</td>
<td></td>
</tr>
<tr>
<td>anodic oxidation</td>
<td>7, 803</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via carboxylic acids</td>
<td>8, 235–254</td>
</tr>
<tr>
<td>via reduction</td>
<td>8, 211–232</td>
</tr>
<tr>
<td>via electrophile cyclization</td>
<td>7, 523</td>
</tr>
<tr>
<td>via substitution processes</td>
<td>6, 1–28</td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td></td>
</tr>
<tr>
<td>absolute configuration</td>
<td>6, 884</td>
</tr>
<tr>
<td>Ethers, allyl haloalkyl</td>
<td></td>
</tr>
<tr>
<td>arene haloalkylation by</td>
<td></td>
</tr>
<tr>
<td>Friedel–Crafts reaction</td>
<td>3, 321</td>
</tr>
<tr>
<td>Ethers, allyl methyl synthesis</td>
<td></td>
</tr>
<tr>
<td>via trialkylboranes</td>
<td>7, 603</td>
</tr>
<tr>
<td>Ethers, allyl vinyl</td>
<td></td>
</tr>
<tr>
<td>reaction with tetracyanoethylene</td>
<td></td>
</tr>
<tr>
<td>solvent effects</td>
<td>5, 76</td>
</tr>
<tr>
<td>Ethers, alkylic</td>
<td></td>
</tr>
<tr>
<td>carbometallation</td>
<td></td>
</tr>
<tr>
<td>enol ether preparation</td>
<td>2, 596</td>
</tr>
<tr>
<td>Ethers, allenyl methyl</td>
<td></td>
</tr>
<tr>
<td>metallation</td>
<td>2, 596</td>
</tr>
<tr>
<td>Ethers, allyl</td>
<td></td>
</tr>
<tr>
<td>cycloadDITION reactions</td>
<td>5, 260</td>
</tr>
<tr>
<td>inside alkoxy effect</td>
<td></td>
</tr>
<tr>
<td>cycloadDITION reactions</td>
<td>5, 260</td>
</tr>
<tr>
<td>isomerization</td>
<td></td>
</tr>
<tr>
<td>vinyl ether synthesis</td>
<td>6, 866</td>
</tr>
<tr>
<td>isomerization to propargyl ether</td>
<td></td>
</tr>
<tr>
<td>alcohol protection</td>
<td>6, 652</td>
</tr>
<tr>
<td>oxidation</td>
<td></td>
</tr>
<tr>
<td>palladium(II) catalysis</td>
<td>4, 553</td>
</tr>
<tr>
<td>Pauson–Khand reaction</td>
<td>5, 1044</td>
</tr>
<tr>
<td>regiocontrol</td>
<td></td>
</tr>
<tr>
<td>thermolysis</td>
<td>6, 866</td>
</tr>
<tr>
<td>Ethers, allyl benzyl</td>
<td></td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td>3, 989</td>
</tr>
<tr>
<td>Ethers, allylic</td>
<td></td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td></td>
</tr>
<tr>
<td>mechanism</td>
<td>3, 977</td>
</tr>
<tr>
<td>Ethers, allyl lithiumyl</td>
<td></td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td>3, 982</td>
</tr>
<tr>
<td>Ethers, allyl methyl</td>
<td></td>
</tr>
<tr>
<td>reduction</td>
<td></td>
</tr>
<tr>
<td>LAH/TiCl₄</td>
<td>8, 967</td>
</tr>
<tr>
<td>Ethers, allyl propargyl</td>
<td></td>
</tr>
<tr>
<td>carbonylation</td>
<td></td>
</tr>
<tr>
<td>use of cobalt complexes catalysts</td>
<td>3, 1025</td>
</tr>
<tr>
<td>Pauson–Khand reaction</td>
<td>5, 1055</td>
</tr>
<tr>
<td>Wittig rearrangement</td>
<td>3, 984</td>
</tr>
<tr>
<td>Ethers, allyl silyl</td>
<td></td>
</tr>
<tr>
<td>reaction with aryl Grignard reagents</td>
<td>3, 246</td>
</tr>
<tr>
<td>Ethers, allyl thiophenyl</td>
<td></td>
</tr>
<tr>
<td>desulfurization</td>
<td>8, 840</td>
</tr>
<tr>
<td>Ethers, allyl vinyl</td>
<td></td>
</tr>
<tr>
<td>Claisen rearrangement</td>
<td>5, 832–834, 1001</td>
</tr>
<tr>
<td>discovery</td>
<td>5, 827</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via allyl formate alkenation</td>
<td>6, 856</td>
</tr>
<tr>
<td>via Claisen rearrangement</td>
<td>5, 830–832; 6, 856</td>
</tr>
<tr>
<td>via Wittig-type alkenation</td>
<td>5, 830</td>
</tr>
<tr>
<td>Ethers, aryI</td>
<td></td>
</tr>
<tr>
<td>oxidation</td>
<td></td>
</tr>
<tr>
<td>radical cation reactions</td>
<td>3, 662</td>
</tr>
<tr>
<td>synthesis</td>
<td>3, 686</td>
</tr>
<tr>
<td>Ethers, allyl alkyI</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
</tbody>
</table>
Ethers

C—O coupling, 3, 690
Ethers, α-arylamino
reaction with lithium alkynides, 3, 282
Ethers, aryl 4-cyanophenyl
synthesis, 4, 439
Ethers, aryl fluoroalkyl
synthesis, 4, 438
Ethers, aryl silyl
Birch reduction
dissolving metals, 8, 494
Ethers, α-halometallation
Ethers, aryl tetrazolyl
dissolving metals,
substitution reactions
nickel catalysts, 3, 229
Ethers, α-azido
synthesis
via acetals, 6, 254
Ethers, benzaldehyde trimethylsilyl
reaction with crotyl boronates
syn—anti selectivity, 2, 996
Ethers, benzenoid
Birch reduction
dissolving metals, 8, 493
Ethers, benzothiazolyl
Ethers, benzyl
dissolving metals,
reaction with organocopper compounds, 3, 222
Ethers, benzylic alcohol protection, 6, 650
α-alkoxy carbanions from
Wittig rearrangement, 3, 197
oxidation
Jones reagent, 7, 240
Ethers, benzyl chloromethyl
reaction with carbonyl compounds
samarium diiodide, 1, 259
Ethers, benzyl trans-crotyl
Wittig rearrangement, 3, 976
Ethers, benzyl ethyl
oxidation, 7, 240
Ethers, benzyl methyl
deprotonation
by n-butyllithium, 3, 197
oxidation, 7, 240
reductive cleavage, 8, 974
Ethers, biarylic
reductive fission
dissolving metals, 8, 514
Ethers, bis-γ,γ-(dimethyl)allyl
Wittig rearrangement
mechanism, 3, 977
Ethers, bisallylic vinlyl
Claisen rearrangement
catalysis, 5, 850
Ethers, bornyl bromotetrahydropyranyl
synthesis
via bromine addition to alkene, 4, 345
Ethers, butyl
alcohol protection
amino acids, 6, 650
Ethers, n-butyl dimethylaminomethyl
N,N-dimethyl(methylene)iminium salt
preparation from, 2, 901
Ethers, n-butylidemethylsilyl
alcohol protection, 6, 655
cleavage, 6, 655
stability, 6, 655
Ethers, propargyl
alcohol protection
removal, 6, 656
Ethers, r-butyl methyl potassium salts
synthesis, 3, 194
Ethers, n-butyl vinyl
reaction with tetracyanoethylene
thermochemistry, 5, 76
Ethers, α-chlorodialkyl
Grignard reagents
preparation, 3, 194
Ethers, chlorofluorocyclopropyl
rearrangement
to α-fluorocrotonyl, 4, 1020
Ethers, chloromethyl (−)-menthy1
allyl organometallics synthesis, 2, 39
Ethers, cropyI
Wittig rearrangement, 3, 1004
Ethers, cropyI propargyl
ene reactions
intramolecular, 5, 16
Ethers, cropyI propeny1
Claisen rearrangement
transition state structures, 5, 857
Ethers, α-cyano
synthesis
via acetals and ketals, 6, 238
Ethers, cyclohexenyl
substituted
hydrogenation, 8, 439
Ethers, 2-cyclohexen-1-yl methyl
synthesis, 3, 651
Ethers, α-cyano
Ethers, cyclohexeny1
substituted
hydrogenation, 8, 439
Ethers, α,α-dibromomethyl methyl
acid bromide synthesis, 6, 305
Ethers, di-n-butyl
oxidation, 7, 236
Ethers, diethyl
oxidation, 7, 235
Ethers, dichloromethyl methyl
acid chloride synthesis, 6, 305
anion
trialkylcarbinol synthesis, 3, 794
Ethers, diethyl
oxidation, 7, 235
Ethers, α,α-dihalo
ortho acid synthesis, 6, 556
Ethers, dimethoxybenzyl
alcohol protection
oxidative deprotection, 6, 651
Ethers, dimethoxytrityl
alcohol protection, 6, 650
Ethers, dimethyl
boron trifluoride complexes
coordination energy, 1, 290
deprotonation
with n-butyllithium, 3, 194
potassium salts
synthesis, 3, 194
Ethers, dipropargyl
in intramolecular cycloaddition reactions
pyridoxine synthesis, 5, 1154
Wittig rearrangement, 3, 991
Ethers, N,N-(disubstituted)aminomethyl
reactions with Grignard reagents, 1, 368
Ethers, divinyl
photoisomerization, 5, 200
Ethers, epoxy
reaction with organocopper compounds, 3, 225
Ritter reaction
to oxazolines, 6, 276
Ethers, 1-ethoxyethyl
alcohol protection, 6, 649
Ethers, ethyl propenyl
[2 + 2] cycloaddition reactions, 5, 1067
Ethers, ethyl vinyl
cycloaddition reactions
propynyl tungsten complexes, 5, 1073
Ethers, farnesyl
synthesis, 3, 429
Ethers, geranyl
synthesis, 3, 429
Ethers, α-halo
reaction with aryl Grignard reagents, 3, 242
Ethers, halomethylsilyl
allylic alcohols
radical cyclization, 7, 648
Ethers, β-halovinyl
coupling reactions
with aryl Grignard reagents, 3, 492
Ethers, imidium
alcohol synthesis, 6, 20
Ethers, imino-
alcohol inversion, 6, 22
alcohol synthesis, 6, 20
Ethers, iodomethyl ethyl
reaction with enol silyl ether
regioselectivity, 2, 616
Ethers, α'-iron allyl vinyl
Claisen rearrangement, 5, 1075
Ethers, 1-isopropyl-2-butenyl benzyl
Wittig rearrangement, 3, 990
Ethers, ketoimine methyl
deprotonation, 3, 35
Ethers, (4-methoxybenzyl)oxy)methyl
alcohol protecting group, 7, 246
Ethers, 2-methoxyethoxymethyl
alcohol protection
removal, 6, 648
Ethers, methoxyethyl
alcohol protection, 6, 647
Ethers, 2-methoxyphenoxymethyl
alcohol protection, 6, 648
nucleophilic addition reactions, 1, 51
Ethers, 4-methoxytetrahydropyranyl
alcohol protection
oligonucleotide synthesis, 6, 650
Ethers, methyl
cleavage
iodotrimethylsilane, 6, 647
Ethers, methyl cyclohexenyl
e reactions, 5, 1075
Ethers, methyl propenyl
metallation, 2, 596
Ethers, (methy lthio)methyl
alcohol protection, 6, 647
synthesis
via Pummerer rearrangement, 7, 292
Ethers, methyl tropy l
synthesis
via 1,3-sigmatropic shift, 5, 1003
Ethers, methyl vinyl
reaction with t-butyllithium, 3, 252
Ethers, monomethoxybenzyl
alcohol protection
oxidative deprotection, 6, 651
Ethers, monomethoxystyr yl
alcohol protection, 6, 650
Ethers, neopentyl
Diels–Alder reactions, 5, 356
Ethers, o-nitrobenzyl
alcohol protection
photolytic deprotection, 6, 651
Ethers, 4-nitrophenyl
synthesis, 4, 438
Ethers, 2-nitroviny l ethyl
synthesis, 6, 109
Ethers, 2-octenyl vinyl
3,3-sigmatropic rearrangement, 7, 457
Ethers, α-(phenylthio)
α-lithio ether synthesis
reductive lithiation, 6, 145
Ethers, phenyl vinyl
hydroformylation, 4, 923
Ethers, propargylic
rearrangement, 6, 852
thermolysis
retro-ene reaction, 6, 866
Wittig rearrangement, 3, 986
Ethers, trans-propenyl ethyl
reaction with tetracyanoethylene, 5, 78
Ethers, propenyl methyl
[2 + 2] cycloaddition reactions, 5, 75
Ethers, α-silyl
electrochemical oxidation
acetal formation, 6, 676
Ethers, erythro-silylnitro-
synthesis
Henry reaction, 2, 335
Ethers, tetrahydropyran yl
alcohol protection, 6, 648
nucleophilic addition reactions, 1, 51
Ethers, thexyldimethylsil yl
alcohol protection
removal, 6, 656
Ethers, trialkylsilyl
stability
alcohol-protecting groups, 6, 653
Ethers, (trialkylstan nlyl)methyl allylic
lithiation, 3, 982
Ethers, tribenzylsil yl
alcohol protection
prostaglandin epoxidation, 6, 657
Ethers, 2,2,2-trichloroethoxymethyl
alcohol protection, 6, 648
Ethers, trichloroeth yl
alcohol protection, 6, 648
Ethers, triethylsil yl
alcohol protection
removal, 6, 656
Ethers, triisopropylsil yl
alcohol protection
Ethers

Cumulative Subject Index

removal, 6, 656
epoxidations, 7, 382
Ethers, trimethylsilyl
alcohol protection, 6, 653
Ethers, 2-(trimethylsilyl)ethoxymethyl
alcohol protection, 6, 648
Ethers, trimethylsilyl vinyl
reaction with boryl triflate
titanium enolates, from, 2, 113
Ethers, tri-allylsilyl
alcohol protection, 6, 650
Ethers, tri-p-xylylsilyl
alcohol protection
prostaglandin epoxidation, 6, 657
Ethers, vinyl
alkoxymercuration, 8, 853
cycloaddition reactions, 5, 255
[2 + 2] cycloaddition reactions, 5, 73
cyclopropanation, 4, 1035, 1046
Diels–Alder reactions, 5, 372
α-hydroxylation, 7, 169
hydroboration, 8, 683
Pauson–Khand reaction, 5, 1045
reactions with azines, 4, 510
reactions with ketene acetics, 5, 684
synthesis via acetal hydrogenation, 8, 212
via allyl ethers, 6, 866
via β-hydroxyalkyl selenides, 1, 705
Etheoxyboronation
dimethylboron stabilized carbanion, 1, 498
Ethyl acetate
reaction with bromomethylmagnesium, 1, 398
titanium tetrachloride complex
crystal structure, 1, 302
Ethyl acetate, 2-methoxy-
boron trifluoride complex
NMR, 1, 293
Ethyl acetoacetate
synthesis
Claisen condensation, 2, 796
Ethyl alaninate
hydrogenation, 8, 242
Ethylamine, β-aryl-
synthesis
Friedel–Crafts reaction, 3, 316
Ethylamine, N-aryltrichloro-
cyclization, 6, 500
Ethylamine, 2-(1-cyclohexenyl)-
enzymatic hydroxylation, 7, 99
Ethylamine, cyclohexyl-
synthesis via reductive alkylation of azidocyclohexane, 8, 386
Ethylamine, diisopropyl-
Rosenmund reduction, 8, 287
Ethylamine, 2-methoxy-1,2-diphenyl-
imine anion alkylation, 6, 726
Ethylamine, N-methyl-N-phenyl-
lithium aluminium hydride modifier, 8, 171
Ethylamine, phenyl-
aldehydes derived from
reaction with allyl organometallic compounds, 2, 985, 986
Ethylamine, 1-phenyl-
conjugate additions
methyl vinyl ketone, 4, 221
imine anion reactions, 6, 725
Ethylamine, 2-phenyl-
synthesis
hydroformylation, 4, 919
Ethylamine, thienyl-
synthesis, 8, 376
Ethyl anisate
reduction titanium tetrachloride complex
crystal structure, 1, 303
Ethyl benzoate
hydrogenation, 8, 242
reduction
electrochemical, 8, 243
metal hydrides, 8, 244
Ethyl bromoacetate
coupling reactions with arylzinc reagents, 3, 466
Ethyl n-butyrate
reduction
metal hydrides, 8, 266
Ethyl chloroformate
acid anhydride synthesis, 6, 312
Ethyl cinnamate
reduction
transfer hydrogenation, 8, 552
tin(IV) chloride complex
crystal structure, 1, 305
Ethyl diazoacetate
ketone homologation, 3, 783
reactions with ketones
Lewis acid catalyzed, 1, 846
Ethyleneamine
synthesis via retro Diels–Alder reactions, 5, 558
Ethylene
carboalumination, 4, 887
carboration, 4, 885
carbolithiation, 4, 867
carbomagnesiation, 4, 874
carbozincation, 4, 880
dialkylation via σ-alkyliron complexes, 4, 576
dicarboxylation, 4, 947
hydroboration, 8, 773
monosubstituted hydroboration, 8, 774
oligomerization
lithium hydride, 8, 734
oxidation
Wacker process, 7, 449
Pauson–Khand reaction, 5, 1043
Ethylene, alkoxy-
reaction with tetracyanoethylene, 5, 71
Ethylene, 1,1-bis(benzenesulfonyl)-
reaction with ketones
addition, 4, 102
Cumulative Subject Index

Ethylenediamine, 1,2-bis(tri-n-butylstannyl)-
acylation
Friedel–Crafts reaction, 2, 726
alkylation, 3, 247

Ethylenediamine, 1,2-bis(trifluoromethyl)-1,2-dicyano-
[2 + 2] cycloaddition reactions, 5, 75
reaction with tetramethoxystyrene, 5, 75

Ethylenediamine, 1-bromo-2-phenylthio-
coupling reaction
with alkyl Grignard reagents, 3, 449
with secondary alkyl Grignard reagents, 3, 441
reaction with Grignard reagents
palladium catalysts, 3, 230
tandem couplings, 3, 492

Ethylenediamine, bromotrifluoro-
hydrogenolysis, 8, 900
Ethylenediamine, chlorotrifluoro-
hydrogenation, 8, 898
hydrogenolysis, 8, 900

Ethylenediamine, 1-cyano-1-alkoxycarbonyl-
[2 + 2] cycloaddition reactions, 5, 73

Ethylenediamine, cyclopropyl-
addition reactions
with conjugated dienes, 5, 69
with alkyl Grignard reagents, 3, 449
with vinyl Grignard reagents, 3, 487

Ethylenediamine, 1,1-dichloro-
coupling reactions
with alkyl Grignard reagents, 3, 448
Ethylenediamine, 1,2-dichloro-
coupling reactions
with alkyl Grignard reagents, 3, 449
with vinylic Grignard reagents, 3, 487

Ethylenediamine, 1,1-dichloro-2,2-difluoro-
addition reactions with conjugated dienes, 5, 69

Ethylenediamine, 1,1-dicyano-
carbonyl group protection, 6, 680
[2 + 2] cycloaddition reactions
hydroxyethylene, 5, 72

Ethylenediamine, 1,1-dicyano-2,2-bis(trifluoromethyl)-
reaction with tricarbonyl(cycloheptatriene)iron
complexes, 4, 710
reaction with tricarbonyl(cyclooctatetraene)iron
complexes, 4, 709

Ethylenediamine, 1,2-dicyclopentyl-
hydrogenation, 4, 298

Ethylenediamine, 1,1-difluoro-
addition reactions
benzeneselenenyl chloride, 7, 520
reaction with butadiene, 5, 70

Ethylenediamine, 1,1-difluoro-2,2-dichloro-
intramolecular [2 + 2] cycloadditions, 5, 69
reaction with butadiene, 5, 71

Ethylenediamine, 1-dimesitylboryl-1-trimethylsilyl-
reactions with organometallic compounds, 1, 492

Ethylenediamine, 1,1-dimethoxy-
reactions with arynes, 4, 510

Ethylenediamine, diphenylarsenno-
reaction with organolithium compounds
formation of α-arsono anions, 3, 203

Ethylenediamine, 1-halo-2-trimethylsilyl-
acylation
Friedel–Crafts reaction, 2, 715

Ethylenediamine, hydroxy-
[2 + 2] cycloaddition reactions, 5, 72

Ethylenediamine, iodotrifluoro-
hydrogenolysis, 8, 900

Ethylenediamine, nitro-
Diels–Alder reactions, 5, 320
eone reactions
termal, 5, 3

Ethylenediamine, 1-nitro-2-(3,4-methylenedioxyphenyl)-
reaction with azomethine ylides, 5, 265

Ethylenediamine, 2-nitro-1-(trimethylsilyl)-
synthesis
via nitryl iodide, 4, 357

Ethylenediamine, polychloro-
coupling reactions, 3, 487

Ethylenediamine, siloxy-
preparation, 2, 600

Ethylenediamine, β-sulfonilnitrone-
Diels–Alder reactions, 5, 320

Ethylenediamine, tetraamino-
oxidation, 6, 519

Ethylenediamine, tetracyano-
adduct with 7-methylenenorbornadiene, 5, 65
cycloaddition reactions, 5, 273
alkenes, 5, 71
[2 + 2] cycloaddition reactions
hydroxystyrene, 5, 72
propenylidenecyclopropane, 5, 76
Diels–Alder reaction
9,10-dimethylnaphthacene, 5, 76
eone reactions
intermolecular, 5, 3
polymerization initiation, 5, 74
reaction with anthracene
thermochemistry, 5, 76
reaction with p-methoxystyrene
solvent effects, 5, 75

Ethylenediamine, tetrafluoro-
cycloaddition reactions, 5, 70
intramolecular [2 + 2] cycloadditions, 5, 69
reaction with nitric oxide, 7, 488

Ethylenediamine, tetrahalo-
hydrobromination, 4, 280

Ethylenediamine, tetramethoxy-
reactions with 1,2-bis(trifluoromethyl)-
1,2-dicyanoethylene, 5, 75

Ethylenediamine, tetramethyl-
photolysis
with 3-pentyn-2-one, 5, 164

Ethylenediamine, tetraphenyl-
Wurtz reaction
catalyst, 3, 414

Ethylenediamine, tetravinyl-
synthesis
via photolysis, 5, 738

Ethylenediamine, triaminooxidation, 6, 519

Ethylenediamine, tribenzoyl-
hydrobromination, 4, 282

Ethylenediamine, trichloro-
synthesis, 4, 270

Ethylenediamine, trifluoro-
reaction with butadiene, 5, 70

Ethylenediamine, 1-(trimethylsilyl)cyclopropyl-
synthesis
via reductive lithiation, 6, 146

Ethylenediamine
solvent for reduction
dissolving metals, 8, 113

Ethylenediamine, N,N'-benzylidene-
Ethylendiamine

Cumulative Subject Index

582

[4 + 3] cycloaddition reactions, 5, 598
Ethylendiamine, \(N,N',N''\)-tetramethyl-
alkali metal stabilized carbanions
crystal structure, 1, 5
deprotonation, 1, 476
in sulfide metallation, 3, 86
lithium aluminum hydride modifiers, 8, 168
Ethylene-1,1'-dicarbonitrile, 2-benzoyl-2-phenyl-
synthesis, 3, 826
Ethylene-1,2-diol
synthesis
via retro Diels–Alder reactions, 5, 557
Ethylene oxide
phosphonium ylide synthesis, 6, 175
synthesis
via oxidation of ethylene, 7, 384
Ethylene oxide, tetracyano-
reactions with alkenes
via carbonyl ylides, 4, 1090
Ethylene dicarboxylates, 1-allylic 2,2-dimethyl
cyclization
intramolecular ene reaction, 5, 12
Diels–Alder reactions, 5, 461
Ethyl fluoroacetate
aldol reaction
diastereoselection, 2, 209
Ethyl 3-furoate
[4 + 3] cycloaddition with 1-phenyl-2-oxyallyl, 5, 601
Ethyl halides
arene alkylation
Friedel–Crafts reaction, 3, 300
Ethyl hexanoate
reduction
metal hydrides, 8, 244
Ethylidene transfer
Simmons–Smith reaction, 4, 968
Ethyl iodide
ethylation with
stereochemistry, 3, 14
Ethyl levulinate
reaction with ate complexes, 1, 156
reaction with methyltitanium triisopropoxide, 1, 141
Ethyl mandelate
synthesis
via hydride transfer to ethyl phenylglyoxylate, 8, 85
Ethyl oleate
metathesis
tungsten catalysts, 5, 1118
Ethyl pentanoate
hydrogenation, 8, 242
Ethyl phenylglyoxylate
reduction
hydride transfer, 8, 85, 93
Ethyl propiolate
Diels–Alder reactions, 5, 320
Ethyl (trimethylsilyl)acetate
Peterson alkenation, 1, 789
Eucannabinolide
synthesis
via Cope rearrangement, 5, 809
Eudesmane
rearrangement, 3, 388
synthesis, 3, 396
Eudesmol
synthesis, 3, 20; 6, 777; 8, 943
Eugenol, methyl-
reactions with nitriles, 6, 272
Europium salts
use in intermolecular pinacol coupling reactions, 3, 565
Euryfuran
synthesis, 1, 570
Eusiderin
synthesis
use of silver oxide, 3, 691
Evans’ chiral auxiliary
use in amine synthesis, 6, 77
Exaltone
synthesis
via cyclization, 1, 553
via intramolecular Barbier reaction, 1, 262
Fabianine synthesis via Dieck—Alder reaction, 5, 492

Faranal synthesis, 8, 556

Faranal, dehydro-reduction, 8, 556

α-Farnesene synthesis via carboalumination, 4, 893

Farnesol bicyclization, 3, 342 cyclization, 3, 360 derivatives reduction, 8, 961 peroxo ester intramolecular epoxidation, 7, 381 synthesis, 3, 170 via carboalumination, 4, 893

Farnesol, 10,11-epoxy-synthesis, 3, 99

Fastigilin-C synthesis via Claisen rearrangement, 5, 851

Fatty acid alcohols synthesis alkene metathesis, 5, 1117

Fatty acids synthesis, 3, 643 unsaturated hydrofluorination, 4, 271

Favorskii rearrangement, 3, 839–857 in synthesis, 3, 842 Lewis acids, 3, 856 mechanism, 3, 840 reaction conditions, 3, 840 side-products, 3, 840 stereospecificity, 3, 848

Fawcettimine synthesis, 2, 157

Felkin–Anh addition single stereocenter imines reaction with allyl organometallic reagents, 2, 983

Felkin–Anh paradigm chiral aldehyde reactions with pinacol crotylboronates, 2, 25

Felkin model aldol reaction asymmetric induction, 2, 219

Fenchones synthesis from fenchyl alcohol, 3, 709

Fenchone reduction dissolving metals, 8, 121 Tebbe reaction, 1, 743

Fenchyl alcohol rearrangement, 3, 709 [4.4.4.5]Fenestrane synthesis, 3, 901

Fenestranes synthesis

Dieckmann reaction, 2, 829 via photocycloaddition reactions, 5, 136

Fenton’s reagent alkane hydroxylation, 7, 11

Ferensimycin synthesis via N-methoxy-N-methylamide chemistry, 1, 402

Ferrates, acyltetracarbonyl-reduction acyl chlorides, 8, 289

Ferrates, hydrido-reduction imines, 8, 36

Ferrates, tetracarbonyl-reduction acyl chlorides, 8, 289 nitroarenes, 8, 371

Ferrates, tetracarbonylhydrido-dehalogenation α-halocarbonyl compounds, 8, 991 reduction acyl chlorides, 8, 289 imidoyl chlorides, 8, 301 unsaturated carbonyl compounds, 8, 550

Ferrier-type rearrangements Claisen rearrangements competition, 5, 850

Ferrocene Mannich reaction, 2, 961

Ferrocenecarbothioates, O-alkyl synthesis via S-methyl ferrocencarbodithioate, 6, 450

Ferrocenophanes synthesis, 3, 594

Ferrocenylcarbaldehyde Knoevenagel reaction, 2, 365

Ferruginol synthesis, 3, 169

Ferryl radicals Fenton’s reagent hydroxylation of alkanes, 7, 11

Ferulic acid oxidation, 3, 693

Fervenulin analogs synthesis, 7, 342

Fervenulone, 2-methyl-synthesis, 7, 342

Finkelstein reaction chlorine/bromine exchange, 6, 212 iodination, 6, 216

Finkelstein-type reaction alkyl tosylates organosamarium compounds, 1, 257

Fischer carbene complexes reactions with alkynes alkyn concentration, 5, 1099 mechanisms, 5, 1094 solvents, 5, 1099

Fischer–Helferich method glycosides synthesis, 6, 34, 35
Fischer-Speier esterification

acid catalysis, 6, 325

Fittig synthesis

Perkin transformation, 2, 401

Five-membered rings

formation

polyene cyclization, 3, 347

synthesis

aldol reaction cascade, 2, 620

Friedel-Crafts reaction, 2, 756

FK-506

synthesis, 1, 799

via acylation of dithiane, 1, 425

via Ireland rearrangement, 5, 843

via N-methoxy-N-methylamide chemistry, 1, 402

via organoaluminum reagents, 1, 101

via Schlessinger method, 1, 791

Flash vacuum pyrolysis

alkene protection, 6, 689

Flash vapor pyrolysis

retrograde Diels–Alder reactions, 5, 552

Flattening rule

reduction

cyclic ketones, 8, 7

Flavonone, 3-hydroxy-

ring scission, 3, 831

Flavanones

bromination, 7, 120

dehydrogenation

use of thallium trinitrate, 7, 144

reduction

aluminum hydrides, 8, 545

metal hydrides, 8, 314

Flavenes

synthesis

via aromatic Claisen rearrangement, 5, 834

Flavinantaine, methyl-

synthesis, 3, 81

anodic oxidation, 3, 685

electrooxidation, 3, 685

Flavins

oxidation

sulfides, 7, 763

thiols, 7, 761

Flavobacterium spp.

reduction

unsaturated carbonyl compounds, 8, 560

Flavones

intramolecular acyl transfer, 2, 845

synthesis, 7, 120, 136

4-Flavones

synthesis

Knoevenagel reaction, 2, 379

Flavopereirine

synthesis

via 3-lithiation of an indole, 1, 474

Flexibilene

synthesis, 3, 591

Fluorene

Birch reduction

dissolving metals, 8, 496

synthesis, 3, 543

Fluorene, diazo-

synthesis

via fluorenone hydrazone, 7, 742

Fluorene, 9-diazo-

deoxygenation

epoxides, 8, 890

Fluorene, 9-(difluoromethylene)-
cycloaddition reactions, 5, 70

Fluorene, 9,9-disubstituted

synthesis

via allyllithium addition, 1, 377

Fluorene, 1-methyl-
synthesis, 8, 140

Fluorene, tetrahydro-
hydrogenation

heterogeneous catalysis, 8, 430

Fluorene-1-carboxaldehyde

hydrogenation
catalytic, 8, 140

Fluorenonecarboxylic acid, 9-hydroxy-
synthesis, 3, 828

Fluoren-2-ol, 7-methoxy-

Birch reduction
dissolving metals, 8, 497

9-Fluorenone

synthesis, 3, 828

Fluorenone carboxylic acid

reduction
hydrogen iodide, 8, 323

Fluorenone-4-carboxylic acid

synthesis

Friedel–Crafts reaction, 2, 757

Fluorenones

reduction
dissolving metals, 8, 115

Wolff–Kishner reduction, 8, 338

synthesis

Friedel–Crafts reaction, 2, 757
tosylhydrazone

reactions with allyllithium, 1, 377

9-Fluorenyl anions

aromatic nucleophilic substitution, 4, 429

9-Fluorenylmethoxy carbonyl group

protecting group
hydrogenolysis, 6, 638

peptide synthesis, 6, 638

9-Fluorenylmethyl carbonate

alcohol protection

cleavage, 6, 659

Fluorides

catalyst
enol silane reaction with aldehydes, 2, 633

Fluorides, 1,2-iodo-
synthesis, 7, 536

Fluorides, 1,2-nitro-
synthesis
via electrophilic nitration, 4, 356

Fluorination

alkanes, 7, 15

nucleophilic displacement, 6, 216

secondary amines, 7, 747

Fluorine

reactions with alkenes, 4, 344

Fluorodesulfonylation
aryfluorosulfonyl fluorides, 4, 445

Fluorohydrin

synthesis
epoxide ring opening, 3, 749

Fluorohydrocarbons

synthesis, 3, 640
Cumulative Subject Index

Formic acid

- adducts
 - phosphorus oxychloride, 6, 487
dialkyl acetals
 - reaction with carbene complexes, 5, 1079
Formamides, N-trimethylsilyl-N'-alkyl-
 - reactions with organocopper complexes, 1, 124
Formamidines
 - alkylation, 3, 68
 - lithiation, 1, 482
 - synthesis, 6, 490
Formamidinium chloride, chloro-
 - synthesis, 6, 331
Formamidinium chloride, N,N',N'-tetramethylchloro-
 - acid anhydride synthesis, 6, 313
Formamidinium-N,N'-dialkyl dithiocarbamimates
 - synthesis, 6, 518
Formamidinium perchlorate, N,N',N'-tetramethyl-
 - synthesis, 6, 518
Formamidinium salts, N,N'-dialkyl-N',N'-diaryl-
 - synthesis, 6, 512
Formamidinium salts, N,N',N'-diaryl-
 - synthesis, 6, 512
Formamidinium salts, N,N',N',N'-tetrasubstituted
 - synthesis, 6, 512
Formamidine, N-methyl-
 - adducts
 - phosphorus oxychloride, 6, 487
 - Vilsmeier–Haack reaction, 2, 779
Formates
 - hydride donor
 - hydrogenolysis, 8, 958
 - reduction
 - hydride transfer, 8, 84
Formates, alkyl chloro-
 - anhydride synthesis, 6, 329
dimethylformamide adducts, 6, 491
 - nitrile synthesis, 6, 234
 - reactions with amides, 6, 504
Formates, alkylthio chloro-
 - reaction with thioamides, 6, 508
Formates, azido-
 - synthesis, 6, 251
Formates, chloro-
 - reduction
 - silanes, 8, 825
Formates, chlorothio-
 - ketone synthesis from
 - Grignard reagents, 3, 463
Formates, cyano-
 - Diels–Alder reactions, 5, 416
 - synthesis
 - via chloroformates, 6, 233
Formates, α-metalloorthoseleno-
 - ester precursors, 3, 144
Formates, α-metalloorthothio-
 - ester precursors, 3, 144
Formates, trichloromethyl chloro-
 - amide synthesis
 - elevated temperature, 6, 383
Formates, triphenylmethyl
 - Ritter reaction, 6, 269
Formic acid
 - amides
 - catalytic hydrogenation, 8, 144
 - hydride transfer, 8, 84, 557
 - to carbonium ions, 8, 91
Formic acid

- hydrogenation
 - nitriles, 8, 299
 - reduction
 - carboxylic acids, 8, 285
 - pyridinium salts, 8, 590
- Formic acid, azodi-hydrolysis of dipotassium or disodium salt diimide from, 8, 472
- Formic acid, benzoyl-amides
 - catalytic hydrogenation, 8, 145
 - bornyl ester
 - asymmetric hydrogenation, 8, 144
 - methyl ester
 - asymmetric hydrogenation, 8, 144
 - hydrogenation, 8, 151
 - phenethyl ester
 - asymmetric hydrogenation, 8, 144
- Formic acid, ethylcyano-
- Formic acid anhydride
 - Knoevenagel reaction, 2, 368
 - synthesis via chlorosulfonyl isocyanate, 6, 313
- Formiminium salts
 - reduction
 - carboxylic acids, 8, 285
- Formonitrile, (ethoxycarbonyl)-oxide
 - reaction with isopropylidene-3-butene-1,2-diol, 5, 262
- N-Formylyamines
 - adducts
 - phosphorus oxychloride, 6, 487
- Formylation
 - aliphatic, 2, 728
 - amines, 6, 384
 - aromatic nucleophilic substitution and hydrolysis, 4, 432
 - carbonyl compounds
 - samarium diiodide, 1, 274
 - Gattermann and related reactions, 2, 749
 - ketones, 2, 837
- Formyl chloride
 - generation, 2, 749
 - synthesis
 - via 1-dimethylamino-1-chloro-2-methylpropene, 6, 306
- N-Formylamines
 - synthesis
 - via reductive cleavage, 8, 393
- Formyl fluoride
 - formylation
 - modified Gattermann–Koch reaction, 2, 749
- N-Formyl group
 - amine-protecting group, 6, 642
- Formyl iodide
 - synthesis, 6, 306
- Forskolin
 - microbial hydroxylation, 7, 64
 - synthesis, 7, 105; 8, 171
 - via alkyne addition, 1, 421
 - via Cope rearrangement, 5, 814
 - via 6-exo-trig cyclization, 4, 40
- Forster reaction
 - diazo compounds
 - synthesis from oximes, 7, 751
- Forsythide
 - glucurone dimethyl ester
 - synthesis via photoisomerization, 5, 231
- Fosfomycin
 - microbial epoxidation, 7, 429
- Four component condensation — see Ugi reaction
- Four-membered rings
 - synthesis
 - aldol reaction cascade, 2, 619
- Fragmentation reactions, 6, 1041–1069
 - acceptor radical anions, 7, 882
 - enolate assisted, 6, 1056
 - mechanism, 6, 1043
 - metal assisted, 6, 1061
 - radical anions
 - unimolecular decomposition, 7, 861
 - radical cyclization, 4, 824
 - seven-center, 6, 1042
 - silicon assisted, 6, 1061
 - stereochemistry, 6, 1043
- α-Fragmentation reactions
 - donor radical cations, 7, 873
 - radical cations
 - unimolecular reaction, 7, 857
- β-Fragmentation reactions
 - alkoxy radicals, 4, 815–818
 - donor radical cations, 7, 874
 - radical cations
 - unimolecular reaction, 7, 857
- Fragranol
 - synthesis, 3, 103
- Fredericamycin A
 - synthesis, 7, 340
 - organocopper compounds, 3, 219
- Free radicals
 - electron-transfer equilibria, 7, 850
 - oxidation
 - Ritter reaction, 6, 280
- Fremy’s salt
 - oxidation
 - primary amines, 7, 737
 - secondary amines, 7, 746
 - quinone synthesis, 7, 143, 346
- Frenolicin, deoxy-
 - synthesis, 5, 1096
 - via arene–metal complexes, 4, 539
 - via cyclobutene ring opening, 5, 690
 - regioselective, 5, 1094
- Friedelan-3-one
 - reduction
 - dissolving metals, 8, 117
 - with lactone
 - reduction, dissolving metals, 8, 117
- Friedelan-7-one
 - reduction
 - dissolving metals, 8, 119
- Friedel–Crafts reaction
 - acylation
 - arenes with thiol esters, 6, 445
 - aliphatic, 2, 707–731; 3, 294
 - catalysts, 2, 709
 - mechanism, 2, 708
 - reaction temperatures, 2, 709
 - alkylating agents, 3, 294
 - alkylation, 3, 293–335
Cumulative Subject Index

Furan, 6-amino-
 cycloaddition reactions
 α-pyrones, 5, 626
Fulvene, bis(methylthio)-
 reaction with alcoholates, 6, 557
Fulvene, 6,6-diallyl-
 [4 + 3] cycloaddition reactions, 5, 604
Fulvene, 2,3-diformyl-6-dimethylamino-
 Knoevenagel reaction, 2, 366
Fulvene, 9,10-dihydro-
 Diels–Alder reactions, 5, 347
Fulvene, 6,6-dimethyl-
 cycloaddition reactions
 benzocyclobutenes, 5, 627
dienes, 5, 626
nitropyridyl betaines, 5, 630
tropones, 5, 631
retro Diels–Alder reaction, 5, 563
Fulvene, 6-(dimethylamino)-
 cycloaddition reactions
dienes, 5, 627
thiophenes, 5, 629
[4 + 3] cycloaddition reactions, 5, 604
Fulvene, 6,6-diphenyl-
 cycloaddition reactions
dienes, 5, 627
Fulvene, 6-methyl-
 cycloaddition reactions
dienes, 5, 629
Fulvenes
 anthracene adduct
 retro Diels–Alder reaction, 5, 589
cycloaddition reactions, 5, 626
[4 + 3] cycloaddition reactions, 5, 604
Pauson–Khand reaction, 5, 1046
retrograde Diels–Alder reactions, 5, 552
synthesis
 via benzene irradiation, 5, 646
 via lithium–halogen exchange, 4, 1008
tandem vicinal difunctionalization, 4, 242, 253
Vilsmeier–Haack reaction, 2, 782
Fumarates, dimethyl-
 Diels–Alder reactions, 5, 355
Fumarates, iodo-
 dimerization, 3, 482
Fumaronitrile
 Ritter reaction, 6, 265
 synthesis
 via 1,2-diodoethylene, 6, 231
Fumaryl chloride
 synthesis
 via maleic anhydride, 6, 304
Functional group transformations
 allyl rearrangement, 6, 829–867
Furan, 2-alkenylidihydro-
 synthesis
 via cyclization of γ-allenic ketones, 4, 397
Furan, 2-alkenyltetrahydro-
 synthesis
 via cyclization of γ-allenic alcohols, 4, 395

Fulvene, 6-amino-
 cycloaddition reactions
 α-pyrones, 5, 626
Fulvene, bis(methylthio)-
 reaction with alcoholates, 6, 557
Fulvene, 6,6-diallyl-
 [4 + 3] cycloaddition reactions, 5, 604
Fulvene, 2,3-diformyl-6-dimethylamino-
 Knoevenagel reaction, 2, 366
Fulvene, 9,10-dihydro-
 Diels–Alder reactions, 5, 347
Fulvene, 6,6-dimethyl-
 cycloaddition reactions
 benzocyclobutenes, 5, 627
dienes, 5, 626
nitropyridyl betaines, 5, 630
tropones, 5, 631
retro Diels–Alder reaction, 5, 563
Fulvene, 6-(dimethylamino)-
 cycloaddition reactions
dienes, 5, 627
thiophenes, 5, 629
[4 + 3] cycloaddition reactions, 5, 604
Fulvene, 6,6-diphenyl-
 cycloaddition reactions
dienes, 5, 627
Fulvene, 6-methyl-
 cycloaddition reactions
dienes, 5, 629
Fulvenes
 anthracene adduct
 retro Diels–Alder reaction, 5, 589
cycloaddition reactions, 5, 626
[4 + 3] cycloaddition reactions, 5, 604
Pauson–Khand reaction, 5, 1046
retrograde Diels–Alder reactions, 5, 552
synthesis
 via benzene irradiation, 5, 646
 via lithium–halogen exchange, 4, 1008
tandem vicinal difunctionalization, 4, 242, 253
Vilsmeier–Haack reaction, 2, 782
Fumarates, dimethyl-
 Diels–Alder reactions, 5, 355
Fumarates, iodo-
 dimerization, 3, 482
Fumaronitrile
 Ritter reaction, 6, 265
 synthesis
 via 1,2-diodoethylene, 6, 231
Fumaryl chloride
 synthesis
 via maleic anhydride, 6, 304
Functional group transformations
 allyl rearrangement, 6, 829–867
Furan, 2-alkenylidihydro-
 synthesis
 via cyclization of γ-allenic ketones, 4, 397
Furan, 2-alkenyltetrahydro-
 synthesis
 via cyclization of γ-allenic alcohols, 4, 395

arene alkylation
 kinetics, 3, 300
asymmetric alkylation, 3, 302
bimolecular aromatic, 2, 733–750
catalysts, 2, 735
mechanism, 2, 734
reagent systems, 2, 735
solvents, 2, 738
stoichiometry, 2, 739
use of protic acid, 2, 711
Bouveault procedure, 2, 738
catalysts, 3, 294, 295
cocatalysts, 3, 295
dithiocarboxylation, 6, 456
Elbs procedure, 2, 738
epoxides, 3, 769
intramolecular aromatic, 2, 753–766
electron density, 2, 754
ring size, 2, 755
Perrier procedure, 2, 738
rearrangement, 2, 745
Ritter reaction
 initiators, 6, 283
thioacylation
 arenes and carbanions, 6, 453
tracyclacylation, 2, 745
Friedelin
 backbone rearrangement, 3, 709
Fries reaction, 2, 745
Frontalin
 synthesis
 via chiral auxiliary, 1, 65
 via Wacker oxidation, 7, 451
Frontier Molecular Orbital Theory
 1,3-dipolar cycloadditions, 4, 1073
 radical reactions, 4, 727
Fructose
 separation from glucose
 Knoevenagel reaction, 2, 354
(+)−Fructose, 1-alkylamo-1-deoxy-
 synthesis
 via (+)-glucosylamine, 6, 789
Fructose, deoxy-
 synthesis
 FDP aldolase, 2, 462
D-Fructose-1,6-diphosphate aldolase
 catalytic action, 2, 456
 characteristics, 2, 461
 substrate preparation
 dihydroxyacetone phosphate, 2, 461
 substrate specificity, 2, 456
 use in organic syntheses, 2, 457, 462
Frullanolide
 synthesis, 3, 1031
α-L-Fucopyranosides
 synthesis, 6, 42
Fucose
 synthesis
 Diels−Alder reaction, 2, 689
Fucoside, allyl
 selective cleavage, 6, 652
Fulgides
 photochemical ring closure, 5, 722
Fulmonitrile oxide
 reaction with acetylene
 ab initio calculations, 4, 1070
Furan, alkylidenetetrahydro-
synthesis via [3 + 2] cycloaddition reactions, 5, 283
tetrasubstituted
synthesis, 1, 591
Furan, aminomethyl-
synthesis, 3, 258
Furan, 2,5-bis(trimethylsiloxy) -
reaction with carbonyl compounds
titanium tetrachloride catalyst, 2, 617
synthesis from succinic anhydrides, 2, 607
Furan, 2-methoxytetrahydro-
synthesis, 5, 283
tetrasubstituted
Furan, 3-bromomethyl-
alkylation by
cuprates, 3, 250
Furan, 2,2-dialkoxydihydro-
synthesis, 6, 559
Furan, dihydro-
[2 + 3] annulation, 5, 930
coupling reactions
with alkyl Grignard reagents, 3, 444
Pauson–Khand reaction, 5, 1046
reaction with Grignard reagents
nickel catalysts, 3, 229
reaction with organocupper compounds, 3, 218
synthesis from allylic anions and carbonyls, 2, 60
lithium allenes, 2, 88
ring formation, 6, 24
selectivity, 5, 907
via allenylsilanes, 1, 599
via [3 + 2] cycloaddition reactions, 5, 279
via cyclopropanation, 4, 1035, 1046, 1049
via metal-catalyzed cycloaddition, 5, 1200
via [2 + 3] reaction, 5, 951
via rearrangements, 5, 952
via retro Diels–Alder reactions, 5, 579
via vinyloxiranes, 5, 929
Furan, 2,5-dihydro-
synthesis
allenyl lithium compounds, 2, 89
Furan, 4,5-dihydro-
synthesis
Knoevenagel reaction, 2, 380
Furan, 2,5-dihydro-3,4-dimethyl-
synthesis via retro Diels–Alder reactions, 5, 579
Furan, 2,3-dihydro-2,3-dimethylene-
synthesis via retro Diels–Alder reactions, 5, 579
Furan, 2,2-dimethoxy-2,3-dihydro-
synthesis via ring opening of dichlorocyclopropyl
compounds, 4, 1022
Furan, 2,5-dimethoxy-2,5-dihydro-
synthesis, 7, 802
Furan, dimethyl-
hydrogen donor, 8, 557
Furan, 2,3-dimethylene-
dimerization, 5, 638
via [4 + 4] cycloaddition, 5, 639
Furan, 2,5-dimethyltetrahydro-
synthesis via 2,5-hexanediol, 6, 25
Furan, hydroxydihydro-
synthesis from benzoin and DMAD, 4, 52
Furan, 2-lithio-
alkylation, 3, 261
reaction with propylene oxide, 3, 264
Furan, 3-lithio-
reaction with propylene oxide, 3, 264
Furan, 2-methoxy-2,5-dihydro-
synthesis, 2, 89
Furan, 4-methyl-
[4 + 3] cycloaddition reactions, 5, 606
hydrogenation, 8, 606
Mannich reaction with formaldehyde and dimethylamine, 2, 964
Furan, 3-methyl-
[4 + 3] cycloaddition with 1-phenyl-2-oxyallyl, 5, 601
via activated allene, 4, 54
Furan, 2-methyl-4,5-dihydrotetrahydro-
carboboration, 4, 885
Furan, 3-methyltetrahydro-
synthesis via [3 + 2] cycloaddition reactions, 5, 307
via metal-catalyzed cycloaddition, 5, 1196
Furan, 2-methyl-3-phenyl-
synthesis via 3-phenyl-4-oxopentanal, 7, 456
Furan, 2-methyltetrahydro-
alkylation Friedel–Crafts reaction, 3, 317
benzene alkylation Friedel–Crafts reaction, 3, 315
nucleophilic addition reactions Grignard reagents, 1, 72
Furan, 3-silyldihydro-
synthesis, 2, 575
Furan, tetrahydro-
annulation, 1, 891
arene alkylation by Friedel–Crafts reaction, 3, 315
conjugate additions organocupper, solvent effects, 4, 178
deprotonation, 3, 194
cis-2,5-disubstituted
synthesis, stereoselectivity, 4, 383
trans-2,5-disubstituted
synthesis via cyclization of γ-alkenyl alcohols, 4, 378
cis fused
synthesis via cyclization, 4, 371
oxidation, 7, 236
electrochemical, 7, 248
poly cyclic
oxidation, 7, 239
potassium salts
synthesis, 3, 194
solvent for reduction
dissolving metals, 8, 112
spiro cyclic
synthesis, stereochemistry, 4, 390
3-substituted
Cumulative Subject Index

- Furan synthesis, 3, 647
 - palladium(II) catalysis, 4, 558
 - ring formation, 6, 24
 - via cyclopropane ring opening, 4, 1046
 - via electrophile cyclization, 7, 523
 - via metal-catalyzed cycloaddition, 5, 1200
 - via palladium-ene reactions, 5, 51
 - via vinyloxiranes, 5, 927

- Furan, synthesis, 3, 792
 - via retro Diels–Alder reactions, 5, 579

- Furan-2-one synthesis, 3, 553
 - 3(2H)-Furanone, 4, 2, 189
 - via Knoevenagel reaction, 2, 359

- Furan-2(5H)-ones synthesis, 1, 514

- Furanones synthesis
 - via C—H insertion reactions, 3, 1056
 - via [2 + 2 + 2] cycloaddition, 5, 1136–1138
 - via [3 + 2] cycloaddition reactions, 5, 286
 - via cyclopropane ring opening, 4, 1046
 - via dibromocyclopropyl compounds, 4, 1023
 - via palladium(II)-catalyzed acylation, 1, 450

- Furan-2(5H)-ones synthesis, 1, 514

- Furan, vinyl-cyclopropanation, 4, 1059

- Furanacetic acid lactones, cis-3-hydroxytetrahydro-
 synthesis, 3, 792

- Furan aldehyde, tetrahydro-
 nucleophilic addition reactions selectivity, 1, 53

- Furanadienones synthesis
 - via nitrile, 6, 455

- Furanembranolides synthesis
 - (Z)-selectivity, 1, 767

- Furanone synthesis
 - FDP aldolase, 2, 462

- Furane mother B synthesis
 - via Pauson–Khand reaction, 5, 1052

- Furancyclopropane synthesis
 - via photocycloaddition, 5, 169

- Furanocyclopropane synthesis
 - via ketocarbenoids and furans, 4, 1058, 1059

- Furanones asymmetric epoxidation
 - kinetic resolution, 7, 423

- Furanosesynthesis
 - in aldol reaction, 2, 134

- Furan, acyl-synthesis
 - Knoevenagel reaction, 2, 359

- Furan, vinyl-
 - cyclopropanation, 4, 1059

- Furanocarbons, cis-3-hydroxytetrahydro-
 synthesis, 3, 792

- Furan, 2-trimethylsiloxy-
 - aldol condensation stereoselectivity, 2, 634
 - reaction with aldehydes, stereoselectivity, 2, 632
 - reaction with carbonyl compounds tin(IV) chloride catalyst, 2, 617

- Furan, vinyl-
 - cyclopropanation, 4, 1059

- Furananetrahydro-
 - coupling reactions
 - with sp3 organometallics, 3, 459
 - [4 + 3] cycloaddition reactions, 5, 605–607
 - Diels–Alder reactions, 5, 342, 380–383
 - comparison of promoters, 5, 345
 - intermolecular dimerization, 3, 509
 - y-lactone synthesis, 6, 365
 - lithiation, 1, 472
 - Mannich reaction
 - with formaldehyde and secondary amines, 2, 964
 - oxidation
 - pyridinium chlorochromate, 7, 267
 - photocycloaddition reactions
 - benzene, 5, 637
 - carbonyl compounds, 5, 168–178
 - reactions with ketocarbenoids, 4, 1058–1061
 - reduction, 8, 603–630
 - retrograde Diels–Alder reactions, 5, 552
 - synthesis
 - via activated alkynes, 4, 52
 - via alkynes, palladium(II) catalysis, 4, 557, 567
 - via σ-alkyliron complexes, 4, 576
 - via allyl organoaluminum, 2, 88
 - via [2 + 2 + 2] cycloaddition, 5, 1092, 1136
 - via cyclopropane ring opening, 4, 1046
 - via Diels–Alder reactions, 5, 491
 - via ketocarbenoid addition to alkynes, 4, 1051
 - via Knoevenagel reaction, 2, 380
 - Vilsmeier–Haack reaction, 2, 780

- Furan sulfides, tetrahydro-
 - reduction, 8, 230

- Furfural
 - aldol reaction, 2, 134
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Furfuryl alcohol</td>
<td>5, 879</td>
</tr>
<tr>
<td>Claisen–Cope rearrangement</td>
<td>5, 879</td>
</tr>
<tr>
<td>Furfuryl alcohols, tetrahydro-synthesis</td>
<td>7, 632</td>
</tr>
<tr>
<td>Furfurylidene carbinols</td>
<td></td>
</tr>
<tr>
<td>electrocyclization</td>
<td>5, 771</td>
</tr>
<tr>
<td>2,2'-Furil rearrangement</td>
<td>3, 826</td>
</tr>
<tr>
<td>Furofuran lignans</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>Knoevenagel reaction</td>
<td>2, 372</td>
</tr>
<tr>
<td>2-Furoic acid, 5-alkyl-reduction</td>
<td>8, 607</td>
</tr>
<tr>
<td>dissolving metals</td>
<td>8, 607</td>
</tr>
<tr>
<td>2-Furoic acid, 5-phenyl-reduction</td>
<td>8, 607</td>
</tr>
<tr>
<td>dissolving metals</td>
<td>8, 607</td>
</tr>
<tr>
<td>Furoic acids</td>
<td></td>
</tr>
<tr>
<td>Birch reduction</td>
<td>8, 607</td>
</tr>
<tr>
<td>Furopyran</td>
<td></td>
</tr>
<tr>
<td>hydrogenation</td>
<td>8, 625</td>
</tr>
<tr>
<td>Furo[3,4-c]pyridine</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via retro Diels–Alder reactions</td>
<td>5, 584</td>
</tr>
<tr>
<td>Furopyridines</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td>3, 543</td>
</tr>
<tr>
<td>Furoxans</td>
<td></td>
</tr>
<tr>
<td>ring opening</td>
<td>8, 664</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via 1,3-dipolar cycloadditions</td>
<td>4, 1079</td>
</tr>
<tr>
<td>Furst–Plattner rule</td>
<td></td>
</tr>
<tr>
<td>epoxides</td>
<td></td>
</tr>
<tr>
<td>opening</td>
<td>3, 734</td>
</tr>
<tr>
<td>Furyleamine, tetrahydro-chiral catalysts</td>
<td></td>
</tr>
<tr>
<td>nucleophilic addition reactions</td>
<td>1, 72</td>
</tr>
<tr>
<td>2-Furylecarbinols</td>
<td></td>
</tr>
<tr>
<td>solvolysis</td>
<td></td>
</tr>
<tr>
<td>divinyl ketones from</td>
<td>5, 771</td>
</tr>
<tr>
<td>3-Furylemethyl benzoate, 2-methyl-</td>
<td></td>
</tr>
<tr>
<td>flash vacuum pyrolysis</td>
<td></td>
</tr>
<tr>
<td>[4 + 4] cycloaddition</td>
<td>5, 639</td>
</tr>
<tr>
<td>Fuscinic acid</td>
<td></td>
</tr>
<tr>
<td>dimethyl ether</td>
<td>3, 831</td>
</tr>
<tr>
<td>oxidation</td>
<td></td>
</tr>
<tr>
<td>Fused rings</td>
<td></td>
</tr>
<tr>
<td>radical cyclizations</td>
<td>4, 791</td>
</tr>
<tr>
<td>Fusicocca-2,8,10-triene</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via allyl chromium reagents</td>
<td>1, 187</td>
</tr>
<tr>
<td>Fusicoccins</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td>3, 575; 7, 710</td>
</tr>
<tr>
<td>Futoene</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td>3, 696</td>
</tr>
</tbody>
</table>
Gabaculine synthesis via cyclohexadienyl complexes, 4, 682

Gabriel synthesis
amines, 6, 79
modified, 6, 81
aziridines, 7, 472
β-D-Galactopyranose, 1,6-anhydrobenzylidine acetal reduction, 8, 227
Galactopyranose, cyclohexylidene-Paterno-Büchi photocycloaddition reaction with furan, 5, 187
α-D-Galactopyranosides synthesis, 6, 42
β-D-Galactopyranosides synthesis, 6, 41
α-D-Galactopyranosides, 2-acetamino-2-deoxy-synthesis, 6, 42
Galactopyranosides, benzylidene-reduction, 8, 230
Galactopyranosides, methyl 3,4-O-benzylidene-reduction, 8, 227
β-D-Galactopyranosylamine, 2,3,4,6-tetra-O-pivaloyl-Ugi reaction highly stereoselective reaction, 2, 1099
β-Galactosamine, 2-deoxy-2-phthalimido-reactivity, 6, 42
Galactose reduction, 8, 224
d-Galactose, 2,3,4-tri-O-benzyl-
glycoside synthesis, 6, 57
d-Galactose oxidase oxidation diols, 7, 312
Galbulin synthesis, 3, 696
Galium, trimethyl-
lithium alkynes reaction with oxiranes, 3, 279
reactions with epoxides
Lewis acid, catalytic, 1, 343
Galium trichloride polystyrene-divinylbenzene copolymer beads, catalyst Friedel-Crafts reaction, 3, 298
Gascardic acid synthesis
Dieckmann reaction, 2, 815, 824
via Johnson methylation, 1, 738
Gattermann reactions, 2, 749
bromination, 6, 211
chlorination, 6, 208
thiocarbonyl compounds, 3, 582
Geiparvarin
synthesis from 3(2H)-furanone, 2, 189
Geissoschizine synthesis, 1, 593; 6, 739, 743
Mannich reaction, 2, 1031
Gelsemine synthesis, 2, 1069, 1072; 7, 318
N-acyliminium ions, 2, 1065
Geneserine synthesis via benzocyclobutene ring opening, 5, 681
Geodiamolide A synthesis via Johnson rearrangement, 5, 839
Geodixin synthesis use of lead dioxide, 3, 690
Geotrichum candidum reduction unsaturated carbonyl compounds, 8, 560
Gephyrotoxin synthesis, 8, 652
Eschenmoser coupling reaction, 2, 876, 877 via reductive cleavage of tetrahydrooxazines, 8, 395
Gephyrotoxin, perhydro-
synthesis
Eschenmoser coupling reaction, 2, 877 Mannich cyclization, 2, 1041
Gephyrotoxin-223AB synthesis, 1, 559
via Diels-Alder reaction, 5, 421
via organoaluminum-promoted Beckmann rearrangement, 1, 104
Geranial asymmetric reduction aluminum hydrides, 8, 545
biochemical reduction, 8, 559
hydrogenation homogeneous catalysis, 8, 462
Geranol asymmetric epoxidation, 7, 395, 409 asymmetric hydrogenation synthesis of citronellol, 8, 462 aziridination, 7, 481 biochemical reduction, 8, 559, 560 chlorination displacement of hydroxy group, 6, 205 cyclization, 3, 345, 347, 352 epoxidation, 7, 368 microbial hydroxylation, 7, 62 oxidation, 7, 306 synthesis via carboalumination, 4, 893
Geraniol, geranyl-
cyclization, 3, 362
Geraniol, tetrahydro-
oxidation solid support, 7, 841
Geranil synthesis, 3, 428
Geranil acetate allylic oxidation, 7, 89 allylic oxidative rearrangement, 7, 109 reduction, 8, 960
Geranylelactone cyclization, 3, 346
Geranyl chloride aziridination, 7, 481
Germacrane...
Germacranolides

- allylic oxidation, 7, 88
- synthesis, 7, 625
 via Cope rearrangement, 1, 882; 5, 796

Germacranolides

- synthesis
 via Cope rearrangement, 5, 809
 transannular cyclization, 3, 396

Germacrene, dihydro-

- synthesis, 1, 561

Germacrene lactones

- synthesis via cyclization, 1, 553

Germacrone

- synthesis via Cope rearrangement, 5, 809
- transannular cyclization, 3, 396

Germacrone lactones

- synthesis via cyclization, 1, 553

Germacrone-epoxides

- synthesis via Cope rearrangement, 5, 809
- transannular cyclization, 3, 396

Germacrone lactones

- synthesis via cyclization, 1, 553

Germane, allyltrimethyl-
ene reactions, 5, 2

Germane, chlorotrimethyl-
ene reaction with ketone enolates
preparation of enol germyl ethers, 2, 610

Germanium hydride, tributyl-
ene reactions, 5, 2

Germanium hydrides

- radical reactions, 4, 738

Germanium hydrides

- quinone reduction, 8, 19

Germicupration

- alkenes, 4, 901

Gibbane

- synthesis, 2, 167

Gibberellic acid

- synthesis, 2, 156; 3, 572, 602
 use of alcohol protection, 6, 648
 via Baeyer–Villiger reaction, 7, 767

Gibberellin, 11-hydroxy-

- synthesis via intramolecular photocycloaddition, 5, 180

Gibberellin A₁

- reduction
 borohydrides, 8, 537

Gibberellin A₃

- allylic oxidation, 7, 90
- ketone reduction, 8, 537

Gibberellin A₄

- allylic oxidation, 7, 90

Gibberellin A₅

- 2-deuteriomethyl ester
 synthesis, 8, 537

Gibberellin A₆

- hydroxy-
 synthesis, 8, 537

Gibberellin A₂₀

- hydroxy-
 synthesis, 8, 537

Gibberellins

- epoxides
 oxidative rearrangement, 7, 826
 methylenation
 modified Tebbe reagent, 5, 1124
 rearrangement, 3, 715
 reduction
 borohydrides, 8, 537
 synthesis, 7, 301
 carbonyl methylenation step, 1, 749
 rearrangement of epoxides, 3, 766
 via Birch reduction, 8, 500, 503
 via cyclofunctionalization of cycloalkene, 4, 373
 Wagner–Meerwein rearrangement, 3, 715

Giese method

- radical addition reactions
 alkenes, 4, 735–742

Gif system

- alkane oxidation, 7, 13

Gilman cuprates

1,2-additions, 1, 107
reactions with ketones
comparison with aldehydes, 1, 116

Gilman reagents

- conjugate additions
 N-enoylsultams, 4, 204
reaction with epoxides, 3, 223
tandem vicinal difunctionalization, 4, 253

Gingerol

- enantioselective synthesis
 use of SAMP/RAMP, 2, 514
 use of α-sulfinylhydrazones, 2, 515
 synthesis
 via α-sulfinyl hydrazones, 1, 524

(±)-6-Gingerol

- synthesis
 regioselective deprotonation, 2, 183

Ginkgolide

- synthesis, 7, 182
 via [3 + 2] cycloaddition reactions, 5, 311

Ginkgolide B

- synthesis, 3, 546; 8, 171
 via Baeyer–Villiger reaction, 7, 680
 via tandem vicinal difunctionalization, 4, 256
organocopper compounds, 3, 220

Ginkgolide B–kadsurenone hybrid
synthesis
 via photocycloaddition, 5, 176

Glacosporone

- synthesis, 6, 136

Glauconine

- synthesis
 use of vanadium oxytrifluoride, 3, 670

Gloeosporone

- synthesis, 4, 568; 3, 281
use of hydrazones, 2, 505
via lactone acylation, 1, 420
D-Glucal, 3,4,6-tri-O-benzyl-
reaction with phenylsulfonyl chloride, 6, 60

Glucals

- Paterno–Büchi reaction, 5, 158

Glucofuranose

- Paterno–Büchi photocycloaddition reaction
 with furan, 5, 187
1,2-α-D-Glucofuranose
 asymmetric hydrogen transfer, 8, 552
D-Glucofuranose, 1,2,5,6-di-O-isopropylidene-
reduction
tributylstannane, 8, 820
titanium enolates
chiral reagent, 2, 308
Cumulative Subject Index

Glyceraldehyde

- Glucose, 1,2,4,6-di-O-benzylidene reduction, 8, 226
- D-Glucose, 2,3,4,6-tetra-O-benzylglycoside synthesis, 6, 57
 reaction with trichloroacetonitrile, 6, 50
 synthesis, 6, 57
- D-Glucose, 2,3,4-tri-O-benzylglycoside synthesis, 6, 57
- Glucuronic acid, 4-deoxy-synthesis
 Diels–Alder reaction, 2, 692
- Glutamic acid
 asymmetric synthesis, 8, 146
 enantiomers
 synthesis via conjugate addition, 4, 222
 synthesis, 8, 149
 via reductive amination, 8, 144
- Glutamic acid, 3-hydroxy-synthesis, 1, 119
- Glutamic acid, 4-methylene-synthesis, 6, 96
- Glutarates
disilyl ketene acetals, 2, 606
2,3-disubstituted
 synthesis via ester enolate addition, 4, 107
erithro
 synthesis via Michael addition, 4, 21
- Glutaric acid
diethyl ester acyloin coupling reaction, 3, 623
- Glutaric acid, α-keto-diethyl ester, oxime acetate hydrogenation, 8, 149
- Glutaric acid, 3-methyl-racemization, 2, 742
- Glutaric acid, perfluoro-Kolbe electrolysis, 3, 640
- Glutaric esters
 synthesis
dicarboxylation, 4, 947
- Glutathione
catalyst
 methylglyoxal reduction, 8, 87
 reduction of 1,2-dioxetanes, 8, 398
- Glycal, 2-nitro-synthesis, 6, 108
- Glycals
 pyranoid
 Ireland–Claisen rearrangement, 5, 859
 synthesis
 via isocyanate cycloaddition, 5, 108
- Glycamines
 synthesis
 via electroreduction of oximes, 8, 137
- Glyceraldehyde
treatment with hemoglobin
 in presence of NaBH₄CN, 6, 790
 rearrangement, 3, 831
- L-Glyceraldehyde
 synthesis, 1, 568
- Glyceraldehyde, cyclohexylidene-nucleophilic addition reactions stereoselectivity, 1, 55
- Glyceraldehyde, 2,3-0,0-dibenzyl-nucleophilic addition reactions stereoselectivity, 1, 55
Glyceraldehyde, 2,3-O-isopropylidene-Knoevenagel reaction, 2, 385
nucleophilic addition reactions, 1, 53
oxime
reaction with allyl boronates, 2, 995
reactions with crotyl bromide/chromium(II) chloride, 1, 185
reactions with organocuprates, 1, 110
reactions with organometallic compounds, 1, 153
Lewis acids, 1, 339
synthesis, 7, 713
Glyceraldehyde acetonide \(N,N \)-dimethylhydrazone
reactions with organocuprate complexes, 1, 121
Glyceraldehyde acetonides
imines
condensation to \(\beta \)-lactams, 5, 96
reactions with allylboronates, 2, 26
reactions with allyl organometallics, 2, 41
Glyceric acid
reaction with pivaldehyde, 3, 40
D-Glycero, 2,2'-O-methylenebis-
intramolecular aldolization, 2, 167
Glycidic acids
decarboxylation, 2, 426
Glycidic esters
preparation, 2, 409
reaction with organocuprates, 3, 225
Glycidic esters, 3-phenyl-
ring rearrangement
migratory preferences, 3, 747
Glycidic esters, 3-substituted
reaction with organometallic compounds, 6, 11
Glycidic thiol esters
preparation
Darzens glycidic ester condensation, 2, 418
Glycidol
synthesis, 7, 397
Glyciddinitriles
preparation, 2, 419
Glycidyl tosylate
reaction with lithium cyanodiphenylcuprates, 3, 224
Glycinamide, \(N \)-phthaloyl-
iminium salts from, 5, 112
Glycinate esters
reactions with enolizable imines
Mannich reaction, 2, 922
Glycinates, aroyl phenyl
tandem rearrangements, 5, 877
Glycine
bislactim ethers from, 3, 53
\(\tau \)-butyl ester, camphor imine
alkylation, 3, 46
cation equivalents
addition reactions, 2, 1074
halogenation, 2, 1052
Glycine, \(N \)-acyl-
Erlenmeyer azlactone synthesis, 2, 402
Glycine, \(\alpha \)-alkenyl-
methyl ester
preparation, 2, 499
Glycine, 2-arylesters
synthesis, Friedel–Crafts reaction, 3, 303
Glycine, \(N,N \)-bissilyl-
zinc enolates
reaction with \(N \)-silylimines, 2, 936
Glycine, cyclopentenyl-
synthesis
\(N \)-acyliminium ions, 2, 1076
Glycine, cyclopropyl-
synthesis
\(N \)-acyliminium ions, 2, 1076
Glycine, \(N,N \)-dimethyl-
\(\tau \)-butyl ester
lithium enolates, 2, 221
methyl ester
lithium enolates, 2, 221
Glycine, \(\alpha,\alpha \)-di-\(\tau \)-propyl-
synthesis
Ugi reaction, 2, 1096
Glycine, \(\alpha \)-halo-\(N \)-(\(\tau \)-butoxycarbonyl)-
electrophilic glycinate, 1, 373
Glycine, neopentyl-
synthesis
via Hofmann reaction, 6, 801
Glycine, phenyl-
asymmetric synthesis, 8, 146
ethyl ester
hydrogenation, 8, 146
synthesis, 8, 148
Glycine, \(N,4 \)-quinolylmethyl-
Friedel–Crafts reaction, 2, 759
Glycine, vinyl-
synthesis, 7, 722
Glycinoclepin A
synthesis, 2, 159
via Baeyer–Villiger reaction, 7, 680
via cyclofunctionalization of cycloalkene, 4, 373
via tandem vicinal difunctionalization, 4, 245
Glycolic acid
synthesis, 3, 822
via intramolecular disproportionation of glyoxal, 8, 87
Glycolipids
synthesis
Diels–Alder reaction, 2, 692
synthesis, 6, 33
Glycols
acetales
stereoselectivity, 2, 578
catalytic hydrogenation, 8, 814
cleavage reactions, 7, 703–714
oxidation, 7, 803
solid support, 7, 843
oxidative cleavage
solid support, 7, 841
synthesis, 7, 437–447
Glycopeptides
synthesis
carboxy-protecting groups, 6, 666
protecting groups, 6, 633
O-Glycopeptides
synthesis
tumor associated antigen structure, 6, 639
Glycophospholipids
synthesis, 6, 33, 51
Glycoproteins
synthesis, 6, 33
\(\alpha \)-D-Glycopyranosides
synthesis, 6, 42
Glycosides
Cumulative Subject Index

Gomberg process

synthesis, 6, 33

α/β-selectivity, 6, 38 via alkenylchromium reagents, 1, 198 via trichloroacetimidates, 6, 51

α-Glycosides

stereoselective construction

benzyl-type protecting groups, 6, 652

C-Glycosides

synthesis, 6, 46 copper catalysts, 3, 216 Prins reaction, 2, 555 via Ireland silyl ester enolate rearrangement, 5, 841

N-Glycosides

Amadori rearrangement, 6, 789

1,2-trans-Glycosides

stereoselective construction neighboring-group assistance, 6, 657

Glycosides, amino-deamination, 8, 831

Glycosides, C-aryl synthesis Friedel–Crafts reaction, 3, 303

Glycosides, 2-deoxy-synthesis via alkoxyselenation, 4, 339 via heteroatom cyclization, 4, 391

Glycosides, C-methyl-synthesis via alkenylchromium reagents, 1, 198

Glycosphingolipids synthesis, 6, 33, 53

C-Glycosyl compounds synthesis via Paterno–Büchi reaction, 5, 158

Glycosyl fluorides Friedel–Crafts reaction, 3, 303 glycoside synthesis, 6, 46

Glycosyl halides reactivity, 6, 38 stability, 6, 38 synthesis, 6, 37

α-Glycosyl halides reaction with dialkyl homocuprates, 3, 216

β-Glycosyl halides synthesis, 6, 42

Glycosyl hydrolases glycoside synthesis, 6, 49

β-Glycosyl imidates synthesis, 6, 54

Glycosyl phosphates glycoside synthesis, 6, 49

Glycosyl pyrophosphates glycoside synthesis, 6, 49

Glycosyl sulfonates glycoside synthesis, 6, 49

Glycosyl transferases glycoside synthesis, 6, 49

Glyoxylic acid, p-bromophenyl-methyl ester crystal structure, 5, 186

Glyoxylic acid, p-naphthyl-methyl ester asymmetric hydrogenation, 8, 144

Glyoxylic acid, phenyl-asymmetric electroreduction, 8, 134 esters photocycloaddition reactions, 5, 185 ethyl ester reduction, hydride transfer, 8, 85, 93 2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl ester crystal structure, 5, 185

Glyoxylic thioamide, N,N-dimethyl-synthesis, 6, 489

Gnididone synthesis Dieckmann reaction, 2, 824 via retro Diels–Alder reactions, 5, 579

Gold complexes enantioselective aldol reaction catalysis, 2, 317 ferrocenyolphosphine aldol reaction, 2, 318

Gomberg–Buchmann–Hey process, 3, 505 Gomberg–Bachmann process, 3, 505 Gomberg process, 3, 505

Glyoxal

benzilic acid rearrangement, 3, 831 rearrangement, 3, 822

Glyoxal, methyl-reduction intramolecular disproportionation, 8, 87 Glyoxal, phenyl-reduction synthesis of lactic acid, 8, 87 Glyoxal, phenyl-benzilic acid rearrangement, 3, 829 reaction with enol silyl ether, 2, 616 Glyoxalase inhibitor I synthesis via Diels–Alder reaction, 5, 370

Glyoxaldehyde Diels–Alder reaction, 2, 662 Glyoxylic acid hydrogenation, 8, 236 2,4,6-trisopropylbenzenesulfonfylhydrazone diazoacetate synthesis, 6, 124

Glyoxylic imines

Diels–Alder reactions, 5, 405

Glyoxide

photoaddition reactions, 5, 160

Glyoxylates

N-acylimines

N-substituted imines, organometallic addition reactions, 1, 363

trans-2-phenylcyclohexyl ene reaction, 2, 536

8-phenylmenthyl ene reaction, 2, 536 synthesis via Kornblum oxidation, 7, 654

Glyoxylate

methyl ester

Diels–Alder reactions, 5, 431 methyl phenyl ester photocycloaddition reactions, 5, 160

Glyoxylate, α-naphthyl-methyl ester asymmetric hydrogenation, 8, 144

Glyoxylate, phenyl-asymmetric electroreduction, 8, 134 esters photocycloaddition reactions, 5, 185

ethylen reduction, hydride transfer, 8, 85, 93 2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl ester crystal structure, 5, 185

Glyoxylate, N,N-dimethyl-synthesis, 6, 489

Gnididone synthesis Dieckmann reaction, 2, 824 via retro Diels–Alder reactions, 5, 579

Gold complexes enantioselective aldol reaction catalysis, 2, 317 ferrocenyolphosphine aldol reaction, 2, 318

Gomberg–Buchmann–Hey process, 3, 505 Gomberg–Bachmann process, 3, 505 Gomberg process, 3, 505

Glyoxylic acid methyl ester

Diels–Alder reactions, 5, 431 methyl phenyl ester photocycloaddition reactions, 5, 160

Glyoxylic acid, α-naphthyl-methyl ester asymmetric hydrogenation, 8, 144

Glyoxylic acid, phenyl-asymmetric electroreduction, 8, 134 esters photocycloaddition reactions, 5, 185

ethylen reduction, hydride transfer, 8, 85, 93 2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl ester crystal structure, 5, 185

Glyoxylic thioamide, N,N-dimethyl-synthesis, 6, 489

Gnididone synthesis Dieckmann reaction, 2, 824 via retro Diels–Alder reactions, 5, 579

Gold complexes enantioselective aldol reaction catalysis, 2, 317 ferrocenyolphosphine aldol reaction, 2, 318

Gomberg–Buchmann–Hey process, 3, 505 Gomberg–Bachmann process, 3, 505 Gomberg process, 3, 505

Glyoxal, methyl-reduction intramolecular disproportionation, 8, 87 Glyoxal, phenyl-reduction synthesis of lactic acid, 8, 87 Glyoxal, phenyl-benzilic acid rearrangement, 3, 829 reaction with enol silyl ether, 2, 616 Glyoxalase inhibitor I synthesis via Diels–Alder reaction, 5, 370

Glyoxaldehyde Diels–Alder reaction, 2, 662 Glyoxylic acid hydrogenation, 8, 236 2,4,6-trisopropylbenzenesulfonfylhydrazone diazoacetate synthesis, 6, 124

Glyoxylic imines

Diels–Alder reactions, 5, 405

Glyoxide

photoaddition reactions, 5, 160

Glyoxylates

N-acylimines

N-substituted imines, organometallic addition reactions, 1, 363

trans-2-phenylcyclohexyl ene reaction, 2, 536

8-phenylmenthyl ene reaction, 2, 536 synthesis via Kornblum oxidation, 7, 654

Glyoxylic acid methyl ester

Diels–Alder reactions, 5, 431 methyl phenyl ester photocycloaddition reactions, 5, 160

Glyoxylic acid, α-naphthyl-methyl ester asymmetric hydrogenation, 8, 144

Glyoxylic acid, phenyl-asymmetric electroreduction, 8, 134 esters photocycloaddition reactions, 5, 185

ethylen reduction, hydride transfer, 8, 85, 93 2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl ester crystal structure, 5, 185

Glyoxylic thioamide, N,N-dimethyl-synthesis, 6, 489

Gnididone synthesis Dieckmann reaction, 2, 824 via retro Diels–Alder reactions, 5, 579

Gold complexes enantioselective aldol reaction catalysis, 2, 317 ferrocenyolphosphine aldol reaction, 2, 318

Gomberg–Buchmann–Hey process, 3, 505 Gomberg–Bachmann process, 3, 505 Gomberg process, 3, 505
\(\beta\)-Gorgonene

\(\beta\)-Gorgonene

- synthesis
 - via Peterson alkenation, 1, 731

Gorgosterol, demethyl-

- synthesis
 - use of homoenoalates, 2, 452

Grahamycin A

- synthesis, 3, 575

Granaticin

- synthesis
 - via annulation, 1, 554
 - via organoaluminum reagents, 1, 101

Grandisol

- synthesis, 3, 48, 103, 785; 7, 239
 - alkenylsilane acylation, 2, 713

Graphite bisulfate

- esterification
catalyst, 6, 325

Grayanotoxins

- synthesis
 - via photocycloaddition, 5, 670

Griffin fragmentation

- photocycloreversion, 5, 199

Grifolin

- synthesis
 - via cyclobutenone ring opening, 5, 689
 - via electrocyclization, 5, 732

Grignard reactions

- abnormal, 1, 244

Grignard reagents

- acylation, 1, 399
 - alkenyl
 - configuration in coupling reactions, 3, 464
 - alkynic
 - coupling reaction with 1-haloalkynes, 3, 553
 - alkyne
 - alkylation, 3, 272

allylic

- carbomagnesiation, mechanism, 4, 874
 - coupling reactions with heteroaromatic halides, 3, 461
 - coupling reaction with bromobenzene, 3, 451
 - intramolecular carbomagnesiation, 4, 876

amination, 6, 118

- anodic dimerization, 7, 805
- aromatic nucleophilic substitution, 4, 427

etyl

- alkylation, 3, 242
- dimerization, 3, 499
- asymmetric nucleophilic addition reactions, 1, 69
- Beckmann rearrangement, 6, 770
- 2-butyadienyl
 - coupling reactions with alkyl halides, 3, 465
 - carbomagnesiation, 4, 874
- cerium chloride system, 1, 244
- coupling, 3, 415
- cross-coupling reactions
 - with organic halides, 3, 436
- crystal structure, 1, 13
- cyclopropyl
 - coupling reactions with bromobenzene, 3, 452
- desulfurization, 8, 840
- hydride transfer
 - carbonyl reduction, 8, 99
 - nitrile reduction, 8, 300
- imine anion synthesis, 6, 719
- ketone synthesis, 6, 446
- nitrile synthesis, 6, 241
- nucleophilic addition reactions
 - \(\alpha\)-alkoxy acyclic ketones, 1, 50
 - carbonyl compounds, 1, 49
 - chiral ketones, 1, 58
- nucleophilic addition to \(\pi\)-allylpalladium complexes, 4, 596
- regioselectivity, 4, 635–637
- stereochemistry, 4, 620
- phosphonium ylide synthesis, 6, 194
- primary alkyl
 - coupling reactions with alkyl halides, 3, 436
 - coupling reactions with aromatic halides, 3, 450

propargyl

- physical properties, 2, 81
- structure, 2, 81
- reactions with alkyl halides
 - organonickel catalysis, 3, 228
- reactions with \(\alpha\)-alkoxy acyclic ketones
 - cyclic chelate model, 1, 51
- reactions with epoxides
 - alcohol synthesis, 6, 4
 - ring opening, 3, 754
- secondary alkyl
 - coupling reactions with alkyl halides, 3, 440
 - coupling reactions with aromatic halides, 3, 452

\(\alpha\)-sulfonyl

- alkylation, 3, 159
- tandem vicinal difunctionalization, 4, 257
- tertiary alkyl
 - coupling reactions with alkyl halides, 3, 441
 - coupling reactions with aromatic halides, 3, 452

vinyl

- alkylation, 3, 242
- coupling reactions, 3, 484

Grignard reagents, alkyl

- reaction with cyclohexanone
 - stereoselectivity, 1, 79

Grignard reagents, allyldimethylsilylmethyl-

- hydroxymethylation, 7, 647

Griseofulvin

- synthesis
 - via Michael addition, 4, 27, 44

Griseofulvin, dehydro-

- reduction
 - synthesis of griseofulvin, 8, 452
 - synthesis
 - oxidation of griseofulvenone A, 3, 689

Griseofulvin, dehydرو-

- synthesis
 - use of manganese dioxide, 3, 690

Grohé fragmentation, 2, 1047

- definition, 6, 1042
- intramolecular \([2 + 2]\) photocycloaddition, 6, 1062

Group transfer reactions

- radicals, 4, 726

Grundmann method

- reduction
 - aryl chlorides, 8, 291

Guaiacol

- hydrogenolysis, 8, 912

Guaiacols, 4-alkyl-

- Reimér–Tiemann reaction, 2, 773

Guaiane
rearrangement, 3, 388
synthesis, 3, 396
via photocycloaddition, 5, 669
via vinylcyclopropane thermolysis, 4, 1048
Guaianolides
synthesis
via Pauson–Khand reaction, 5, 1052
Guaianolide sesquiterpenes
synthesis
via cycloaddition reactions, 5, 275
Guaipyridine
synthesis
via Diels–Alder reaction, 5, 492
Guanidates, acylphosphoro-
phosphorylation, 6, 614
Guanidines
N-substituted
reduction, 8, 639
Guanidinium salts
tris(dialkylamino)alkane synthesis, 6, 582
Guanine
amine protection, 6, 642
Gyrinidal
synthesis, 7, 109
Haagenolide
synthesis
via cyclization, 1, 553
Wittig rearrangement, 3, 1010
Hafnabicycles
synthesis, 5, 1170
Hafnacycles
three-membered
synthesis, 5, 1175
Hafnium
bicyclization catalyst
enzymes, 5, 1169
hydrometallation, 8, 676
Halides
aromatic
coupling reactions with primary alkyl Grignard reagents, 3, 450
coupling reactions with secondary and tertiary alkyl Grignard reagents, 3, 452
coupling reaction with sp³ organometallics, 3, 450
double carbynation, palladium-catalyzed, 3, 1039
aromatic nucleophilic substitution, 4, 445
carbanions
crystal structure, 1, 38
carboxylation, 3, 1021
dehalogenation
metal hydrides, 8, 684
heteroaromatic
coupling reactions with sp³ organometallics, 3, 459
oxidation, 7, 653
primary
homologation, phenylthiomethyl lithium, 6, 139
reactions with organocerium compounds, 1, 233
synthesis, 6, 203–221
vinyl substitutions
palladium complexes, 4, 842
Halide salts
reductive cleavage
α-halo ketones, 8, 988
Halooalkylation
alkyl and allyl halides, 3, 118
arenes
Friedel–Crafts reaction, 3, 320
Haloamines
reactions with alkenes, 4, 355
Haloamination
alkenes, 4, 355
Halocarbonyl group
acid halide synthesis, 6, 308
Halodealumination, 8, 754
2-Haloethyl oxy carbonyl groups
amine-protecting group
cleavage, 6, 639
Halofunctionalization
alkenes, 7, 533
Halogenation
alkanes, 7, 15
amines, 7, 741
anodic oxidation, 7, 810
boryl-substituted carbanions, 1, 501
electrochemical
aromatic compounds, 7, 800
enzyme-catalyzed, 7, 539
ionic
sulfides, 7, 193
nucleophilic substitution, 6, 203
phosphonium ylides, 6, 177
secondary amines, 7, 747
sulfides, 7, 206
regioselectivity, 7, 210
α, β-unsaturated carbonyl compound synthesis, 7, 120
Halogenation–dehydrohalogenation, 7, 120
Halogenative cleavage
zirconium compounds, 8, 691
Halogen atom transfer addition reactions
radical reactions, 4, 753–755
Halogen atom transfer reactions
radical cyclizations, 4, 802–804
Halogen azides
reactions with alkenes, 4, 349
Halogen exchange
amide halides, 6, 500
hydrogen fluoride, 4, 270
Halogen isocyanates
reactions with alkenes, 4, 351
Halogen nitrates
reactions with alkenes, 4, 350
Halogenoetherification
alkenes, 7, 535
Halogens
activator
DMSO oxidation of alcohols, 7, 298
nucleofuge
in aromatic S_N1 reactions, 4, 457
oxidation
sulfides, 7, 763
sulfoxides, 7, 767
thiols, 7, 760
reactions with alkenes, 4, 344–348
reactions with α-chloroenamines, 6, 497
Halogen thiocyanates
reactions with alkenes, 4, 351
Halohydrin esters
alkene hydroxylation, 7, 444
Halohydrins
rearrangements, 3, 787
semipinacol rearrangements, 3, 777
synthesis
epoxide ring opening, 3, 754
Halolactonization
γ, δ-enolic acids, 6, 361
δ-lactone synthesis, 6, 366
synthesis
β-lactones, 4, 368
Halometallic reagents
oxidative halogenation, 7, 527
Halomethylation
carbonyl compounds
samarium diiodide, 1, 260
Halomethyl compounds
oxidation, 7, 666
Halonium ions
amino alcohol synthesis, 7, 492
cyclic
Cumulative Subject Index

Heptane

daialdehydes, 2, 326
diastereoselectivity

tetrabutylammonium fluoride catalyst, 2, 335
heterogeneous phase method, 2, 330
intramolecular

6-nitro-1,3-dicarbonyl compounds, 2, 334
ketones, 2, 329
nitroalkanes

functionalized, 2, 331
oxaallylic anions, 2, 321–340
procedures, 2, 325
reaction conditions, 2, 323
regioselectivity
erthro-sphingosine, 2, 331
reviews, 2, 321
silyl nitronates, 2, 335
solvent-free method

heterogeneous, 2, 330
stereoselective

bicyclic trimethylsilyl nitronates, 2, 336
α,β-unsaturated carbonyl compounds
regioselectivity, 2, 330
stereoselectivity, 2, 330
utility, 2, 322

Hentriacontane-14,16-dione
synthesis, 8, 645

1,6-Heptadiene
chlorination, 7, 532
hydroxylation, 4, 941

2,5-Heptadiene

synthesis
via retro Diels–Alder reaction, 5, 567

1,5-Heptadiene, 2,6-dimethyl-
hydroformylation, 4, 922

Heptadiene, diphenyl-
intramolecular [2 + 2] cycloadditions, 5, 67

2,6-Heptadienonic acid
synthesis
via nickel-ene reaction, 5, 36

4,6-Heptadienoic acid
sodium salt

Diels–Alder reactions, 5, 344

1,4-Heptadienol, 4-methyl-
synthesis
via carboxylation, 4, 885

3,5-Heptadien-2-one
hydrogenation

nickel catalyst, 8, 535

1,6-Heptadiyne
thermal isomerization, 5, 736

Heptafulvene, 8,8-dimethyl-
cycloaddition reactions
dienes, 5, 634

Heptahendecafulvadiene
pericyclic reactions, 5, 744

Heptanal
reaction with allylic organometallic compounds, 1, 156
reductive allylation, 3, 109

Heptanal, 2-ethyl-
synthesis
via hydroformylation, 4, 918

Heptanal, 3-methyl-
synthesis

hydroformylation of 2-methyl-1-hexene, 3, 1022

Heptane, 3-methyl-

aziridine synthesis, 7, 473
Halonium ions, dialkyl-
preparation of
Friedel–Crafts reaction, intermediate, 3, 299

Halopectinoxidases
cytosine halogenation, 7, 539
Halopropenylination
alkyl and allyl halides, 3, 118
Hantzsch esters
hydrate donors, 8, 92
Harman, tetrahydro-
synthesis, 3, 81
Hass–Bender reaction
benzylic halides, 7, 659

Hastanicine
synthesis
via cyclopropane ring opening, 4, 1045
Hasubanan alkaloids
synthesis
via Diels–Alder reactions, 5, 323
Heathcock’s reagent
stereoselective reaction
diol silanes and aldehydes, 2, 642
Heck reaction, 4, 903

Hedycaryol
doxygenation, 8, 821
Cope rearrangement, 5, 809
transannular cyclization, 3, 390

(-)-Helalin
synthesis, 2, 160
Helianalanoides
synthesis, 7, 164
Helianthrone
photolysis, 5, 729

Helical molecules
synthesis
lithium allenes, 2, 88
Heliotridane, trihydroxy-
synthesis, 5, 940
Heliotridine
synthesis
via Diels–Alder reaction, 5, 421
Hei–Vollard–Zelnick reaction
conditions
halogenation of acids, 7, 122

Helminthogermacrene
synthesis, 7, 94
Helminthosphoral
synthesis
keto aldehydes, 2, 158

Hemiacetals, amino-
reaction with enol ethers
use in alkaloid synthesis, 2, 613

Hemoglobin
reaction with glyceraldehyde
in presence of NaBH₃CN, 6, 790

11-Heneicosene
synthesis, 3, 644
6-Henicosen-11-one
synthesis, 1, 563

Henry reaction
basicity, 2, 325
carboxyl component
concentration, 2, 325
Heptane

Cumulative Subject Index

oxidation
transition metal catalysis, 7, 12
Heptane, 1-methylseleno-
synthesis, 1, 663
Heptane, tricyclic
synthesis, 7, 517
Heptanedioic acid, 3-ethoxycarbonyl-
diethyl ester
Dieckmann reaction, 2, 808
Heptanedioic acid, 2-methyl-
diethyl ester
Dieckmann reaction, 2, 811
Heptanoic acid, 4-amino-3-hydroxy-6-methyl-
synthesis, 1, 119
n-Heptanol
oxidation
4-(dimethylamino)pyridinium chlorochromate, 7, 269
Heptanol, 5,6-epoxy-
ring opening
stereospecificity, 3, 751
2-Heptanone
lithium 2-enolates
reaction with allylic organometallic compounds, 1, 156
4-Heptanone
aldol reaction, 2, 144
4-Heptanone, 3,5-dibromo-2,6-dimethyl-
[4 + 3] cycloaddition reactions, 5, 603
1,3,5-Heptatrienes
thermal reactions, 5, 707
Heptatrienones, amino-
electrocyclization, 5, 710
1-Heptene
hydroxylation
osmium tetroxide, 7, 442
1-Heptene, 1-acetoxy-
photocycloaddition reactions, 5, 127
Heptene, 2-chloro-
hydrogenation, 8, 898
6-Heptenoic acid
radical decarboxylation, 7, 731
6-Hepten-2-ol
synthesis
via reduction of 6-hepten-2-one, 8, 134
6-Hepten-2-ol, 2,6-dimethyl-
hydroformylation, 4, 923
2-Hepten-1-ol, 2-methyl-
asymmetric epoxidation, 7, 409
6-Hepten-2-one
preparative electrolysis, 8, 134
4-Heptenone, 2-hydroxy-
synthesis
via [4 + 3] cycloaddition, 5, 603
Heptenyl radicals
cyclizations, 4, 785
stereoselectivity, 4, 789
1-Hepten-6-ynes
Pauson–Khand reaction, 5, 1053
1-Hepten-6-ynes, 7-(trimethylsilyl)-
bicyclization
mechanism, 5, 1178
reaction with cyclopentadienylzirconium complexes, 5, 1165
Heptulosonic acid, 3-deoxy-D-arabino-
7-phosphate
shikimate pathway, 2, 462
7-phophonate
synthesis, enzymes, 2, 466
Heratomin
synthesis, 5, 1096
5-HETE
synthesis, 3, 289
12-HETE
synthesis, 3, 289
copper-catalyzed, 3, 216
Heteroaromatic compounds
coupling reactions, 3, 509
with aryl compounds, 3, 512
hydrogenation
homogeneous catalysis, 8, 453
SN1 reaction, 4, 462
Heteroles
in synthesis, 4, 503
intermediates
nucleophilic substitution, 4, 485
Hetero-Cope rearrangement
allylic systems, 6, 834
carbanion-accelerated, 5, 1004
Heterocuprates, 3, 211
acylation, 1, 431
synthesis, 3, 209
Heterocyclic compounds
benzilic acid rearrangement, 3, 834
four-membered
synthesis, 5, 85–118
hydroxide transfer, 8, 92
organomercury compounds
palladium complexes, 4, 839
synthesis
Dieckmann reaction, 2, 829
via carbonyl compound derivatives, 6, 733–760
via dihalocyclopropanes, 4, 1021–1023
unsaturated
synthesis via retro Diels–Alder reactions, 5, 577–584
Vilsmeier–Haack reaction, 2, 780
vinyl substitutions
palladium complexes, 4, 835–837
Hetero Diels–Alder reaction
aldehydes, 2, 662
enantioclective
chiral Lewis acids, 2, 654
heterocyclic synthesis, 6, 756
high pressure, 2, 663
Heterodiienes
cationic
Diels–Alder reactions, 5, 492–507
Diels–Alder reactions, 5, 451–507
intramolecular, 5, 531
Heteroelectrocyclization
applications, 5, 740–743
Heteronucleophiles
addition reactions
allenes, 4, 55
conjugate addition
intermolecular, 4, 30–37
Heteropolyacids
reoxidants
Wacker process, 7, 452
Cumulative Subject Index

Heterotropanone
synthesis
via retro Diels–Alder reaction, 5, 569
Heterotropantione
synthesis, 3, 697
Heteroyohimboid indole alkaloids
synthesis
via Diels–Alder reactions, 5, 467
Heusler–Kalvoda reaction, 7, 41
Hexadecanedioic acid
dimethyl ester
synthesis, 3, 642
1,5-Hexadecenedione
macrocyclization, 2, 166
Hexadecan-5-olide, 6-acetoxy-
synthesis
synthesis, 7, 623
Hexadecanoyl chloride, 16-phenyl-
Friedel-Crafts reaction, 2,753
Hexadecatrienal
synthesis
1-Hexadecene
epoxidation, 7,429
11-Hexadecyonic acid
synthesis, 3, 646
1,5-Hexadiene
dicarboxylation, 4, 948
hydroalumination, 8, 758
hydrocarboxylation, 4, 941
photocycloaddition reactions, 5, 136
reaction with chlorosulfonyl isocyanate, 5, 105
synthesis
via Claisen–Cope rearrangement, 5, 883
2,4-Hexadiene
cycloadition products, 5, 69
Diels–Alder reactions
imines, 5, 408
hydrobromination, 4, 283
isomerization, 5, 74
selective reduction, 8, 568
zirconocene complex
reactions with carbonyl compounds, 1, 163
1,5-Hexadiene, 2,5-dimethyl-
hydroboration, 8, 707
1,5-Hexadiene, 3,4-dimethyl-
Cope rearrangement
transition state structures, 5, 857
Cope rearrangement, 5, 820
2,3-Hexadiene, 2,5-dimethyl-
photocycloaddition reactions
anthracene, 5, 636
2,4-Hexadiene, 2,5-dimethyl-
cycloadition reactions, 5, 71
[2 + 2] cycloadition reactions
tetracyanoethylene, 5, 76
epoxidation, 7, 359
photocycloaddition reactions
9-cyanoanthracene, 5, 636
selective reduction, 8, 567
1,5-Hexadiene, 3,4-diphenyl-
Cope rearrangement, 5, 799
1,5-Hexadiene, 3-hydroxy-
thermal rearrangements, 5, 1000
1,5-Hexadiene, 2-methyl-
hydroboration, 8, 714
1,5-Hexadiene, 2-methyl-3-phenyl-
Cope rearrangement
palladium catalysts, 5, 799
2,4-Hexadienoic acid
ethyl ester

cycloadition reactions, tropones, 5, 620
3,5-Hexadienoic acid
sodium salt
Diels–Alder reactions, 5, 344
3,5-Hexadienoic acid, 6-methoxy-
sodium salt
Diels–Alder reactions, 5, 344
1,5-Hexadien-3-ol
synthesis
via 2,3-Wittig rearrangement, 5, 888
2,4-Hexadien-3-ol
asymmetric epoxidation
kinetic resolution, 7, 414
substituent effect, 7, 421
Hexadiynene
synthesis, 3, 528
Hexa-1,5-diyn-3-ene, 3-alkyl-4-(1-alkynyl)-
synthesis, 3, 554
1,5-Hexadiynes
cooligomerization with alkynes
benzocyclobutene synthesis, 5, 692
Hexafluorophosphonium nitrite
reactions with alkanes, 7, 10
Hexafuranos-5-ulose
photocycloaddition reactions, 5, 185
Hexalins
photochemical ring opening, 5, 739
ring opening, 5, 708
trans-1,3-Hexalins
photoisomerization, 5, 706
Hexamethylenetetramine
N-alkylation, 6, 85
Hexamethylphosphoramide
in sulfide metallation, 3, 86
Hexanal, 2-ethyl-
potassium enolates
alkylation, 3, 20
Hexanal, 5-oxo-
synthesis
via Wacker oxidation, 7, 458
Hexanal, 2-propyl-
synthesis
via hydroformylation, 4, 918
Hexanamide, N,N-dimethyl-
reduction, 8, 249
Hexane, 1-chloro-
reaction with 2-methyl-2-propylpentanoate
effect of solvent on rate, 6, 2
Hexane, 3-chloro-1,1-bis(methylseleno)-
metallation, 1, 638
Hexane, 3-chloro-1,1-bis(phenylseleno)-
metallation, 1, 638
Hexane, 2,5-dichloro-2,5-dimethyl-
alkylation of 1,3-dimethylbenzene
Friedel–Crafts reaction, 3, 318
Hexane, 2,4-dihalo-
benzene alkylation by
Friedel–Crafts reaction, 3, 318
Hexanedioic acid
dimethyl ester
Hexanedioic acid

acyloin coupling reaction, 3, 625
Hexanedioic acid, 3,4-diphenyl-diethyl ester
acyloin coupling reaction, 3, 615
Hexanedioic acid, 3-methyl-diethyl ester
Dieckmann reaction, 2, 813
Hexanedioic acid, 2,2,5,5-tetramethyl-dimethyl ester
acyloin coupling reaction, 3, 625
1,2-Hexanediol
oxidative cleavage, 7, 708
2,5-Hexanediol
cyclodehydration, 6, 25
Hexanediol, 2,5-dimethyl-nickel acetate
cylic ketone reduction, 8, 14
1,2,6-Hexanetriol
stannylation, 6, 18
Hexanoic acid, 3,5-dioxo-2-methyl ester
dienol silyl ether, 2, 607
Hexanoic acid, 2-ethyl-allyl trapping reagent, 6, 641
ethyl ester
acyloin coupling reaction, 3, 619
Hexanoic acid, 5-hydroxy-t-butyl ester
deprotonation, 2, 225
Hexanoic acid, 5-oxo-3-phenylmethyl ester
stereochemistry, 2, 520
Hexanoic acid, 2-phenyl-Schmidt reaction, 6, 818
Hexanoic acid, 6-phenyl-Friedel–Crafts reaction, 2, 753
Hexanoic acid, 2-phenyl-2-methyl-Schmidt reaction, 6, 818
Hexanoic anhydride
reduction
borane, 8, 240
1-Hexanol
synthesis
via hydrogenation, 8, 236
Hexanol, 4,5-epoxy-ring opening
stereospecificity, 3, 751
Hexanol, 2-ethyl-oxidation
solid support, 7, 841
synthesis
via hydrocarbonylation, 4, 914
Hexano-γ-lactones, tetraacetyl-reduction
disiamylborane, 8, 269
2-Hexanone, 6-bromo-3,3-dimethyl-terminal lithium enolates
cycloalkylation, 3, 18
3-Hexanone, 4-diazo-2,2,5,5-tetramethyl-synthesis, 3, 894
3-Hexanone, 4-hydroxy-2,2,5,5-tetramethyl-synthesis
acyloin coupling reaction, 3, 619
4-Hexanone, 3-methyl-synthesis, 3, 37
Hexanoyl chloride
reduction
metal hydrides, 8, 240
Hexaquinacene
synthesis
via Nazarov cyclization, 5, 768
Hexatrienes
annelated
electrocyclization, 5, 711–730
cyclic
electrocyclization, 5, 711–730
1,3,5-Hexatrienes
arylation
palladium catalysts, 4, 850
electrocyclizations, 5, 699, 706–730
monoannulated
electrocyclization, 5, 711–721
vinylation
palladium complexes, 4, 856
Hexatrienes, amino-benzannulation, 5, 720
cyclization, 5, 718
1,3,5-Hexatrienes, 1-dialkylamino-electrocyclization, 5, 710
2-Hexenal
reaction with organoaluminum reagents
site selectivity, 1, 85
reaction with organometallic compounds
chemoselectivity, 1, 148
1-Hexene
eene reactions
Lewis acid catalysis, 5, 4
hydrogenation
homogeneous catalysis, 8, 445, 447
3-Hexene
cis
epoxidation, 7, 374
diamination, 7, 484
3-Hexene, 2-acetoxy-5-chloro-reaction with diethylamine, 6, 85
1-Hexene, 6-bromo-3-methyl-1-trimethylsilyl-5-exo-trig closure
via Grignard reagents, 4, 120
2-Hexene, 2,5-dimethyl-4,5-epoxy-synthesis
via photoisomerization, 5, 201
1-Hexene, 2-methyl-hydroformation
phosphite-modified rhodium catalysts, 3, 1022
3-Hexene, 1-nitro-synthesis, 6, 104
2-Hexene, 6-phenyl-intramolecular cycloaddition, 5, 649
photocycloaddition reactions, 5, 654, 658
3-Hexene-1,6-dioic acid
Schmidt reaction, 6, 818
2-Hexenedioic acid, 5-amino-2-fluoro-hydrogenolysis, 8, 896
3-Hexene-1,5-diyne, 1,6-dideuterio-thermal isomerization, 5, 736
4-Hexenoic acid, 2-acetyl-2-methyl-6-bromo-ethyl ester
cyclization, 1, 266
5-Hexenoic acid, 3-(N-acylamino)-iodolactonization
stereoselectivity, 4, 382
5-Hexenoic acid, 2-alkyl-
cyclization
 stereoselectivity, 4, 383
5-Hexenoic acid, 2-amino-4-methyl-synthesis
 via ene reaction of acrylate esters, 5, 4
2-Hexenoic acid, 4,5-epoxy-reaction with nitrogen nucleophiles, 6, 87
5-Hexenoic acid, 3-hydroxy-selenolactonization
 stereoselectivity, 4, 382
4-Hexenoic acid, 5-methyl-hydrobromination, 4, 282
5-Hexenoic acid, 3-methyl-iodolactonization
 stereoselectivity, 4, 382
1-Hexen-3-ol
 hydrogen donor transfer hydrogenation, 8, 552
2-Hexen-1-ol
 epoxidation, 7, 395
1-Hexenol, 3-chloro-aziridination, 7, 481
5-Hexenoic acid, 2-ol, 3-methyl-synthesis
 carbomagnesiation, 4, 877
2-Hexenylamine
 allylic hydroxylation, 7, 99
Hexenyl radicals
 cyclizations, 4, 781–785
 accelerating substituents, 4, 783
 decelerating substituents, 4, 783
 stereoselectivity, 4, 787–789
 substituent effects, 4, 783
5-Hexenyl radicals
 cyclization, 4, 781–783; 7, 731
Hexenyl radicals, 3-methyl-cyclization
 stereoselectivity, 4, 787
1-Hexen-5-ynes
 Pauson–Khand reaction, 5, 1053
Hexofuranose
 photocycloaddition with furan, 5, 170
Hexopyranosides
 synthesis, 6, 51
L-Hexoses
 synthesis, 7, 402
1-Hexyne
 hydrogenation to hexane
 homogeneous catalysis, 8, 456
 hydrogenation to 1-hexene
 homogeneous catalysis, 8, 457
 hydroxysilylation, 8, 770
 photolysis with benzaldehyde, 5, 163
3-Hexyne
 benzylation
 Friedel–Crafts reaction, 3, 332
 cocycloaddition with phenylacetylene, 5, 1146
 hydrogenation to cis-hex-3-ene
 homogeneous catalysis, 8, 458
 reduction
 dissolving metals, 8, 479
1-Hexyne, 1-bromo-borionate
 reaction with 2-thienyllithium, 3, 498
1-Hexyne, 1-chloro-hydrogenolysis, 8, 898
3-Hexyne, 1,6-dioic acid
 Schmidt reaction, 6, 818
Hibiscose C
 synthesis via photocycloaddition, 5, 145
Hikosamine
 synthesis Diels–Alder reaction, 2, 694
Himachalene
 synthesis, 1, 558
β-Himachalene
 synthesis via Cope rearrangement, 5, 803, 983
Hinesol
 synthesis via cyclopropane ring opening, 4, 1043
Hinokinin
 synthesis, 1, 566
 via retro Diels–Alder reactions, 5, 578
Hinokitiol
 synthesis via [4 + 3] cycloaddition, 5, 609
Hippuric acid
 Erlenmeyer azlactone synthesis, 2, 402
Hirsutane
 biosynthesis, 3, 404
 synthesis, 3, 389
Hirsutene
 synthesis, 3, 402, 590; 7, 524
 via carbonyl–alkyne cyclization, 3, 602
 via conjugate addition, 4, 226
 via [3 + 2] cycloaddition reactions, 5, 310
 via Nazarov cyclization, 5, 763, 779
 via nitrene cyclization, 4, 1120
 via photocycloaddition, 5, 665, 666
Hirsutic acid
 synthesis, 3, 783; 6, 778
 via intramolecular addition, 4, 46
 via Michael addition, 4, 25
 via Pauson–Khand reaction, 5, 1060
Histridnocotoxin
 synthesis N-acyliminium ion reactions, 2, 1049
 Eschenmoser azlactone synthesis, 2, 876, 878
Histridnocotoxin, deamylperhydro-
 synthesis via diazoalkene coupling reaction, 2, 876, 878
Histridnocotoxin, deamylperhydro-
 synthesis via diazoalkene coupling reaction, 4, 1158
Histridnocotoxin, perhydro-structure, 1, 364
 synthesis, 6, 764
 Dieckmann reaction, 2, 824
 spirocyclization, 2, 1064
 via cyclohexadienyl complexes, 4, 679
 via palladium catalysis, 4, 598
HLCE
 acylation enzymatic, 6, 340
Hobartine
 synthesis via nitrene cyclization, 4, 1119
 via Ritter reaction, mercuration, 6, 284
13-HODE
 synthesis, 3, 488
Hofmann elimination

- Hofmann elimination
- Hofmann–Löffler–Freytag reaction
 - cyclization
 - nitrogen-centered radicals
 - intramolecular functionalization
- Hofmann rearrangement
 - amines
 - amine synthesis
 - methoxide method
 - oxidative
 - lead tetraacetate
 - stereoselectivity
- Hog pancreatic lipase
 - epoxide hydrolysis
- Hole-catalyzed cycloadditions
 - oxidation
 - dienes
- Homoadamantane
 - rearrangements
 - hydrolysis
- 3-Homoadamantanol
 - Ritter reaction
effect of conditions
- 3-Homoadamantene
 - dimerization
Homoalcohol reaction
 - asymmetric
 - hetero-substituted allylic anions
 - homoenoate and carbonyl compound
- Homoallyl acetates
 - oxidation
- Homoallyl alcohols
 - aldol equivalents
 - anti
 - asymmetric epoxidation
 - asymmetric hydrogenation
 - homogeneous catalysis
 - asymmetric synthesis
 - carboxylation
 - γ-lactone synthesis
 - cyclization
 - 1,3-asymmetric induction
 - epoxidation
 - homogeneous hydrogenation
 - diastereoselectivity
 - intramolecular hydrolysis
 - reduction
 - borohydride
 - 1,3-sigmatropic rearrangements
 - anion-accelerated
- syn
 - synthesis
 - synthesis
 - synthesis
 - Prins reaction
 - use of tosylhydrazones
 - via allyl alcohol
 - via allyl metal compounds
 - via ether rearrangement
 - via 2,3-sigmatropic rearrangement
- trans configuration
- Homoallyl alcohols, dichloro-
Cumulative Subject Index

Hydantoin

via benzocyclobutene ring opening, 5, 693
Homo-Favorskii rearrangement, 3, 857
Homofernascene synthesis, 1, 568
Homogeraniol asymmetric hydrogenation, 8, 463
Homoglaucone synthesis
anodic oxidation, 3, 673
Homolaudanosine synthesis, 3, 79; 7, 712
Homologation Wolff rearrangement, 3, 897
Homolytic addition donor radical cations, 7, 881 radical cations bimolecular reaction, 7, 860
D-Homo-19-norandrost-4-en-3-one synthesis via trisannulation, 7, 461
Homophthalimide, N-chloro-4,4-dialkyl-
Hofmann rearrangement, 3,857
Homopropargylic alcohols Hofmann rearrangement, 6, 802
D-Homoprogesterone microbial hydroxylation, 7, 70
Homopropargylic alcohols carbomagnesiation, 4, 879 synthesis, 2, 84 via allenylsilanes and carbonyl compounds, 1, 595 via samarium diiodide, 1, 257
three-Homopropargylic alcohols synthesis diastereoselective, 2, 91
Homoprotroberberine, 2,3,9,10,11-pentamethoxy-
synthesis, 7, 712
Homosecodaphniphylic acid methyl ester synthesis, Mannich reaction, 2, 1024
D-Homosteroids synthesis polylene cyclizations, 3, 369
4,5-Homotropones synthesis [4 + 3] cycloaddition reactions, 5, 609
4-Homotwistane Ritter reaction, 6, 270
Homo-tyrosine synthesis via oxalate esters, 1, 425
Hooker oxidation 2-hydroxy-3-alkyl-1,4-naphthoquinones, 3, 828
Hooz reaction α-diazoacarbonyl compounds trialkylborane, 2, 244
Hopane epoxide rearrangement, 3, 745
Horner–Emmons reaction α,β-unsaturated aldehydes advantage of Peterson alkenation, 2, 486 α,β-unsaturated esters stereochemistry, 7, 396
Horner reaction phosphine oxides, 1, 761, 773
Horner–Wadsworth–Emmons reaction asymmetric, 1, 773 mechanism, 1, 761 phosphonate carbocation reaction with carbonyl derivative, 1, 761 (E)-selectivity phosphonate size, 1, 762 Horner–Wittig reaction enol ether preparation, 2, 596 Horse liver alcohol dehydrogenase coimmobilized diol oxidation, 7, 316 Horseradish peroxidase aromatic hydroxylation, 7, 79 Hostapon process, 7, 14 Houben–Hoesch synthesis intramolecular, 2, 758 nitriles, 2, 747 Hüchel molecular orbital calculations Claisen rearrangement, 5, 856 Human leukocyte elastase ynenol lactone inhibitors synthesis, 3, 217 Human trisaccharide blood group antigens synthesis, 2, 663 Humulene rearrangement, 3, 389 synthesis, 3, 431, 591 coupling reaction of alkenylboranes, 3, 473 via cyclization, 1, 553 transannular cyclization, 3, 399 Wagner–Meerwein rearrangement, 3, 714 Humulene 1,2-epoxide transannular cyclization, 3, 402 Humulene 4,5-epoxide transannular cyclization, 3, 404 Humulene 8,9-epoxide transannular reactions, 3, 405 Humulene epoxides transannular cyclization, 3, 402 Humulol synthesis, 3, 399 Hunsdiecker reaction, 7, 717–732 Hybridalactone synthesis, 3, 290 Hycanthone synthesis Friedel–Crafts reaction, 2, 758 Hydantoin peptide synthesis via ester fragments, 6, 399 Perkin reaction, 2, 406 reduction, 8, 639 Hydantoin, dehydro-
Diels–Alder reactions, 5, 406 synthesis via N-chlorination, 5, 406 Hydantoin, 1,3-dibromo-5,5-dimethyl-
bromination alkyl alcohols, 6, 209 Hydantoin, 5,5’diphenyl-
synthesis, 3, 825 Hydantoin, 2,4-dithiodesulfurization, 8, 639 Hydantoin, 5-ethoxy-
synthesis, 5, 1109 Hydantoin, methoxy-
Diels–Alder reactions, 5, 406 Hydantoin, 5-methoxy-

605

Homo-Favorskii rearrangement, 3, 857
Homoglarun synthesis
anodic oxidation, 3, 673
Homolaudanosine synthesis, 3, 79; 7, 712
Homologation Wolff rearrangement, 3, 897
Homolytic addition donor radical cations, 7, 881 radical cations bimolecular reaction, 7, 860
D-Homo-19-norandrost-4-en-3-one synthesis via trisannulation, 7, 461
Homophthalimide, N-chloro-4,4-dialkyl-
Hofmann rearrangement, 3,857
Homopropargylic alcohols Hofmann rearrangement, 6, 802
D-Homoprogesterone microbial hydroxylation, 7, 70
Homopropargylic alcohols carbomagnesiation, 4, 879 synthesis, 2, 84 via allenylsilanes and carbonyl compounds, 1, 595 via samarium diiodide, 1, 257
three-Homopropargylic alcohols synthesis diastereoselective, 2, 91
Homoprotroberberine, 2,3,9,10,11-pentamethoxy-
synthesis, 7, 712
Homosecodaphniphylic acid methyl ester synthesis, Mannich reaction, 2, 1024
D-Homosteroids synthesis polylene cyclizations, 3, 369
4,5-Homotropones synthesis [4 + 3] cycloaddition reactions, 5, 609
4-Homotwistane Ritter reaction, 6, 270
Homo-tyrosine synthesis via oxalate esters, 1, 425
Hooker oxidation 2-hydroxy-3-alkyl-1,4-naphthoquinones, 3, 828
Hooz reaction α-diazoacarbonyl compounds trialkylborane, 2, 244
Hopane epoxide rearrangement, 3, 745
Horner–Emmons reaction α,β-unsaturated aldehydes advantage of Peterson alkenation, 2, 486 α,β-unsaturated esters stereochemistry, 7, 396
Horner reaction phosphine oxides, 1, 761, 773
Horner–Wadsworth–Emmons reaction asymmetric, 1, 773 mechanism, 1, 761 phosphonate carbocation reaction with carbonyl derivative, 1, 761 (E)-selectivity phosphonate size, 1, 762 Horner–Wittig reaction enol ether preparation, 2, 596 Horse liver alcohol dehydrogenase coimmobilized diol oxidation, 7, 316 Horseradish peroxidase aromatic hydroxylation, 7, 79 Hostapon process, 7, 14 Houben–Hoesch synthesis intramolecular, 2, 758 nitriles, 2, 747 Hüchel molecular orbital calculations Claisen rearrangement, 5, 856 Human leukocyte elastase ynenol lactone inhibitors synthesis, 3, 217 Human trisaccharide blood group antigens synthesis, 2, 663 Humulene rearrangement, 3, 389 synthesis, 3, 431, 591 coupling reaction of alkenylboranes, 3, 473 via cyclization, 1, 553 transannular cyclization, 3, 399 Wagner–Meerwein rearrangement, 3, 714 Humulene 1,2-epoxide transannular cyclization, 3, 402 Humulene 4,5-epoxide transannular cyclization, 3, 404 Humulene 8,9-epoxide transannular reactions, 3, 405 Humulene epoxides transannular cyclization, 3, 402 Humulol synthesis, 3, 399 Hunsdiecker reaction, 7, 717–732 Hybridalactone synthesis, 3, 290 Hycanthone synthesis Friedel–Crafts reaction, 2, 758 Hydantoin peptide synthesis via ester fragments, 6, 399 Perkin reaction, 2, 406 reduction, 8, 639 Hydantoin, dehydro-
Diels–Alder reactions, 5, 406 synthesis via N-chlorination, 5, 406 Hydantoin, 1,3-dibromo-5,5-dimethyl-
bromination alkyl alcohols, 6, 209 Hydantoin, 5,5’diphenyl-
synthesis, 3, 825 Hydantoin, 2,4-dithiodesulfurization, 8, 639 Hydantoin, 5-ethoxy-
synthesis, 5, 1109 Hydantoin, methoxy-
Diels–Alder reactions, 5, 406 Hydantoin, 5-methoxy-
Hydantoin reactions with alkenes, 2, 1074

Hydantoin, 3-methyl-5,5-diphenyl-
synthesis, 3, 826

Hydrangenol
synthesis
via directed lithiation, 1, 477

Hydrastine
synthesis, 2, 1085

Hydration
alkenes, 4, 297–316

Hydrazarenes
oxidation
solid support, 7, 843

Hydrazides
acid halide synthesis, 6, 308
Curtius reaction, 6, 806
hydrogenation
Raney nickel, 6, 403
reductive cleavage, 8, 388

Hydrazides, arenesulfonyl-
decomposition
aldehydes, 8, 297
McFadyen–Stephens aldehyde synthesis, 8, 297

Hydrazides, azido-
synthesis, 6, 252

Hydrazides, 2,4,6-trisopropylbenzenesulfonyl-
McFadyen–Stephens aldehyde synthesis, 8, 297

Hydrazine hydrate
reduction
synthesis
via amination of primary alkylamines, 7, 741

Hydrazines
chiral
synthesis, 2, 514
diimide synthesis from, 8, 472
oxidation, 7, 742, 747
diimide from, 8, 472
solid support, 7, 846
photolysis, 7, 9
reduction
silbenes, 8, 568
ultrasonic irradiation, 8, 368
reductive cleavage, 8, 388
synthesis
via hydrazones, 8, 70
via oxidation of secondary amines, 7, 745
via reduction of diazo compounds and diazonium
salts, 8, 382
Vilsmeier–Haack reaction, 2, 792

Hydrazines, acyl-
imidoyl halide synthesis, 6, 489

Hydrazines, alkyl-
synthesis, 6, 116

Hydrazines, N-alkyl-N-aryl-
synthesis, 6, 116

Hydrazines, N-aryl-
synthesis, 6, 119

Hydrazines, N,N'-disubstituted
azomethine imines from, 4, 1095

Hydrazines, N,N'-disubstituted
synthesis, 6, 119

Hydrazines, 1-methyl-1-phenyl-
oxidation
potassium superoxide, 7, 744

Hydrazines, monoalkyl-
synthesis
via amination of primary alkylamines, 7, 741

Hydrazines, polysilyl-
reactions with carbonyl compounds, 6, 116
Hydrazines, tetrafluoro-
reactions with alkenes, 7, 485

Hydrazino compounds
synthesis, 6, 116

Hydrazobenzene
synthesis
via reduction of azobenzenes and azoxybenzenes, 8, 382

Hydrazo compounds
reduction, 8, 364
synthesis
via reduction of azo and azoxy compounds, 8, 382

Hydrazoic acid
Schmidt reaction, 6, 798
synthesis, 6, 245

Hydrazones
acyl anion equivalents
reactions, 2, 523
anions, 2, 503–524
thermal stability, 2, 507
asymmetric hydrogenation, 8, 145
asymmetric hydroxylation, 7, 187
azaallylcopper derivatives
use in synthesis, 2, 507
azaaluminium bromide derivatives
use in synthesis, 2, 507
azaallyl metal reagents from, 2, 506
aziridine synthesis, 1, 835
azomethine imine precursors, 4, 1096
carbonyl compounds from, 2, 523
carbonyl group derivatization, 6, 726
carbonyl group protection, 6, 682
chiral
X-ray structure, 2, 508
cleavage
regeneration of carbonyl groups, 2, 523
sodium perborate, 2, 524
cyclizations, 4, 1148

cyclopropanation, 4, 954
dehydrogenation, 7, 144
deprotonation, 3, 34
regiochemistry, 2, 509
stereochemistry, 2, 509
hydrogenation

catalytic, 8, 143
α-hydroxylation, 7, 187
infrared spectra, 6, 727
lithiated
structure, 6, 727
metallated
metal enolate equivalents, 3, 30
Michael additions
unsaturated esters, 4, 222
NMR
carbon, 6, 13, 727
proton, 6, 727
oxidation, 7, 742
potassium salts
preparation, 2, 507
preparation
from ketones and aldehydes, 2, 504
properties
chemical, 6, 727
reactions, 6, 727
Hydride shifts

Hydrazones, β-stannyl oxidation, 7, 628
Hydrazones, β-stannyl phenyl-oxidation, 7, 628
Hydrazones, α-sulfynil-chiral
 stereospecific aldol synthesis, 2, 514
Hydrazones, α-sulfynil dimethyl-chiral
 enantioselective aldol reactions, 2, 515
Hydrazones, sulfenylation
decomposition
cyclopropanation, 4, 954
Hydrazones, tosyl-
acid-catalyzed cyclization, 4, 1156
diazooalkanes from, 4, 1101
dilithio dianions
 aldol reaction, 2, 513
 reactions with organometallic compounds, 1, 377
 unsaturated
 synthesis, 8, 929
Hydrazones, trisopropylphenyl-
reactions with alcohols
diazooacetate synthesis, 4, 1033
Hydrazones, α,β-unsaturated N,N-dimethyl-
Diels–Alder reactions, 5, 473
Hydrazonyl halides
 base treatment
 nitrimines from, 4, 1083
Hydrazulene
 synthesis, 3, 406
Hydride abstraction
dienyliron complexes
 directing effects, 4, 667
 steric effects, 4, 669
 frontier molecular orbitals
dienyliron complexes, 4, 667
Hydride acceptors
carbonium ions, 8, 91
Hydride donors
 reactivity, 8, 80
 reduction
 catalysts, 8, 82
 mechanism, 8, 81
 structure, 8, 80
 tertiary anilines, 8, 98
β-Hydride elimination
 hydroformylation, 4, 918
Hydride reagents
 chirally modified
carbonyl compound reduction, 8, 159–180
Hydriders
 aromatic nucleophilic substitution, 4, 444
 delivery from carbon
 reduction, 8, 79–103
 desulfurizations, 8, 839
 reduction
 alcohols, 8, 812
 cyclic imines, stereoselectivity, 8, 37
 imines, chemoselectivity, 8, 37
 reductive deamination
 amines, 8, 826
tandem vicinal difunctionalization, 4, 254
Hydride shifts
 in alkyne acylation, 2, 725
Hydride sources

Hydride sources
 hydrogenolysis
 palladium, 8, 958
Hydride transfer
 activation, 8, 82
 alcohols, 8, 88
 aldehydes, 8, 86
 amines, 8, 88
 ammonium formate
 transition metal catalyst, 8, 84
 carbonyls, 8, 323
 cation effects, 8, 90
 formic acid, 8, 84
 from transition metal alkyls, 8, 103
 heterocycles, 8, 92
 catalysis, 8, 97
 hydrocarbons, 8, 91
 intramolecular, 8, 90
 organometallics
 reduction of carbonyls, 8, 98
 reagents, 7, 244
Hydrindanediols
 pinacol rearrangement, 3, 727
Hydrindanes
 synthesis, 3, 359, 386, 602, 1052
 intramolecular cyclization of cyanocyclohexanes, 3, 48
 via retro Diels–Alder reaction, 5, 572
Hydrindanones
 angular alkylation
 stereochemistry, 3, 17
 synthesis
 regiospecific alkylation, 3, 11
 via cycloaddition reactions, 5, 273
 via Michael addition, 4, 24
1-Hydrindanones
 alkylation, 3, 11
 trans-Hydrindene
 synthesis
 Knoevenagel reaction, 2, 370
Hydrindene acid
 Birch reduction
 dissolving metals, 8, 500
 Hydrindenediones
 synthesis
 via intramolecular addition, 4, 46
Hydrindenes
 hydrogenation
 stereoselectivity, 8, 534
 synthesis
 via Michael addition, 4, 24
Hydrindinone
 synthesis, 1, 585
Hydroalumination
 adducts
 chemical derivatives, 8, 753
 alkenes, 8, 692, 698
 alkynes
 reactivity, 8, 738
 substituent control, regiochemistry, 8, 750
1-alkynes
 asymmetrical diene synthesis, 3, 486
 symmetrical diene synthesis, 3, 483
 chemoselectivity, 8, 734
 history, 8, 734
 in organic synthesis, 8, 757
 interfering functional groups, 8, 742
 kinetic rate expressions, 8, 747
 locoselectivity, 8, 734, 742, 744
 mechanism, 8, 747
 metal promoters
 alkenes, 8, 751
 reaction rates, 8, 747
 rearrangement, 8, 676
 regioselectivity, 8, 734, 745
 scope, 8, 739
 side reactions, 8, 744
 solvent effects, 8, 747
 stereoselectivity, 8, 734, 746
 substituent effects
 alkynes, 8, 749
 thermodynamics, 8, 670
 transition metal catalysts, 8, 747
 unsaturated hydrocarbons, 8, 733–758
 vinylalanes, 3, 266
Hydrobenzamide
 Mannich reaction, 2, 916
 synthesis
 Mannich reaction, 2, 916
Hydroborates
 synthesis
 via alkyldimesitylboranes, 1, 492
Hydroboration
 acyclic alkenes, 8, 704
 alkenes, 4, 357
 alkynes
 organopalladium catalysts, 3, 231
 chiral, 8, 720
 dimethylborolane
 enantioselectivity, 2, 258
 fundamentals, 8, 704
 mechanism, 8, 724
 unsaturated hydrocarbons, 8, 703–727
 with thexylborane, 2, 251
Hydroboration–oxidation
 enamines, 6, 715
Hydrobromination
 alkenes, 4, 279–287
 stereochemistry, 4, 279
Hydrocarbons
 acid halide synthesis, 6, 308
 acyclic
 enantioselective hydroxylation, 7, 57
 microbial oxidation, 7, 56
 cyclic
 microbial oxidation, 7, 58
 dimerization
 mercury-catalyzed, 3, 1047
 hydride transfer, 8, 91
 oxidation
 metalloporphyrin-catalyzed, 7, 50
 polyunsaturated substituted
 synthesis via retro Diels–Alder reaction, 5, 565–573
 Ritter reaction, 6, 270
Hydrocarboxylation
 alkenes, 4, 939–941
 asymmetric, 4, 945
 catalysts, 3, 1027
 conjugated dienes, 4, 945
 mechanism, 3, 1019
Hydrochloric acid
<table>
<thead>
<tr>
<th>Term</th>
<th>Page ranges</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochlorination</td>
<td>4, 272–278</td>
<td>Displacement of hydroxy group, 6, 204</td>
</tr>
<tr>
<td>Hydrocortisone oxidation</td>
<td></td>
<td>Solid supports, 7, 845</td>
</tr>
<tr>
<td>Hydrocyanation</td>
<td></td>
<td>Displacement of hydroxy group, 6, 204</td>
</tr>
<tr>
<td>Hydrodimerization</td>
<td></td>
<td>Enones, 8, 532</td>
</tr>
<tr>
<td>Hydroesterification</td>
<td></td>
<td>Alkenes, asymmetric, 4, 945</td>
</tr>
<tr>
<td>Hydrofluorination</td>
<td></td>
<td>Alkenes, 4, 913–949</td>
</tr>
<tr>
<td>Hydroformylation</td>
<td></td>
<td>Asymmetric, 4, 927–932</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td></td>
<td>Catalysts, 3, 1029</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Formation of 1-propanal, 3, 1015</td>
</tr>
<tr>
<td>Hydrogallation</td>
<td></td>
<td>Functionalized alkenes, 4, 922–927</td>
</tr>
<tr>
<td>Hydrogen atom transfer reactions</td>
<td></td>
<td>Mechanism, 3, 1019</td>
</tr>
<tr>
<td>Hydrogen bromide</td>
<td></td>
<td>Regioselectivity, 4, 916–919</td>
</tr>
<tr>
<td>Hydrogen cyanide</td>
<td></td>
<td>Stereoselectivity, 4, 916–919</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Unfunctionalized alkenes, 4, 919–922</td>
</tr>
<tr>
<td>Hydrodimerization</td>
<td></td>
<td>Alkenes, 8, 698</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td></td>
<td>Acetals, 8, 212</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Acetyl halides</td>
</tr>
<tr>
<td>Hydrogallation</td>
<td></td>
<td>Rosenmund reaction, 8, 239</td>
</tr>
<tr>
<td>Hydrogallation</td>
<td></td>
<td>Aldonolactones, 8, 292</td>
</tr>
<tr>
<td>Hydrogallation</td>
<td></td>
<td>Alkenes, 8, 421</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Comparison with Wacker oxidation, 7, 450</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Double bond migration, 8, 422</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Heterogeneous catalysis, 8, 417–442</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Homogeneous catalysis, 8, 443–463</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Mechanism, 8, 422</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Structure–reactivity, 8, 424</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Alkenes, heterogeneous catalysis, 8, 417–442</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Homogeneous catalysis, 8, 443–463</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Amides, 8, 248</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Anhydrides, 8, 292</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Aromatic compounds</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Homogeneous catalysis, 8, 453</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Carboxylic acids, 8, 236</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Catalysts</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Chirally modified, 8, 149</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Heterogeneous, 8, 417–442</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Kinetics, 8, 419</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Mechanism, 8, 420</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Transport phenomena, 8, 419</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Catalytic</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Aromatic carbonyl compounds, 8, 319</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Benzo[b]furans, 8, 624</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Benzo[b]thiophenes, 8, 629</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Carbonyl compound reduction, 8, 139–155</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Conjugated dienes, 8, 565</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Enones, 8, 533</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Furans, 8, 606</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Indoles, 8, 612</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Pyridines, 8, 597</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Pyroles, 8, 604</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Thiophenes, 8, 608</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Unsaturated carbonyl compounds, 8, 533</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Diastereoselective asymmetric, 8, 144</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Electrocatalytic</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Ketones and aldehydes, 8, 135</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Esters, 8, 242</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Heteroaromatic compounds</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Homogeneous catalysis, 8, 453</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Heterogeneous catalysis, 8, 417–442</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Chiral catalyst, 8, 149</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Homogeneous catalysis, 8, 443–463</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Conjugated alkenes, 8, 449</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Imidoyl chlorides, 8, 301</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Ionic</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Alkenes, 8, 486</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Carbonyl compound reduction, 8, 317</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Mechanism, 8, 486</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Isomerization modifiers, 8, 423</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Alkenes, 8, 423</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Lactones, 8, 246</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Nitrides, 8, 251, 298</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Nitroso compounds</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Aromatic, 8, 372</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Zirconium compounds, 8, 372</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Hydrogen atom transfer reactions</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Intramolecular cyclization, 4, 820</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Radical addition reactions, 4, 752</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Radical cyclizations, 4, 801</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Reaction with alkyl alcohols, 6, 209</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Reaction with benzylic alcohols, 6, 209</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Ritter reaction, 6, 266</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Fluorination</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Alkyl alcohols, 6, 216</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Pyridine complex</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Hydrofluorination, 4, 271</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td>Trialkylamine complex</td>
</tr>
<tr>
<td>Hydrogen iodide</td>
<td></td>
<td>Hydrofluorination, 4, 271</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Addition reactions</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Nitrides, 6, 497</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Addition to propionic acid, 4, 51</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Reactions with alkenes, 4, 270–290</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Reactions with α-chloroenamines, 6, 497</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Hydroiodination</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Alkyl alcohols, 6, 213</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Reduction</td>
</tr>
<tr>
<td>Hydrogen halides</td>
<td></td>
<td>Allylic compounds, 8, 978</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td></td>
<td>Allylic halides, 8, 955–981</td>
</tr>
</tbody>
</table>
Hydrogen peroxide

Cumulative Subject Index

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>amines, 8, 826</td>
<td>Birch reduction, 8, 514</td>
</tr>
<tr>
<td>aromatic carbonyl compounds, 8, 319</td>
<td>Catalytic, 8, 287–290</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Hydroxylithiation, catalytic, 8, 697</td>
</tr>
<tr>
<td>acidic</td>
<td>Hydrolysis, esters, 6, 342</td>
</tr>
<tr>
<td>organoborane oxidation, 7, 597</td>
<td>Hydrazones, regeneration of carbonyl groups, 2, 524</td>
</tr>
<tr>
<td>alkaline</td>
<td>Hydromagnesiocatalytic, 8, 697</td>
</tr>
<tr>
<td>Baeyer–Villiger reaction, 7, 674</td>
<td>unsaturated hydrocarbons, 8, 751</td>
</tr>
<tr>
<td>epoxidations with, 7, 381</td>
<td>Hydrometallation, 8, 695</td>
</tr>
<tr>
<td>glycol cleavage, 7, 708</td>
<td>Catalytic, 8, 697</td>
</tr>
<tr>
<td>hydroxylation</td>
<td>Mechanism, 8, 671</td>
</tr>
<tr>
<td>alkenes, 7, 438, 446</td>
<td>unsaturated hydrocarbons, 8, 667–699</td>
</tr>
<tr>
<td>α-hydroxylation</td>
<td>Hydroperoxides, mercercyclization, 4, 390</td>
</tr>
<tr>
<td>ketones, 7, 163</td>
<td>reduction</td>
</tr>
<tr>
<td>oxidation</td>
<td>synthesis of alcohols, 8, 396</td>
</tr>
<tr>
<td>primary amines, 7, 737</td>
<td>Hydroperoxides, allyl oxidation, 8, 362</td>
</tr>
<tr>
<td>selenides, 7, 771</td>
<td>organoboranes, 7, 602</td>
</tr>
<tr>
<td>sulfides, 7, 194, 762</td>
<td>trialkylborane, 7, 599</td>
</tr>
<tr>
<td>sulfoxides, 7, 766</td>
<td>Hydroperoxides, i-butyl oxidation, 7, 96</td>
</tr>
<tr>
<td>thiols, 7, 760</td>
<td>oxidation, 8, 737</td>
</tr>
<tr>
<td>oxidative hydrolysis</td>
<td>Selenium reoxidant</td>
</tr>
<tr>
<td>ozonides, 7, 574</td>
<td>allylic oxidation, 7, 88</td>
</tr>
<tr>
<td>reoxidant</td>
<td>Hydroperoxides, trityl oxidation, 7, 376</td>
</tr>
<tr>
<td>Wacker process, 7, 452, 462</td>
<td>Hydroquinolones synthesis, 2, 1011</td>
</tr>
<tr>
<td>silylated</td>
<td>Hydroquinones electrochemical reoxidation, 7, 452</td>
</tr>
<tr>
<td>oxidation, 7, 674</td>
<td>Wacker process, 7, 452</td>
</tr>
<tr>
<td>Hydrogen selenide</td>
<td>Hydroxylithiation, catalytic, 8, 697</td>
</tr>
<tr>
<td>reaction with nitriles, 6, 476</td>
<td>unsaturated hydrocarbons, 8, 751</td>
</tr>
<tr>
<td>Hydrogen sulhide</td>
<td>Hydroperoxides, allyl oxidation, 8, 362</td>
</tr>
<tr>
<td>acylation</td>
<td>organoboranes, 7, 602</td>
</tr>
<tr>
<td>imidates and orthoesters, 6, 450</td>
<td>trialkylborane, 7, 599</td>
</tr>
<tr>
<td>imidothioates, 6, 455</td>
<td>Hydroperoxides, i-butyl oxidation, 7, 96</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>oxidation, 8, 737</td>
</tr>
<tr>
<td>reduction, aromatic nitro compounds, 8, 372</td>
<td>Selenium reoxidant</td>
</tr>
<tr>
<td>demercuriations, 8, 857</td>
<td>allylic oxidation, 7, 88</td>
</tr>
<tr>
<td>reduction</td>
<td>Hydroperoxides, trityl oxidation, 7, 376</td>
</tr>
<tr>
<td>carbonyl compounds, 8, 323</td>
<td>Hydroquinolones synthesis, 2, 1011</td>
</tr>
<tr>
<td>Hydrogen telluride</td>
<td>Hydroquinones electrochemical reoxidation, 7, 452</td>
</tr>
<tr>
<td>reductions</td>
<td>Wacker process, 7, 452</td>
</tr>
<tr>
<td>aromatic compounds, 8, 370</td>
<td>Hydroperoxides, allyl oxidation, 8, 362</td>
</tr>
<tr>
<td>Hydrogen transfer</td>
<td>organoboranes, 7, 602</td>
</tr>
<tr>
<td>intramolecular</td>
<td>trialkylborane, 7, 599</td>
</tr>
<tr>
<td>stereoselectivity, 6, 865</td>
<td>Hydroperoxides, i-butyl oxidation, 7, 96</td>
</tr>
<tr>
<td>reduction</td>
<td>oxidation, 8, 737</td>
</tr>
<tr>
<td>carbonyl compounds, 8, 320</td>
<td>Selenium reoxidant</td>
</tr>
<tr>
<td>Hydrogernylation</td>
<td>allylic oxidation, 7, 88</td>
</tr>
<tr>
<td>alkenes, 8, 699</td>
<td>Hydroperoxides, trityl oxidation, 7, 376</td>
</tr>
<tr>
<td>radical addition reactions, 4, 770</td>
<td>Hydroquinolones synthesis, 2, 1041</td>
</tr>
<tr>
<td>radical reactions</td>
<td>Hydroindoles synthesis, Mannich cyclization, 2, 1011</td>
</tr>
<tr>
<td>rate, 4, 738</td>
<td>Hydroindolones synthesis, Mannich reaction, 2, 1011</td>
</tr>
</tbody>
</table>

Hydroiodination, alkenes, 4, 287–290
Hydrolithiation, catalytic, 8, 697
Hydrolysis, esters, 6, 342
Hydrazones, regeneration of carbonyl groups, 2, 524
Hydromagnesiocatalytic, 8, 697
unsaturated hydrocarbons, 8, 751
Hydrometallation, 8, 695
Catalytic, 8, 697
Mechanism, 8, 671
unsaturated hydrocarbons, 8, 667–699
Hydroperoxides, mercercyclization, 4, 390
Reduction
Synthesis of alcohols, 8, 396
Hydroperoxides, allyl oxidation, 8, 362
organoboranes, 7, 602
triaalkylborane, 7, 599
Hydroperoxides, i-butyl oxidation, 7, 96
Aromatic nitro compounds, 8, 737
Selenium reoxidant
Aromatic compounds, 8, 370
Hydroxylithiation, catalytic, 8, 697
Silylalkynes, 4, 879
Unsaturated hydrocarbons, 8, 751
Hydroperoxides, allyl oxidation, 8, 362
organoboranes, 7, 602
triaalkylborane, 7, 599
Hydroperoxides, i-butyl oxidation, 7, 96
Allylic oxidation, 7, 88
Hydroperoxides, trityl oxidation, 7, 376
Hydroquinolones synthesis, Mannich reaction, 2, 1011
Hydroquinones electrochemical reoxidation, Wacker process, 7, 452
Hydroperoxides, allyl oxidation, chromium(VI) oxide, 7, 278
Solid support, 7, 843
Synthesis, 7, 339, 340
Hydroquinones, cyano-synthesis via haloquinones, 6, 231
Hydroquinones, 2-methyl-Mannich reaction, 2, 969
Hydroquinones, silyl-protected oxidation, pyridinium chlorochromate, 7, 264
Hydroxylanes, hydrosilylation, unsaturated hydrocarbons, 8, 765
Hydrosilylation, acetylene, 8, 769
Aromatic compounds, 8, 370
Hydrogernylation, alkenes, 8, 699
Radical addition reactions, 4, 770
Radical reactions, 4, 738
Hydroindoles synthesis
Mannich cyclization, 2, 1041
Hydroindolones synthesis
Mannich reaction, 2, 1011
Cumulative Subject Index

Hydroxylamine

α-Hydroxy acids
- absolute configuration
 - synthesis, 6, 882
- asymmetric hydrogenation
 - modifying reagents, 8, 150
- oxidative cleavage, 7, 709
- synthesis
 - double carbonylation, 3, 1039

β-Hydroxy acids
- 6-membered ring O,O-acetals, endocyclic enolates
 - alkylation, 3, 41

γ-Hydroxy acids
- cycloacetylation
- γ-lactone synthesis, 6, 350
- HGA lactonization, 6, 358

γ-Hydroxyalkyl bromides
- synthesis, 3, 120

γ-Hydroxyalkyl iodides
- synthesis, 3, 120

α-Hydroxycarboxamides
- synthesis, 2, 1086

Hydroxy esters
- macrolactonization, 6, 369

α-Hydroxy esters
- synthesis
 - via reduction of α-keto esters, 8, 169

Hydroxy group activation
- ester synthesis, 6, 333

Hydroxylation
- γ,δ-enoic acids, 6, 361
- Hydroxyamine, N-alkyl-
 - synthesis, 6, 112, 115
- Hydroxyamine, N-allyl-
 - synthesis, 6, 113
- Hydroxyamine, N-allyl-N-aryl-
 - synthesis, 6, 115
- Hydroxyamine, O-aryl-
 - synthesis, 6, 114

Hydroxyamine, N-aryl-O-acetyl-
- hydrazine synthesis, 6, 119

Hydroxyamine, O-(arylsulfonyl)-
- amination
 - electrophilic N-aminations, 6, 119
 - synthesis, 6, 114

Hydroxyamine, O-(2,4-dinitrophenyl)-
- amination
 - secondary amines, 7, 746
- electrophilic N-aminations, 6, 119

Hydroxyamine, N,O-dimethyl-
- reaction with acyl chlorides, 8, 272

Hydroxyamine, O-(2,4-dinitrophenyl)-
- amination
 - secondary amines, 7, 746
- electrophilic N-aminations, 6, 119
- synthesis, 6, 114

Hydroxyamine, N-(homoallyl)-
- reaction with allyl organometallic compounds, 2, 994

Hydroxyamine, O-mesityl-

Hydroxylation of unsaturated hydrocarbons, 8, 764

Hydroxylamines
- N-acylimines
 - reactions with organometallic compounds, 1, 376
- Lossen reaction, 6, 821
- nitroso derivatives
 - Diels–Alder reactions, 5, 420
- oxidation
 - periodate, 6, 402
- reduction
 - titanium trichloride, 6, 402; 8, 395

Hydroxamic acids, O-acyl-
- Lossen reaction, 6, 798
Hydroxylamine

amination
secondary amines, 7, 746
Hydroxylamine, O-mesitylenesulfonyl-amination
pyridines, 7, 750
secondary amines, 7, 746
electrophilic N-aminations, 6, 119
reactions with organoboranes, 7, 606
Hydroxylamine, O-(mesitylsulfonyl)-Beckmann rearrangement, 7, 694
Hydroxylamine, N-phenyl-synthesis, 8, 366
Hydroxylamine, O-phosphinyl-synthesis, 6, 116
Hydroxylamine, tri-t-butyl-reduction
synthesis of di-t-butylamine, 8, 395
Hydroxylamine, O-trimethylsilyl-synthesis, 6, 114
Hydroxylamine, tris(trimethylsilyl)-reaction with acid chlorides, 6, 114
Hydroxylamine ethers
synthesis
via oxime ethers, 8, 60
Hydroxylamines
allylic
synthesis, 6, 115
amine oxidation
intermediate, 7, 738
N,N-disubstituted
reactions with organometallic compounds, 1, 391
enzymic reduction, 8, 395
oxidation, 7, 742, 747
with halides, 7, 663
reduction
metal hydrides, 8, 27
synthesis of amines, 8, 394
synthesis, 6, 111; 8, 366, 373
via oxidation of primary amines, 7, 736
via oxidation of secondary amines, 7, 745
via oximes, 8, 60
Vilsmeier–Haack reaction, 2, 792
Hydroxylamine-O-sulfonyl acid amimation
amines, 7, 741
secondary amines, 7, 746
Beckmann rearrangement, 6, 764
deamination
amino acids, 8, 828
electrophilic N-aminations, 6, 119
Lossen reaction, 6, 825
reactions with organoboranes, 7, 606
Hydroxylation
α to carbonyl, 7, 152
α to cyanide, 7, 186
anti
alkenes, 7, 438, 446
activated C—H bonds
oxidation, 7, 151–187
alkanes, 7, 11
alkenes, 7, 437
anodic
aromatic compounds, 7, 800
regioselective
dienes, 7, 438
steroids, 7, 132
microbial, 7, 66, 68
microbial, chemoselectivity, 7, 69
microbial, regioselectivity, 7, 70
microbial, stereoselectivity, 7, 72
syn
alkenes, 7, 438, 439
β-Hydroxylation
aliphatic carboxylic acids
microorganisms, 7, 56
Hydroxylation–carbonylation
allenes
palladium(II) catalysis, 4, 558
Hydroxymercuration, 8, 854
demercuration
allenes, 4, 300–305
Hydroxyoxymethylation
nucleophilic, 7, 647
samarium diiodide
Barbier-type reaction, 1, 259
Hydroxyseleunination
allenes, 7, 522
Hydroxyxylsulfenylation
allenes, 7, 518
Hydrozirconation
1-alkynes
asymmetrical diene synthesis, 3, 486
symmetrical diene synthesis, 3, 483
chemoselectivity, 8, 683
chlorobridodis(cyclopentadienyl)zirconium, 8, 675
conditions, 8, 676
diastereoselectivity, 8, 688
enantioselectivity, 8, 690
mechanism, 8, 668
regioselectivity, 8, 684
synthetic utilization, 8, 690
thermodynamics, 8, 669
unsaturated hydrocarbons, 8, 667
Hygrine
synthesis, 8, 273
Hyperacyloin condensation
synthesis of phenanthraquinone, 3, 619
Hypercornine
synthesis, 1, 564
Hypericin
synthesis, 3, 699
Hypnophilin
synthesis, 3, 603
organocopper compounds, 3, 221
via tandem radical cyclization, 1, 270
Hypochlorite
irradiation, 7, 41
Hypochlorite, α-butyl
oxidation
sulfides to sulfoxides, 7, 194
Hypofluorous acid
irradiation
sulfides to sulfoxides, 7, 194
Hypochlorite
irradiation
sulfides to sulfoxides, 7, 194
Hypofluorous acid
irradiation
sulfides to sulfoxides, 7, 194
Hypofluorous acid
irradiation
sulfides to sulfoxides, 7, 194
Ibogamine
synthesis, 7, 476
via Diels−Alder reaction, 5, 373
via palladium catalysis, 4, 598

Ibuprofen
methyl ester
synthesis, 7, 829

Icosanoic acid, 10,16-dimethyl-
synthesis, 3, 644

L-Idose, 2-deoxy-
synthesis

Ikramycin
synthesis

Ikramgamycin
synthesis

FDP aldolase, 2,462
(a-selectivity
via Wittig reaction, 1,765
via Cope rearrangement, 5, 817
via electrocyclization, 5, 725

Illudane
biosynthesis, 3, 404

Iloprost
synthesis
Knoevenagel reaction, 2, 381

Imidates
acyclic
addition reactions, 2, 488
acylation
hydrogen sulfide, 6, 450
cyclic
reduction, 8, 302
imidate synthesis, 6, 534
metallated
addition reactions, 2, 488
reduction, 2, 1050; 8, 302
sulfonylation, 6, 450
synthesis, 6, 529
thiolysis, 6, 429
transesterification, 6, 534
tris(diisyle)alane
synthesis, 6, 579

Imidates, allyllic N-phenyl-
rearrangements
oxygen−nitrogen transposition, 6, 843

Imidazole, 1-acyl-
Claisen condensation, 2, 801

Imidazole, 1′-carbonyldi-
Beckmann rearrangement, 7, 692

Imidazole, dihydro-
synthesis

via cyclization of methylisourea, 4, 388

Imidazole, mercapto-
oxidation, 7, 760

Imidazole, 1-methyld-
acetylation, 6, 516

Imidazole, N-methyl-
hydroxalkylation
protection, 6, 682

Imidazole, 1-methyl-5-chloro-
phosphorylation, 6, 601

Imidazole, 2-(5-norbornen-2-yl)-
synthesis

via retro Diels−Alder reaction, 5, 557

Imidazole, N-phosphoryl-
phosphorylation, 6, 614

Imidazole, N,N'-thionyldi-
imidate synthesis, 6, 546

Imidazolcarboxylic acids
electrolytic reduction, 8, 285

Imidazoles
N-alkyl
lithiation, 1, 477
[2 + 2 + 2] cycloaddition reactions, 5, 1143
Diels−Alder reactions, 5, 491
metallation
addition reactions, 1, 471
reaction with chloroform, 6, 579
reduction, 8, 638
synthesis, 6, 517
1,2,4-trisubstituted
N-acylimines from, 1, 376

Imidazoles, acyl-
acetylation, 1, 423
reduction
metal hydrides, 8, 271

Imidazoles, 2-acyl-
alkylation, 6, 516

Imidazoles, N-acyl-
acetylation, 6, 333

Imidazoles, 1,benzyl-2-alkyl-4,5-dihydro-
metahiodide salt
reactions with organometallic compounds, 1, 366

Imidazoles, N-hydroxy-
reduction
titanium(III) chloride, 8, 395

Imidazoles, thiaoacyl-
thioarylation, 6, 450

Imidazoles, 2-vinyl-
synthesis

via retro Diels−Alder reactions, 5, 557

Imidazole-1-thiocarbonyl compounds
deoxyxygenation, 8, 818

Imidazoles
ad acid anhydride synthesis, 6, 313
ad halide synthesis, 6, 308
Curtius reaction, 6, 810

Imidazolides, imidoyl-
imidate synthesis, 6, 551

Imidazolide, 1,3-dimethyl-2-phenyl-
lithiation
addition reactions, 1, 463

2-Imidazolidinone, 1-acyl-
synthesis

via Curtius reaction, 6, 814

Imidazolidin-2-ones
bicyclic
synthesis, 2, 1062
reduction
LAH, 8, 639

1,3-Imidazolidin-4-ones
addition reactions with nitroalkenes, 4, 109

Imidazolidiones
enolates
diastereoselective alkylation, 3, 45

Imidazoline, 2-alkenyl-
preparation, 2, 494

Imidazoline, 2-alkenyl-
preparation

613
Imidazoline

addition reactions
- with organolithium compounds, 4, 76

Imidazoline, 2-alkyl-preparation, 2, 494

Imidazoline, 2-methyl-metallated reactions, 2, 494

Imidazolines
- conjugate additions, 4, 207
- reaction with isocyanates, 6, 579
- reduction, 8, 638
- synthesis, 7, 479
- via intramolecular Ritter reaction, 6, 277

Imidazolinones
- reductive decyclization, 8, 638

Imidazolines
- synthesis, 7, 486

Imidazolium dichromate oxidation
- alcohols, 7, 278

Imidazolium salts
- reduction, 8, 638
- Imidazol-2-one, N-phenyl-reduction, 8, 638
- metallation, 1, 464
- lithium compounds oxidation, 7, 330
- Imidazo[4,5-b]pyridines, 3-aryl-2-methyl-

Imides
- addition reactions
 - Grignard reagents, 2, 1049
 - O-alkylsourea, 6, 74
- chiral
 - asymmetric aldol reactions, 2, 231
 - conjugate additions, 4, 202
- chiral 2-oxazolidones
 - diastereoselective alkylation, 3, 45
- cyclic
 - reduction, 2, 1049
 - reduction, metal hydrides, 8, 273
- homologated
 - synthesis, Eschenmoser coupling reaction, 2, 874
 - reduction, 8, 254
 - diastereoselective, 2, 1049
 - regioselectivity, 2, 1049
- synthesis, 6, 409

Imidazolidines
- synthesis, 7, 968

Vinyl acetate
- reaction with allyl organometallic compounds, 2, 494

Imidazolium oxides oxidation
- thiolysis, 6, 428

Imidazolium salts
- reduction, 8, 638

Imidates
- synthesis, 6, 489

Imidoyl chlorides
- synthesis of dithiocarboxylic esters, 6, 453

Imidoyl cyanide
- synthesis, 6, 768

Imidoyl halides
- base treatment
 - nitrile ylides from, 4, 1081
 - imidate synthesis, 6, 532
- Imidoyl halide synthesis, 6, 527
- reactions with hydrogen halides, 6, 497
 - synthesis, 6, 523
 - via amides, 6, 489

Imidoyl esters
- synthesis, 6, 539

Imidoyl halides, keto-
synthesis, 7, 768

Imidoyl iodide
- synthesis, 6, 795

Imine anions
- isomerization, 6, 723
- protonation, 6, 721
- X-ray structure
 - single-crystal, 6, 723

Imines
- 2-acetidinone synthesis, 5, 100-102
- chiral
 - reactions with allyl organometallic compounds, 2, 980
 - reactions with type 1 crotal metallics, 2, 9–19
 - reactions with allenylsilanes, 1, 602
- carbonyl group derivatization, 6, 719
- Chiral
 - 2-azetidiniminium salts from, 5, 108-113

Imidocarboxylic acids
- thiolysis, 6, 428

Imido ester hydrochlorides
- synthesis, 6, 507

Imido esters
- reaction with hydrogen selenide, 6, 472, 473

Imidodithioates
- acylation
 - hydrogen sulfide, 6, 455
- hydrolysis
 - synthesis of thiol esters, 6, 444
- sulhydrylization, 6, 455
tin(IV) chloride promotion, 2, 1024
cycloaddition reactions
vinyldiene complexes, 5, 1068
[3 + 2] cycloaddition reactions, 5, 307
Darzens glycidic ester condensation, 2, 422
deprotonation
regiochemistry, 6, 720
regioselectivity, 1, 357
diastereoselective addition reactions
chiral silyl ketene acetals, 2, 422
deprotonation
regiochemistry, 6, 720
regioselectivity, 1, 357
diastereoselective addition reactions
chiral silyl ketene acetals, 2, 422
dependencies
methods for increase, 1, 357
mechanism and products, 8, 135
endocyclic anions
from unsaturated heterocycles, 2, 481
Erlenmeyer azlactone synthesis, 2, 404
esters
N-alkylation, 6, 83
halomagnesium derivatives
alkylation, 3, 31
heterocyclic synthesis, 6, 734
N-heterosubstituted
reaction with allyl organometallic compounds, 2, 994
homogeneous catalytic hydrogenation, 8, 152
hydrolysis, 8, 180
infrared spectra, 6, 724
Knoevenagel reaction, 2, 367
lithiated
alkylation, 3, 31
axial alkylation, 3, 32
Mannich reaction, 2, 915, 970
metallated
metal enolate equivalents, 3, 30
metallated chiral
asymmetric alkylation, 3, 35
metallation
sulfonylation of aldehydes, 7, 125
NMR
carbon, 6, 13, 724
proton, 6, 724
nucleophilic addition reactions, 1, 355–393
one stereocenter
reaction with allyl organometallic compounds, 2, 983
oxidation, 6, 527
mechanism, 1, 837
N-oxidation, 7, 750
α-phosphorus stabilized imines
aldol reaction, 2, 483
N-phosphorus substituted
reduction, 8, 74
pinacol coupling reactions, 3, 579
intermolecular, 3, 579
intramolecular, 3, 581
with ketones, 3, 596
properties
chemical, 6, 723
proton abstraction, 1, 356
reactions, 6, 724
reactions with acid chlorides, 2, 1050
reactions with allenic titanium reagents, 2, 95
reactions with allylboronates, 2, 15
reactions with allyl organometallic reagents, 2, 975–1004
reactions with carboxylic acid derivatives
Mannich reaction, 2, 917
reactions with crotyl organometallic compounds
syn–anti selectivity, 2, 989, 990
reactions with enolates
Mannich reaction, 2, 919
reactions with enol silanes
Lewis acid mediated, 2, 635
reactions with Fischer carbene complexes, 5, 1107
reactions with highly acidic active methylene compounds
Mannich reaction, 2, 916
reactions with ketene bis(trimethylsilyl)acetals, 2, 930
reactions with ketones, 2, 929
reactions with organocerium compounds, 1, 236
reactions with organocopper complexes, 1, 119
reactions with organometallic compounds, 1, 360
Lewis acid promotion, 1, 349
reactions with pent-3-ene-2-yl-9-borabicyclononane
syn–anti selectivity, 2, 992
reactions with propargyl organometallic compounds
variation of yield with metal, 2, 993
reactions with α-silylbenzylic anions, 1, 624
reactions with silyl ketene acetals, 2, 929
reactions with sulfinyl-stabilized carbanions, 1, 515
reactions with vinyl silyl ketene acetals, 2, 930
reactions with ylides, 1, 835
reduction
diimide, 8, 478
dissolving metals, 8, 123
enzymes and microorganisms, 8, 204
mechanism, 8, 26
metal hydrides, 8, 25–74
synthesis of amines, 6, 724
Reformatsky reaction, 2, 294
spectra, 6, 724
stereochemistry, 6, 725
structure, 6, 723
N-sulfur substituted
reduction, 8, 74
synthesis, 6, 719
via aziridine thermolysis, 5, 938
via carboxylic acids, 8, 284
via reactions of amides and organocuprates, 1, 124
via reduction of oximes, 8, 392
tandem vicinal difunctionalization, 4, 252
α-trialkylsilyl-stabilized anions
aldol reaction, 2, 484
two stereocenters
reaction with allyl organometallic compounds, 2, 987
Vilsmeier–Haack reaction, 2, 792
Imines, acyclic N-alkyl-
Mannich reaction, 2, 916
Imines, acyclic N-aryl-
Mannich reaction, 2, 916
Imines, C-acyl-
Diels–Alder reactions, 5, 408
Imines, N-acyl-
acyclic
Diels–Alder reactions, 5, 404
Diels–Alder reactions, 5, 404–408, 485
protonation, 2, 1052
reactions with organocopper complexes, 1, 122
Imines

reactions with organometallic compounds, 1, 371, 373
reactivity, 1, 371
Imines, alkyl-

Diels–Alder reactions, 5, 409–411
Imines, aryl-

Diels–Alder reactions, 5, 409–411
Imines, N-(t-butyldimethylsilyl)-

reactions with silyl ketene acetal, 2, 938
Imines, α-chloro-

preparation, 2, 422
Imines, N-chloro-

hydrzones

Neber reaction, 6, 786
Imines, cyclopropyl-

rearrangements, 5, 941
Imines, diphenylphosphinyl-

prochiral

asymmetric reduction, 8, 176
Imines, epoxy-

synthesis via Sharpless epoxidation, 5, 98
Imines, α-halo-

masked α-halocarbonyl compounds

Darzens condensation, 2, 422
Imines, 2-hydroxy-

rearrangement, 3, 790
semipinacol rearrangement, 3, 778
Imines, N-silyl-

preparation, 2, 935
reactions with enolates, 2, 934
Imines, sulfinyl-

reduction

sodium cyanoborohydride, 8, 74
Imines, N-sulfonyl-

Diels–Alder reactions, 5, 402–404
reduction

sodium cyanoborohydride, 8, 74
Imines, thione-

Diels–Alder reactions, 5, 441
Imines, N-trialkylsilyl-

enolizable carbonyl compounds

reactions with organometallic compounds, 1, 391
Imines, N-trimethylsilyl-

in situ synthesis, 1, 390
reactions with organometallic compounds, 1, 390
Imines, α-β-unsaturated

Diels–Alder reactions, 5, 473
Imines, α,β-unsaturated N-phenylsulfonyl-

Diels–Alder reactions, 5, 473, 474
Iminium ions, acyl-

cyclization

heterocyclic synthesis, 6, 746
synthesis, 6, 744
Iminium bromide, bromomethylene-

synthesis, 6, 495
Iminium chloride, α-chloro-

synthesis, 5, 108
Iminium chlorides, α,β-nitro-

reactions with organocopper complexes

synthesis of ketoximes, 1, 121
Iminium ions chiral

reaction with enol silanes, 2, 649
cyclization, 6, 736
enantioselective, 2, 1027
endo cyclic, N-acyl group in the ring, 2, 1057
intermolecular reactions, 2, 1057
intramolecular reactions, 2, 1062
endo cyclic, N-acyl group outside the ring, 2, 1066
intramolecular reactions, 2, 1066
intramolecular reactions, 2, 1069
generation

Mannich reactions, 2, 1008
Pictet–Spengler cyclization, 2, 1021
heterocyclic synthesis, 6, 734
intramolecular cyclization, 2, 1007
intramolecular Mannich reactions, 2, 1007
Mannich reactions, 2, 954
intermediate, 2, 895
silyl enol ethers, 2, 1015
nucleophilic additions

topochemistry, 2, 1008
synergism, 2, 1013
photochemistry, 2, 1037
reaction with allyl organometallic reagents, 2,

975–1004
synthesis, 6, 734
with alkenes, 2, 1023
Iminium salts
amidine synthesis, 6, 542
amidinium salt synthesis, 6, 514
cyclic

Mannich reaction, 2, 912
synthesis, 6, 503
in situ generation, 1, 367
reactions with allyl organometallic compounds, 2,

1002
oxidation, 7, 664
preformed

Mannich reaction, 2, 898, 956, 960
reactions, 2, 899
reactions with allyl organometallic compounds, 2,

1000
synthesis, Mannich reaction, 2, 898
reactions with crotyl organometallic compounds

dependence of product type on metal, 2, 1001
reactions with halogen-substituted allylic anions
regioselectivity, 2, 77
reactions with organometallic compounds, 1, 365
reactions with propargyl organometallic reagents
dependence of product type on metal, 2, 1001
reactions with unsymmetrical methyl ketones
regiochemistry, 2, 902
silicon stabilization

cyclizations, 1, 592
synthesis, 6, 485–583
trimethylsilyl

nucleophilic addition, 1, 391
ω-unsaturated

reduction by samarium diiodide, 1, 275
Iminium salts, N-acyl-

[3 + 2] cycloaddition reactions

with 1,3-dimethyl(η-butyldimethylsilyl)allene, 5,

279
generation

Mannich reactions, 2, 1008
reactions with allenylsilanes, 1, 598
reactions with organometallic compounds, 1, 371, 373
reactivity, 1, 371
silicon stabilization

cyclizations, 1, 592
Iminium salts, acyloxy-
Cumulative Subject Index

Indanones

- synthesis, 6, 493
- Iminium salts, alkoxyethyleneamide acetal synthesis, 6, 567, 573
- amidine synthesis, 6, 543
- imidate synthesis, 6, 529
- ortho acid synthesis, 6, 561
- synthesis, 6, 501
- Iminium salts, alkylmercapptomethylene-amidine synthesis, 6, 543
- synthesis, 6, 508
- thioimidate synthesis, 6, 536
- Iminium salts, aryloxymethylene-synthesis, 6, 505
- Iminium salts, bromomethylene-synthesis, 6, 495
- Iminium salts, N,N-dialkyl-acyclic
 - Mannich reaction, 2, 898
- Iminium salts, dihalomethylene-amide halide synthesis, 6, 498
- Iminium salts, N,N-dimethyl(methylene)-chloride synthesis, 2, 900
 - generation in situ, 2, 901
 - Mannich reaction, 2, 899
 - preparation, 2, 899
 - reactions with enol silanes
 - Mannich reaction, 2, 905
- triflate
 - synthesis, 2, 901
 - trifluoroacetate synthesis, 2, 900
- Iminium salts, N,N-disilyl-Mannich reaction, 2, 913
- Iminium salts, halomethylene-alkoxymethyleneiminium salt synthesis, 6, 505
 - amide halide synthesis, 6, 499
 - amidine synthesis, 6, 543
 - synthesis, 6, 495
- Iminium salts, (methylthio)alkylidene-Knoevenagle reaction, 2, 368
- Iminium salts, N-silyl-Mannich reaction, 2, 913
- Iminium salts, α-thio-formation
 - Eschenmoser coupling reaction, 2, 867
- Iminium salts, trimethylsiloxymethylene-synthesis, 6, 502
- α-Imino acids
 - reduction
 - enzymes, 8, 204
- Iminodicarboxylic acid di-t-butyl ester
 - Gabriel synthesis, 6, 81
 - methyl t-butyl ester
 - Gabriel synthesis, 6, 81
- Iminodicarboxylic acids synthesis, 8, 146
- Imino esters
 - acylation, 6, 504
 - alkylation, 6, 504
 - cyclic
 - aminal ester synthesis, 6, 575
 - reaction with silyl ketene acetals
 - stereoselectivity, 2, 638
 - Imino esters, N-acyl-
 - reactions with amides, 6, 569
- Immonium cations
 - Diels–Alder reactions, 5, 409–411, 492, 500
 - initiators
 - polyene cyclization, 3, 343
- Immonium ions, N-alkylaryl-Diels–Alder reactions, 5, 500
- Incensole synthesis
 - via cyclofunctionalization of cycloalkene, 4, 373
- Indacrinone synthesis
 - via Nazarov cyclization, 5, 780
- Indane
 - intermolecular meta cycloaddition to vinyl acetate, 5, 667
- trans-Indane, 2-benzylidene-1-diphenylmethylenephotochemical reactions, 5, 721
- Indane, 1-phenyl-synthesis
 - via Nazarov cyclization, 5, 208
- Indane-2-carboxylic acid
 - Birch reduction
dissolving metals, 8, 500
- Indane-6-carboxylic acid, 1-oxo-synthesis
 - Friedel–Crafts reaction, 2, 756
- Indanediol dehydrodimers
 - C—C cleavage, 8, 995
 - Knoevenagle reaction, 2, 358
 - 1,3-Indanediol, 2-diazo-synthesis, 3, 893
- Indanenedione, perhydro-synthesis
 - via dissolving metal reductions, 8, 528
- 1,2,3-Indanetrione
 - thermal ene reaction, 2, 539
- Indanomycin synthesis
 - via cuprate 1,2-addition, 1, 126
- Indan-1-one, 2-alkyl-alkylations
 - via Michael addition, 4, 230
- Indan-1-one, 2,6-dimethyl-synthesis
 - Friedel–Crafts reaction, 2, 756
- Indan-1-one, 6-methoxy-synthesis
 - Friedel–Crafts reaction, 2, 756
- Indan-1-one, 2-methyl-synthesis
 - Friedel–Crafts reaction, 2, 756
- Indanone, perhydro-synthesis, 3, 832
- Indan-2-one, perhydro-synthesis, 5, 1173
- Indanones
 - aldol reaction, 2, 141
 - angularly substituted synthesis via Nazarov cyclization, 5, 760
 - Birch reduction
dissolving metals, 8, 509
 - oxime
 - Beckmann rearrangement, 7, 691
 - reduction
dissolving metals, 8, 123
Friedel–Crafts reaction, 2, 754, 755
via [2 + 2 + 2] cycloaddition, 5, 1133
Indazole dehydrogenation, 8, 636
Indazolidiones
benzilic acid rearrangement, 3, 831
Indazoles
Indazolines
indole synthesis
via reduction of methyl 2-azidobenzoate, 8, 386
Indazolium salts
reduction
borohydride, 8, 637
Indene, 3-chloro-1-dimethylamino-
synthesis
Vilsmeier–Haack reaction, 2, 786
cis-Indene, 8,9-dihydro-
synthesis
via thermal rearrangement, 5, 716
trans-Indene, 8,9-dihydro-
synthesis
via photoisomerization, 5, 716
Indene, 1,1-dimethyl-
synthesis
hydroalumination, 8, 744
Indene, 1-dimethylamino-
synthesis
Vilsmeier–Haack reaction, 2, 782
Indene, hexahydro-
cis-annulated
synthesis via palladium-ene reaction, 5, 50
Indene, 2-methyl-
synthesis
hydrozirconation
diastereoselectivity, 8, 688
Indene, 2-nitrohydroxy-
synthesis
Henry reaction, 2, 329
Indene, 2-vinyl-
synthesis
via photoisomerization, 5, 212
via retro Diels–Alder reactions, 5, 584
Indenecarboxylic acid
synthesis, 3, 904
Indenes
anions
phenylation, 4, 472
hydrobromination, 4, 280
ozonolysis
in ammonia, 7, 507
Pauson–Khand reaction, 5, 1047
photooxidation, 7, 98
synthesis
via [3 + 2] cycloaddition reactions, 5, 1090
via dihalocyclopropanes, 4, 1012
via photoisomerization, 5, 197
Vilsmeier–Haack reaction, 2, 782
Indenes, hydro-
synthesis
via Cope rearrangement, 5, 812
Indenoisoquinoline, tetrahydro-
synthesis
via Neber rearrangement, 6, 787
1-Indenol, 2-nitro-
synthesis
Henry reaction, 2, 329
Inden-1-one, 2-acetylamino-
synthesis
Friedel–Crafts reaction, 2, 757
Indenone, 2,3-diethyl-
synthesis
Friedel–Crafts reaction, 3, 332
Indenone-3-carboxylic acid, 2-alkyl-
synthesis, 3, 828
Indenones
Indenopyran-1,9-dione
synthesis
Knoevenagel reaction, 2, 378
Indenopyridazine-3,9-dione
synthesis
Knoevenagel reaction, 2, 378
Indenopyridine-1,3-dione
synthesis
Knoevenagel reaction, 2, 378
Indeno[2,1-b]thiophen-8-one
synthesis
Friedel–Crafts reaction, 2, 758
Indium compounds, cycroly-
type III
reactions with aldehydes, 2, 24
Indole, N-acetyl-
hydrogenation, 8, 613
Indole, 3-acyt-
benzenesulfonfyl-
synthesis
Friedel–Crafts reaction, 2, 744
Indole, 1-acyl-2,3-dihydro-7-hydroxy-
synthesis, 7, 335
Indole, 1-acyl-4-trimethylsilyl-
Friedel–Crafts reaction, 2, 742
Indole, acyl-
reduction
metal hydrides, 8, 270
Indole, 3-alkyl-
synthesis
via SN1 reaction, 4, 478
Indole, N-alkyl-
reduction
sodium borohydride, 8, 616
Indole, 4-(benzylx)
synthesis, 8, 368
Indole, 1,4-bis(trimethylsilyl)-
Mannich reaction
intermediate, 2, 968
Indole, 4-bromo-3-iodo-
synthesis, 3, 498
Indole, dihydro-
lithiated formamidines
reaction with benzaldehyde, 1, 482
Indole, 5,6-dimethoxy-
reduction
borohydrides, 8, 618
Indole, 2,3-dimethyl-
reduction
dissolving metals, 8, 615
stereochemistry, 8, 624
stereoselective reduction, 8, 624
Indole, 3-N,N-dimethylaminomethyl-
synthesis
Mannich reaction, 2, 967
Indole, 2,3-diphenyl-
Indoles
- coupling reactions, 3, 511
- cyclization
 - palladium catalysts, 4, 836
 - [2 + 2 + 2] cycloaddition reactions, 5, 1143
 - Friedel–Crafts acylation, 2, 742, 743
- Mannich reactions, 2, 966
 - with imines, 2, 970
 - with 1-piperidine, 2, 970
- metal complexes
 - addition reactions, 4, 535
 - meta metallation
 - addition reactions, 1, 463
 - reaction with copper(II) chloride, 7, 532
 - reaction with dihalocarbenes, 4, 1004
- reduction
 - hydrides, 8, 55
 - selective reduction, 8, 530
- 2-substituted
 - lithiation, 1, 474
- N-substituted
 - lithiation, 1, 473
- synthesis, 4, 429; 7, 335
 - Houben–Hoesch synthesis, 2, 748
 - via alkynes, palladium(II) catalysis, 4, 560, 567
 - via cyclization of β-aminokynones, 4, 411
 - via nitrogen-stabilized carbanions, 1, 464
 - via S_N1 reaction, 4, 478
 - Vilsmeier–Haack reaction, 2, 780
- 1H-Indoles, 3-(1-dialkylamino)alkyl-synthesis
 - via vinylogous amidamines, 4, 429; 7, 335
- Indoles, dihydro-
 - synthesis
 - via electrocyclic ring closure, 5, 713
- Indoles, hydroxy-
 - synthesis
 - via FVP, 5, 732
- Indoles, 2-substituted
 - synthesis
 - via hetero-Cope rearrangement, 5, 1004
- Indoles, vinyl-
 - thermolysis, 5, 725
- Indoline
 - Cope rearrangement, 5, 790
- Indoline, N-methyl-
 - metal complexes
 - addition reactions, 4, 535
- Indoline, 3-vinyl-
 - oxidative cleavage
 - ozone, 7, 544
- 2-Indolinones
 - synthesis, 4, 429
 - via ketocarbenoids, 4, 1057
- 3H-Indolium salts, 3-(1-pyrrolidinylmethylene)-
 - nucleophilic addition reactions, 1, 367
- Indolizidinone, 1,2-dihydroxy-
 - synthesis
 - via isosorbidic acid, 1, 594
- Indolizidines
 - synthesis, 6, 746
 - chiral, 1, 558
 - Mannich cyclization, 2, 1041
 - Mannich reaction, 2, 1010
 - via cyclization of β-allenylamine, 4, 411
- Indolizidinone
 - reduction
 - borohydrides, 8, 618
 - synthesis
 - via benzyne, 4, 510
- Indole, 2-ethoxycarbonyl-5-hydroxy-
 - Mannich reaction, 2, 967
- Indole, hexahydro-
 - synthesis, 6, 742
- Indole, 7-methoxy-
 - synthesis, 7, 335
- Indole, 5-methoxydihydro-
 - synthesis via arene-metal complexes, 4, 523
- Indole, 5-methoxy-1-methyl-
 - reduction
 - dissolving metals, 8, 614
- Indole, 2-methyl-
 - hydrogenation, 8, 612
 - synthesis
 - via hydroformylation, 4, 426
 - via intramolecular vinyl substitution, 4, 846
- Indole, 5-nitro-
 - reduction
 - dissolving metals, 8, 614
- Indole, 2-oxy-
- Indole, 2-phenyl-
 - synthesis, 3, 513
- Indole, 3-phenyl-
 - synthesis, 3, 512
- Indole, N-phenyl-
 - reduction
 - dissolving metals, 8, 614
- Indole, 1,2,3-trialkyl-
 - aminokynylation
 - Mannich reaction, 2, 967
- β-Indoleacetic acid
 - synthesis
 - via intramolecular vinyl substitution, 4, 846
- Indoleacetic acid, dihydro-
 - ester, synthesis
 - carbonylation, 3, 1038
- Indole alkaloids
 - pentacyclic
 - synthesis via Michael addition, 4, 25
 - synthesis, 3, 81
 - iminium ion–arene cyclization, 2, 1021
 - Knoevenagel reaction, 2, 372, 384
 - via oxaziridines, 1, 838
- Indole-3-carboxaldehyde
 - thallation, 7, 335
- Indole-2-carboxylates, N-alkyl-
 - reduction
 - borohydrides, 8, 618
- Indole-2-carboxylic acid
 - reduction
 - dissolving metals, 8, 614
- Indole-3-carboxylic acid
 - ethyl ester
 - reduction, dissolving metals, 8, 615
 - Indole-3-carboxylic acid
 - 1-methyl-
 - Baeyer–Villiger reaction, 7, 678
 - Indole-2,3-quinoindimethane
 - synthesis
 - Knoevenagel reaction, 2, 377
Indolizine

synthesis
via ketocarbenoids and pyrroles, 4, 1061
Indolizine, 8-acetoxy-3-acetyl-
Mannich reaction
with iminium salts, 2, 962
Indolizine, aminosynthesis, 3, 541
Indolizine, 1,2-diphenyl-
Mannich reaction
with formaldehyde and dicyclopentylamine, 2, 962

Indolizines
Mannich reaction, 2, 962
synthesis
Perkin reaction, 2, 399
Vilsmeier–Haack reaction, 2, 780
5(1H)-Indolizinone, 2,3-dihydro-
Mannich reaction
with N,N-dimethylmethyleniminium chloride, 2, 962

Indolizinosuberenones
synthesis
Friedel–Crafts reaction, 2, 765

Indolmycin
synthesis
via conjugate addition to oxazepines, 4, 206

Indolasezipine
synthesis
Friedel–Crafds reaction, 2, 765

Indololisoquinoline
synthesis, 6, 771

Indolomorphin
synthesis, 8, 621

Indolone, 2-phenyl-
rearrangement, 3, 835

Indolones
Diels–Alder reactions, 5, 408

Indolooquinolizidine
ketones
synthesis, Mannich reaction, 2, 1028
Indolooquinolizidine, ethylidene-
synthesis
Mannich reaction, 2, 1031
trans-Indolooquinolizine
synthesis
Polonovský–Potier method, 2, 1021

Indolo[2,3-a]quinolizine, octahydropyridazine
Mannich reaction, 2, 1018

Indolooquinolizidine alkaloids
synthesis
Mannich reaction, 2, 1018
via 3-lithiation of an indole, 1, 474

Indolosuberenones
synthesis
Friedel–CRAFTS reaction, 2, 765

Infrared laser beams
alkene protection, 6, 689

Ingenane diterpenoids
synthesis
via Cope rearrangement, 5, 984

Ingenol
synthesis
via [6 + 4] cycloaddition, 5, 624
via Ireland rearrangement, 5, 843
via photocycloaddition reactions, 5, 137

Ingramycin
synthesis
via macrocyclization, 6, 373

Initiators
low temperature
radical reactions, 4, 721

INOC reactions (see also 'intramolecular cycloaddition' under Nitrile oxides and derivatives)
intramolecular nitrile oxide cycloaddition, 4, 1080, 1124
tandem Diels–Alder, 4, 1132
tandem Michael reactions, 4, 1132

Inomycin
synthesis, 1, 569

Inosamines
synthesis
via Diels–Alder reaction, 5, 418

neo-Inositol, 1,4-dideoxy-1,4-dinitro-
synthesis
Henry reaction, 2, 326

Inositol phosphates
synthesis, 7, 245

Insect antifeedants
intermediate

Insect pheromones

Insect mycin synthesis
via Diels–Alder reaction, 5, 418

Inomycin
synthesis, 1, 569

Insertion reactions
C—H
carbon–carbon bond formation, 3, 1045–1062
intramolecular, 3, 1046
intramolecular, carbenes, 3, 1048
intramolecular, heterocycles, 3, 1056
photochemical, 3, 1048, 1057

Insulin
transpeptidation
kinetically controlled, 6, 399

Integrerin
酸idic acid
Baeyer–Villiger reaction, 7, 679

Interface reactions
electrochemical oxidation, 7, 790

Interhalogens
reaction with alkenes, 4, 347
Intermolecular coupling
electrochemical aromatic compounds, 7, 801

Intersaccharidic bonds
stability, 6, 634

Intromolecular addition
Baldwin’s rules
heteronucleophiles, 4, 37–41

Intromolecular coupling
electrochemical aromatic compounds, 7, 801

Intromolecular functionalization
C—H bonds, 7, 40

Intromolecular reactions
dissolving metals
reductions, 8, 528

Invictolide
synthesis
Cumulative Subject Index

Ipsdienol

radical addition reactions, 4, 754

Iodohydrin
deoxygenation
epoxides, 8, 891

synthesis
via iodomethylation with samarium diiodide, 1, 260

Iodolactamation
alkenes, 7, 503

Iodolactonization
epoxide synthesis, 6, 26
lactone synthesis, 7, 523

Iodomethylation
carboxyl compounds
samarium diiodide, 1, 260

Iodomethynlation
carboxyl methylation, 1, 261

Iodoniun salts, aryl-
arene substitution reactions, 4, 425

Iodonium tosylates, alkynylphenyl-
reaction with vinylcopper compounds, 3, 219
tandem vicinal difunctionalization, 4, 260

Iodonium ylides
ketocarbenes from, 4, 1032
don exchange resin
catalyst
Knoevenagel reaction, 2, 345

Ionic hydrogenation
benzothiophenes, 8, 629
furans, 8, 608
indoles, 8, 623
thiophenes, 8, 610
tosylates, 8, 813

β-Ionine
silyl ether
oxidative cleavage, 7, 587

Ionization potentials
electron donors, 7, 853
measurement
gas-phase, 7, 852

Ionomycin
synthesis
stereoselectivity, 4, 384
use of hydrazones, 2, 505

β-Ionone
irradiation, 5, 741
pinacols
synthesis, via electroreduction, 8, 135
synthesis
via Carroll rearrangement, 5, 835

ψ-Ionone
cyclization, 3, 349

Ionones
pinacol coupling reactions, 3, 577

Ionophore antibiotics
noncyclic
synthesis via [4 + 3] cycloaddition, 5, 612
synthesis, 2, 248
via sulfones, 6, 158

Ipalbidine
synthesis
Eschenmoser coupling reaction, 2, 881
via Diels–Alder reaction, 5, 411
via ketocarbenoids and pyrroles, 4, 1061

Ipsdienol
synthesis
Ipsenol
Cumulative Subject Index

acylation in, 2, 721
Ipsenol
synthesis
acylation in, 2, 721
enes reaction, 2, 538
via retro Diels−Alder reaction, 5, 555

Iptycenes
synthesis
via Diels−Alder reaction, 5, 383

Ireland−Claisen rearrangement
ring formation, 4, 791
stereochemistry
control, 6, 859

Ireland silyl ester enolate rearrangement
kinetics, 5, 856
variant of Claisen rearrangement, 5, 840–847

Iridium
allylic oxidation
catalyst, 7, 108
catalyst
carbonyl compound hydrogenolysis, 8, 320
reduction
transfer hydrogenation, 8, 366

Iridium, bis[chlorobis(cyclooctene)]-
catalyst
hydroisilylation, 8, 764

Iridium, cyclooctadienethi(trialkylphosphine) -
hydrogenation
alkenes, 8, 446

Iridium, cyclooctadiene(trialkylphosphine)pyridyl-
hydrogenation
alkenes, 8, 446

Iridium, tetrakis(diethylphenylphosphine)-
catalyst
hydrogenation, 8, 534

Iridium chloride
allylic oxidation, 7, 95
Iridium chloride, (3,4,7,8-tetramethyl-1,10-phenanthroline)(cyclo-1,5-octadiene)-
transfer hydrogenation, 8, 552

Iridium complexes
hydride transfer
catalyst, 8, 91
Iridium tetrafluoroborate, diacetonatodihydrido-
(triphenylphosphine)-
crystal structure, 1, 307

Iridiodiol, dehydro-
synthesis
via conjugate addition, 4, 218

Iridoids
synthesis
Knoevenagel reaction, 2, 358, 372
use of α,β-bisulfenylated lactones, 2, 186
via Ireland silyl ester enolate rearrangement, 5, 841

Iridolactones
synthesis, 3, 850
Iridomycin
synthesis, 3, 384
via magnesium-ene reaction, 5, 41
via photoisomerizations, 5, 231

Iron
reduction
enones, 8, 524
Iron, acyl complexes
aldol reactions, 2, 272
enantioselective
enolates
synthesis and use, 2, 125
reactions with α,β-unsaturated
conjugate additions, organolithium compounds, 4, 217
Iron, alkoxycyclohexadienyl-
nucleophilic addition
regiocontrol, 4, 674
Iron, (arene)cyclopentadienyl-
addition−oxidation reactions, 4, 541
synthesis, 4, 521
Iron, (η5-benzene)cyclopentadienyl-
addition−oxidation reactions, 4, 541
Iron, (benzocyclooctatetraene)tricarbonyl-
reaction with tetracyanoethylene, 4, 710
Iron, (benzylideneacetone)tricarbonyl-
reactions with dienes, 4, 665
Iron, butadienicarboxyl-
acetylation, 4, 697
synthesis, 4, 663
Iron, carbonylcyclopentadienylethoxy-
carbonyl(triphenylphosphine)-
transmetallation
stereoselective addition to symmetrical ketones, 1, 119
Iron, carbonylcyclopentadienylmethoxy-
carbonyl(triphenylphosphine)-
ketone−imine reactions, 2, 933
Iron, cyclobutadienicarboxyl
synthesis and reactions, 4, 701
Iron, cyclohexadienyl-
nucleophilic addition
regiocontrol, 4, 674
synthesis, 4, 663
via nucleophilic addition, 4, 664
Iron, cyclohexadienylmethoxycarbonyl-
nucleophilic addition
regiocontrol, 4, 674
Iron, cyclopentadienylfluoroarene-
nucleophilic substitution, 4, 530
Iron, cyclopentadienyl(halobenzene)-
nucleophilic substitution, 4, 529–531
Iron, cyclopentadienyl(η5-nitrobenzene)-
nucleophilic substitution, 4, 530
Iron, dicarbonylcycloheptadienyl(triphenylphosphine)-
nucleophilic addition, 4, 673
Iron, dicarbonylcycloheptadienyl(triphenylphosphite)-
hexafluorophosphate
synthesis and reactions, 4, 674
Iron, dicarbonylcyclohexadiene(triphenylphosphine)-
electrophilic substitution, 4, 698
Iron, dicarbonylcyclopentadienyl-
alkene complexes
reactions with nucleophiles, 4, 562
Lewis acid, 1, 307
nucleophilic addition
alkenes, 4, 576
Iron, dicarbonylcyclopentadienyl(cinnamaldehyde)-
crystal structure, 1, 308
Iron, dicarbonylcyclopentadienyl(cyclohexenone)-
crystal structure, 1, 308, 314
Iron, dicarbonylcyclopentadienyl(4-methoxy-
3-butenone)-
crystal structure, 1, 308
Iron, dicarbonylcyclopentadienyl(tropane)-
crystal structure, 1, 308
Iron, (η⁴-o-dichlorobenzene)cyclopentadienyl-
nucleophilic substitution, 4, 529
Iron, dodecacarbonyltri-
reactions with dienes, 4, 665
Iron, nonacarbonylid-
[3 + 2] cycloaddition reactions
with α,α'-dibromo ketone, 5, 282
dehalogenation
α-halocarbonyl compounds, 8, 991
reactions with dienes, 4, 665
Iron, pentacarbonyl-
catalyst
carbonylation of alkyl and aralkyl halides, 3, 1026
deoxygenation
epoxides, 8, 890
pinacol coupling reactions
aromatic aldehydes, 3, 565
reactions with dienes, 4, 665
Iron, tricarbonylcyclopentadienyl-
formylation, 4, 706
reactions with acyl tetrafluoroborates, 4, 707
reactions with dienophiles, 4, 710
reaction with phosphoryl trichloride, 4, 706
Iron, tricarbonylnorbornadiene-
reactions with carbanions, 4, 580
reactions with nucleophiles, 4, 670
synthesis, 4, 665-670
Iron, tricarbonylcyclooctatetraene-
Friedel-Crafts acetylation, 4, 706
reaction with tetracyanoethylene, 4, 709
Iron, tricarbonyl(2,4,6-cyc1ohexadiene)-
reaction with tetracyanoethylene, 4, 710
Iron, tricarbonylnorbornadiene-
oxidative cyclization, 4, 670
reactions with carbon electrophiles, 4, 697-702
Iron, tricarbonyl(heptafu1valene)-
reaction with tetracyanoethylene, 4, 710
Iron, tricarbonyl(heptafu1vene)-
reaction with phosphoryl trichloride, 4, 707
Iron, tricarbonyl(1,3,5-heptatriene)-
derivatives
reaction with tetracyanoethylene, 4, 710
Iron, tricarbonyl(1-hydroxymethylcyclohexadiene)-
synthesis, 4, 669
Iron, tricarbonyl(1-N-methoxycarbonylalapine)-
reaction with tetracyanoethylene, 4, 711
Iron, tricarbonyl(1-methylcyclohexadienyl)-
synthesis, 4, 669
Iron, tricarbonyl(η⁴-trans-pentadiene)-
hydride abstraction, 4, 663
Iron, tricarbonylpentadienol-
reaction with acid, 4, 664
Iron, tricarbonyl(η⁴-tetraene)-
acylation, 4, 706-709
alkylation, 4, 706-709
electrophilic reactions, 4, 706
Iron, tricarbonyl(η⁴-triene)-
acylation, 4, 706-709
alkylation, 4, 706-709
electrophilic reactions, 4, 706
Iron, tricarbonyl(tropane)-
reaction with tetracyanoethylene, 4, 710
synthesis, 4, 707
Iron, tricarbonyl(vinylcyclobutadiene)-
derivatives
reaction with tetracyanoethylene, 4, 710
Iron carbonyls
dehalogenation
α-halocarbonyl compounds, 8, 991
reductive cleavage
ketol acetates, 8, 993
Iron chlorides
cyclohexadienyliron complexes
decomplexation, 4, 674
epoxide ring opening, 3, 770
lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 485
reaction with organoboranes, 7, 604
silica support
dehydration, 7, 843
Iron clusters
reductions
nitroarenes, 8, 371
Iron complexes
allylic oxidation, 7, 95
carbonylation
formation of asymmetric iron acyls, 3, 1029
catalysts
aryl Grignard reagent reaction with alkenyl halides, 3, 494
α,β-unsaturated acyl Diels-Alder reaction, 5, 367-369
Iron complexes, acryloyl-
[3 + 2] cycloaddition reactions
with allyltributyltin, 5, 277
Iron complexes, allenyl-
[3 + 2] cycloaddition reactions, 5, 279
Iron complexes, η¹-alleny-
[3 + 2] cycloaddition reactions, 5, 272
with toluenesulfonyl isocyanate, 5, 275
Iron complexes, η¹-2-butenyl-
[3 + 2] cycloaddition reactions, 5, 273
Iron complexes, η¹-butynyl-
[3 + 2] cycloaddition reactions
with cyclohexene, 5, 277
Iron complexes, carbene reactions with alkenes, 5, 1088
reactions with 1,3-dienes, 5, 1088
Iron complexes, cycloheptadienyl-
synthesis, 4, 686
Iron complexes, cyclohexadienylnucleophilic addition
stere hindrance, 4, 675
trimethylsilyl-substituted enolate nucleophilic addition, 4, 677
Iron complexes, cyclopentadienylicarbene cyclopropanation, 5, 1086
Iron complexes, dicarbonylnorbornadiene-
[3 + 2] cycloaddition reactions, 5, 272
Iron complexes, dienetricarbonyl-
acylated cleavage, 4, 702
formylation, 4, 701
Iron complexes, dienyl-
addition of chiral nucleophiles, 4, 688
enantiomERICally enriched synthesis, 4, 687
nucleophilic additions, 4, 670-674
resolution, 4, 687
Iron complexes

stability, 4, 664
symmetrical
reaction with chiral nucleophiles, 4, 689
synthesis, 4, 665–689
trimethylsilyl-substituted
hydride abstraction, 4, 667, 669
X-ray crystallography, 4, 664

Iron complexes, η1-2-methallyl-
[3 + 2] cycloaddition reactions, 5, 273
Iron complexes, η1-1-propenyl-
[3 + 2] cycloaddition reactions
with cyclohexenone, 5, 280

Iron complexes, 2-propynyl-
[3 + 2] cycloaddition reactions, 5, 277
Iron complexes, α-thioalkyl-

Iron complexes, tricarbonyl(4-methyltropone) -
[3 + 2] cycloaddition reactions, 5, 274
Iron complexes, tricarbonyltropylum-
[3 + 2] cycloaddition reactions, 5, 274
substituted
[3 + 2] cycloaddition reactions, 5, 274
Iron complexes, α,β-unsaturated acyl-
[3 + 2] cycloaddition reactions
with allylstannanes, 5, 277
Michael acceptors
tandem vicinal difunctionalization, 4, 243
cis-γ-Iron
precursor
synthesis via intramolecular ene reaction, 5, 18
ψ-Iron
cyclization
Lewis acid induced, 3, 349

Iron enolates
acetyl
aldol reaction, diastereofacial selectivity, 2, 316
aldol reaction, 2, 315
propionyl
aldol reaction, 2, 317

Irones
synthesis
via hydroformylation, 4, 924

Iron-graphite
reduction
vicinal dibromides, 8, 797

Iron hydrides
reduction
unsaturated carbonyl compounds, 8, 550

Iron nitrate
nitration with
clay-supported, 6, 111
reduction
dissolving metals, 8, 526
solid support
clay, 7, 846

Iron oxide
catalysts
reduction, 8, 366
Iron perchlorate, 2,6-dichlorophenylporphyrin-
azaridination, 7, 484
Iron polynucleararylenes
reduction
α-halo ketones, 8, 994
Iron porphyrins
alkene epoxidation catalysis, 7, 382
γ-Irradiation

hydrosilylation
unsaturated hydrocarbons, 8, 764
Isatin, 5-bromo-1-piperidyl-
reaction with naphthols
Mannich reaction, 2, 958

Ishwarane
synthesis, 3, 20

Ishwarone
synthesis, 3, 20

Isoacoragermacrone
isomerization, 7, 619
Isoalloxazines
synthesis, 4, 436

Isomides, O-acyl-
synthesis
via Ritter reaction, 6, 293

Isomiijil
synthesis, 3, 586, 603
Isoasotane, demethoxy-
synthesis, 3, 697

Isoatsirene
synthesis, 6, 780

Isobenzofuran, 1,3-diphenyl-
Diels–Alder reactions
selenoaldehydes, 5, 442

Isobenzofuranone
synthesis, 7, 340

Isobenzofurans
cycloaddition reactions, 1, 464
Diels–Alder reactions, 5, 413
synthesis, 7, 340
via Diels–Alder reactions, 5, 382
via retro Diels–Alder reactions, 5, 580

Isoboldine
synthesis, 3, 679

Isoborneol, 3-trans-benzylidene-
epoxidation, 7, 365

Isoborneol, 10-mercapto-
Michael addition, 5, 370

Isoborneol-10-diisopropylsulfonamide
esters
reaction with imines, 5, 102

Isobornylamine
imine anion from cyclohexanone
alkylation, 6, 725

Isobutene
arene alkylation
Friedel–Crafts reaction, 3, 306
e re reactions
Lewis acid catalysis, 5, 4
photolysis
with 3-butyn-2-one, 5, 164
Ritter reaction
mechanism, 6, 263

Isobutene, octafluoro-
reaction with phenyl azide, 6, 500

Isobutylamides, α-alkyne
synthesis, 8, 694

Isobutylamine, α-butyln-
methylation, 3, 30

Isobutyraldehyde
aldol reactions
diastereofacial selectivity, 2, 264
potassium enolates
alkylation, 3, 20

Isobutylamides
alkylation, 6, 501
Isobutyric acid,
α-lithiated esters
crystallization, 1, 41
Isobutyric acid, α-amino-
polypeptides
synthesis, 2, 1096
Isobutyric acid, α-bromo-ethyl ester
acylation, Reformatsky reaction, 2, 296
Reformatsky reaction, 2, 278
Isobutyric acid, isobutyryl-ethyl ester
Reformatsky reaction, 2, 278
Isobutyrophenone
enolate
Michael additions, 5, 1082
Isobutyryl group
guanine-protecting group, 6, 642
Isocalamendiol
synthesis
transannular ene reaction, 2, 553
Isocarbacyclin
synthesis, 1, 568; 3, 139
via 1,2-addition of silylcuprate, 1, 133
via Claisen rearrangement, 5, 833
Isocaryophyllene
transannular cyclization, 3, 387
Isochroman-3-one
synthesis
via benzocyclobutene ring opening, 5, 681
Isochromanones
synthesis
via directed metallation, 1, 463
via hetero electrolycycloization, 5, 741
Isocomene
synthesis, 3, 385, 713
e ene reaction, 2, 546
via Carroll rearrangement, 5, 835
via intramolecular ene reaction, 5, 11
via Pauson-Khand reaction, 5, 1062
via photocycloaddition, 5, 143, 660, 662
Isocoryziberine
synthesis, 3, 807
Isocoumarins
synthesis, 3, 543
via bromocyclization of phenylethynylbenzoate
ester, 4, 395
via orthothallation/palladium catalysts, 4, 841
via palladium(II) catalysis, 4, 558
via 3M1 reaction, 4, 479
Isocyanate, chlorosulfonyl
acid anhydride synthesis, 6, 313
amide synthesis, 6, 386
Isocyanates
amide synthesis, 6, 399
2-azetidinones from, 5, 102–108
cycloaddition reactions
heterocycle synthesis, 5, 1158
with alkylnes, 5, 1155
reactions with organoytterbium reagents, 1, 278
reactions with ytterbium ketone dianions, 1, 280
reduction, 8, 254
triphenylstannane, 8, 74
solvolysis
to give amines, 6, 801
synthesis
carbonylation, 3, 1039
solvolytic conversion, 6, 796
Isocyanates, phenyl
reduction, 8, 254
Isocyanates, trichloroacetyl
reaction with dithyropyran
glycal synthesis, 5, 108
Isocyanides
acidic hydrolysis, 6, 294
addition reactions
carbon-centered radicals, 4, 765
amide synthesis, 6, 387
amidine synthesis, 6, 546
amidinium salt synthesis, 6, 517
chemistry, 2, 1083
iminate synthesis, 6, 533
imidoyl halide synthesis, 6, 526
isomerization, 6, 294
ortho-lithiated aryl
synthesis, 3, 255
metal–ammonia reduction, 8, 830
properties, 6, 293
reactions with η-allylpalladium complexes, 4, 600
regioselectivity, 4, 643
reactions with Fischer carbene complexes, 5, 1109
reactions with Grignard reagents, 1, 544
reduction, 8, 830
tributylstannane, 8, 831
Ritter reaction, 6, 293
substitution reactions, 6, 261–296
synthesis, 6, 242
via amides, 6, 489
thioimidate synthesis, 6, 540
Isocyanides, 4-nitrophenyl
O-acyl thiohydroxamate photolysis, 7, 731
Isocyanides, tosylmethyl
acyl anion equivalents, 1, 571
Isocyanooacetates
Aldol reactions
Lewis acid asymmetric induction, 1, 320
(2-2)-Isocyanopupukeanane
synthesis, 2, 161
Isocyanuric acid, trichlorosulfide chlorination, 7, 207
Isocyochyelene
synthesis
Prins reaction, 2, 542
Isodermolin
synthesis, 1, 570
Isodicyclopentadiene
cycloaddition reactions
tropones, 5, 618
Isodysidenin, dimethyl-
synthesis
Ugi reaction, 2, 1096
Isogomaketone
synthesis
alkenylsilane acylation, 2, 713
Isoellipticine
synthesis
via Diels–Alder reaction, 5, 385
Isoeugenol
oxidation, 3, 690
Isoflavanones
synthesis
Isoflavans
via isoflavones, 7, 831

Isoflavans
synthesis
via isoflavones, 7, 831

Isoflavones
reduction
DIBAL-H, 8, 544
synthesis, 7, 827
via chalcone, 7, 829
Vilsmeier–Haack reaction, 2, 790

Isogermacrone
epoxide
rearrangement, 3, 752

Isogibberellin
from gibberellin
Wagner–Meerwein rearrangement, 3, 715

Isogimididione
synthesis
via retro Diels–Alder reactions, 5, 579

Isoharringtonine
synthesis, 3, 596

Isoheterotropamine
synthesis
via retro Diels–Alder reaction, 5, 569

Isophorone
cleavage, 6, 635
via photocycloaddition, 5, 167
Ugi reaction, 2, 1101
Schöpf reaction, 2, 943

Isooctopine
synthesis, 8, 145

Isopelletierine
synthesis

Schöpf reaction, 2, 943

Isoflavans
Cumulative Subject Index
Hydrosilylation, 8, 779
reaction with 1,2,4-trimethylbenzene
Friedel–Crafts reaction, 3, 322
reaction with vinylchromium carbene complexes, 5, 1070
selective reduction, 8, 567, 568
zirconocene complex
reactions with carbonyl compounds, 1, 163
Isoprene, stannyli-
Diels–Alder reactions, 5, 337
Isoprene monoepoxide
coupling reactions
with alkynyl Grignard reagents, 3, 476
Isoprenoids
conjugated
synthesis, 3, 882
microbial hydroxylation, 7, 62
synthesis via Ramberg–Bäcklund reaction, 6, 161
Isopropenyl acetate
reaction with acetics
in synthesis of botryodiplodin, 2, 612
reaction with triethylmethoxytin
preparation of organotin(IV) enol ethers, 2, 608
Isopropenyl acetooacetate
synthesis via retro Diels–Alder reactions, 5, 558
Isopropoxy group
cyclohexadienyliron complexes
directing effect, 4, 675
Isopropylamine, β-phenyl-
synthesis, 8, 376
Isopropylidene ketals
protecting group
carbohydrates, 6, 631
Isoproterenol
synthesis, 2, 1086
Isopulegol
oxidation
solid support, 7, 841
Isopulegone
oxidation, 7, 154
Isopyrrolcaliferol
synthesis via electrocyclization, 5, 700
Isoquinoline
electroreduction, 8, 594
hydrogenation
nickel catalysts, 8, 597, 598
2-oxide
deoxygenation, 8, 391
reactions with allenic tin, 2, 86
reduction
borohydrides, 8, 581
dihydropyridine, 8, 589
dissolving metals, 8, 596
homogeneous catalysis, 8, 600
metal hydrides, 8, 580
reductive alkylation
borohydrides, 8, 581
Reissert compounds, 8, 295
synthesis
aldol cyclization, 2, 173
Isoquinoline, N-acyl-1-alkylidene-1,2,3,4-tetrahydro-
hydrogenation
synthesis of isoquinoline alkaloids, 8, 461
Isoquinoline, 1-alkyl-
regioselective synthesis, 4, 446
Isoquinoline, 4-alkyl-
synthesis
use of imine anions, 2, 482
Isoquinoline, benzyl-
asymmetric synthesis, 3, 81
Isoquinoline, 3-bromo-
S_{RN}1 reaction, 4, 462
Isoquinoline, 2-chloro-
coupling reactions
with Grignard reagents, 3, 461
Isoquinoline, 4-chloro-
coupling reactions
with Grignard reagents, 3, 461
Isoquinoline, 6-chlorotetrahydro-
synthesis via arene–metal complexes, 4, 523
Isoquinoline, cyano-
reduction
borohydrides, 8, 581
synthesis, 4, 433
Isoquinoline, dihydro-
synthesis, 6, 272, 771
diva diazoalkene cyclization, 4, 1157
dia Ritter reaction, 4, 293; 6, 295
Isoquinoline, 3,4-dihydro-
reduction with phthalide enolates
synthesis of protoberberine alkaloids, 2, 946
silylation, 1, 366
N-silyliminium salts
Mannich reaction, 2, 913
Isoquinoline, 3,4-dihydro-6,7-dialkoxy-
reactions with organometallic compounds, 1, 366
Isoquinoline, 3,4-dihydro-6,7-dimethoxy-
reactions with sulfanyl-stabilized carbonanes, 1, 516
Isoquinoline, hydro-
synthesis
Mannich reactions, 2, 1023
Isoquinoline, p-hydroxybenzyltetrahydro-
anodic oxidation, 3, 666
Isoquinoline, 10-hydroxydecahydro-
synthesis stereochemistry, 2, 1023
Isoquinoline, hydroxytetrahydro-
oxidation, 7, 339
Isoquinoline, 5-nitro-
reduction
borohydrides, 8, 582
Isoquinoline, 1-nitroso-
synthesis via oxidation of sulfimides, 7, 752
Isoquinoline, octahydro-
synthesis, 6, 757
Isoquinoline, perhydro-
synthesis
N-acyliminium ions, 2, 1073
Isoquinoline, pivaloyl-
lithiated
reaction with cyclohexanone, 1, 481
Isoquinoline, N-pivaloyltetrahydro-
boromagnesium derivative
crystal structure, 1, 35
Isoquinoline, tetrahydro-
alkylation, 3, 71
asymmetric synthesis
 Isoquinoline

Cumulative Subject Index

Isoquinoline

- N-acyliminium ions, 2, 1067
 - reactions with aldehydes, 1, 341
 - metallation, 1, 481
 - oxidation
 - formation of nitrene, 7, 745
 - oxidative coupling, 3, 665
 - synthesis, 6, 736, 738
 - via Diels–Alder reactions, 5, 322

Isoquinoline, tetrasubstituted

- synthesis via Beckmann rearrangement, 7, 695

Isoquinoline, 1-trichloromethyltetrahydro-

- synthesis, 6, 736

Isoquinoline, 1-trimethylstannyl-

- Friedel–Crafts reaction, 2, 743

1,3(2,4)-Isoquinolidinediones

- ring contraction, 3, 835

Isoquinoline formamidine, tetrahydro-

- alkylation
 - synthesis, 3, 75

Isoquinolinephosphonates, dimethyl-

- synthesis, 4, 446

Isoquinolines

- (E)-fused
 - synthesis, 1, 475
 - via dihalocarbenes, 4, 1004
 - via Sml reaction, 4, 478

Isoquinolines, 5,6-dihydro-

- synthesis via FVP, 5, 718

Isoquinolinium cations

- Diels–Alder reactions, 5, 499, 500

Isoquinolinium cations, 2,4-dinitrophenyl-

- Diels–Alder reactions, 5, 323

Isoquinolinium salts

- reduction
 - aluminum hydrides, 8, 587
 - borohydrides, 8, 587

Isoquinolinium salts, N-alkyl-3,4-dihydro-

- Mannich reaction, 2, 912

Isoquinolinodioxopyrroline

- Diels–Alder reactions, 5, 323

Isoquinolinoindol alkaloids

- tetracyclic
 - synthesis via [2 + 2 + 2] cycloaddition, 5, 1150

3(2H)-Isoquinolinones, 1,4-dihydro-

- synthesis via Sml reaction, 4, 477

Isoquinolin-1-ones, 1,2,3,4-tetrahydro-

- N-substituted, synthesis
 - carbonylation, 3, 1038

1(2H)-Isoquinolone, 3-aryl-4-hydroxy-3,4-dihydro-

- synthesis
 - Mannich reaction, 2, 927

Isoquinolones

- synthesis
 - via arynes, 4, 503

Isoquinolones, dihydro-

- synthesis
 - Mannich reaction, 2, 928, 956
 - via Sml reaction, 4, 479

Isoquinuclidines

- synthesis, 6, 86
 - via Wittig reaction, 1, 757

Isoquenieratene

- synthesis, 3, 585

Isoretronone

- synthesis
 - Eschenmoser coupling reaction, 2, 881
 - via Baeyer–Villiger reaction, 7, 677

Isoselenoalkanes

- reduction, 8, 658

Isoselenocyanates

- reduction
 - tributylstannanes, 8, 830

Isoselylene

- synthesis
 - Prins reaction, 2, 542

Isoselvin

- synthesis, 3, 691

Isoselvirkine

- synthesis, 1, 593

Isoselvirkine

- Mannich reaction, 2, 1031

Isoselvirkine

- ethylmagnesium bromide complex
 - crystal structure, 1, 13

Isoselvirkine

- synthesis, 1, 566
 - use of vanadium oxytrifluoride, 3, 675

Isoselvirkine

- from steviol
 - Wagner–Meerwein rearrangement, 3, 715

Isotetralin

- reaction with dihalocarbenes, 4, 1002

- reduction
 - Wilkinson catalyst, 8, 445

Isoselvirkine

- reduction, 8, 656

Isoselvirkine

- amide synthesis, 6, 399

- reduction, 8, 830

- tributylstannane, 8, 831

Isoselvirkine

- allyl-
 - synthesis
 - via allylthiocyanates, 6, 846

Isoselvirkine

- β-trans-phenylselenoalkyl
 - synthesis, 7, 496

Isoselvirkine

- O-alkyl-
 - imide alkylation, 6, 74
 - phthalimide alkylation, 6, 80

Isoselvirkine

- alkylaryl-
 - hydrogenolysis, 8, 912

Isoselvirkine

- O-alkyl-NN-dicyclohexyl-
 - hydrogenolysis, 8, 815

Isoselvirkine

- allyl-
 - π-allylpalladium complexes from, 4, 590

Isoselvirkine

- O-aryl-NN′-dialkyl-
 - hydrogenolysis, 8, 912

Isoselvirkine

- O-aryl-NN′-dialkyl-
 - hydrogenolysis, 8, 912

Isoselvirkine

- O-aryl-NN′-dicyclohexyl-
 - synthesis, 8, 913

Isoselvirkine

- O-aryl-NN′-diethyl-
 - hydrogenolysis, 8, 912
Isourea, O-geranyl-
reaction with phthalimide
N-allylation, 6, 86
Isourea, O-linalyl-
reaction with phthalimide
N-allylation, 6, 86
Isourea, O-methyl-N,N'-dicyclohexyl-
alkylation, 6, 74
Isovaleraldehyde
aldol reaction
2,2,5-trimethylcyclopentanone, 2, 154
Isoxazole, amino-
synthesis
via activated allene, 4, 56
Isoxazole, 5-chloro-
dechlorination
sodium borohydride, 8, 646
Isoxazole, 5-cyano-
reduction, 8, 646
Isoxazole, sulfanyl-4,5-dihydro-
methallated
reaction with aldehydes, 2, 487
Isoxazole, 3-p-tolylsulfinylmethyl-4,5-dihydro-
methallated
reaction with aldehydes, 2, 486
Isoxazoles
Beckmann fragmentation, 6, 775
Diels–Alder reactions, 5, 491
hydrogenation
over Pd or Pt, 6, 403
rearrangement, 6, 543
reduction, 8, 644
reductive cleavage, 8, 392
synthesis
via Horner reaction, 1, 779
Isoxazoles, 3-aryl-
synthesis
via retro Diels–Alder reactions, 5, 584
Isoxazoles, 4,5-dihydro-
reductive cleavage, 8, 392
Isoxazoles, 4-(oxoalkyl)-
pyridines from, 8, 645
Isoxazoles, 4-silyl-
synthesis
via [3 + 2] annulations, 1, 602
Isoxazolidine, tetrahydro-
reduction, 8, 395
Isoxazolidine, N-methyl-
synthesis
via nitrile oxide cyclization, 4, 1131
Isoxazolidine, 2-phenyl-3,5-dioxo-
Knoevenagel reaction, 2, 357
Isoxazolines
bicyclic
synthesis via 1,3-dipolar cycloadditions, 4, 1077
bridged
synthesis, 1, 393
synthesis via nitrone cyclization, 4, 1114
fused

Ivanov reaction
synthesis via nitrene cyclization, 4, 1113, 1114
reduction, 8, 648
ring opening, 8, 648
synthesis
via 1,3-dipolar cycloadditions, 4, 1076
2-Isoxazole, 3,5-diphenyl-
reduction
LAH, 8, 647
Isoxazoline, methoxycarbonyl-
synthesis
gold(I) enolate, 2, 233
2-Isoxazoline, 2-methyl-
reduction, 8, 647
Isoxazoline-4-carboxylic acids
esters of
reduction, 8, 647

Isoxazolines
5,9-fused bicyclic
synthesis via nitrile oxide cyclization, 4, 1127
in tetrahydropyran cyclization
stereoselectivity, 4, 383
reduction, 8, 70, 647
5-substituted
synthesis via 1,3-dipolar cycloadditions, 4, 1079
synthesis
via 1,3-dipolar cycloadditions, 4, 1078
Δ²-Isoxazolines
synthesis, 7, 628
Isobazolin-5-one
hydrogenation
palladium catalyst, 8, 649
Isobazolium salts
reduction, 8, 644, 646
Isobazolones
Knoevenagel reaction, 2, 364
stereoselectivity, 2, 351
Isobazolylsulfonylamides
hydrogenation, 8, 645
Itaconic acid
asymmetric hydrogenation
homogeneous catalysis, 8, 461
esters
hydrogenation, 8, 449
transfer hydrogenation
triethylammonium formate, 8, 84
Iterative rearrangements, 5, 891–896
Iturin acid
synthesis
Eschenmoser coupling reaction, 2, 875
Ivalin
synthesis
via conjugate addition to α,β-unsaturated imine, 4, 211
Ivanov reaction
carboxylic acid dianions
reaction with aldehyde or ketone, 2, 210
stereoselectivity
effect of counterion, 2, 211
Zimmerman–Traxler transition states, 2, 153
Japanese hop ether
 synthesis
 via Pauson–Khand reaction, 5, 1051
Jasmonate, methyl-
synthesis
 via conjugate addition, 4, 215

Jasmonate precursor synthesis, 1, 558
Jasmonate synthesis
 via Grignard addition, 1, 407
 via Nazarov cyclization, 5, 780
 via retro Diels–Alder reactions, 5, 561
 via thioesters, 6, 439
 via Wacker oxidation, 7, 454
Jasmonate, dihydro-
synthesis, 1, 563; 3, 869; 7, 457
 via [3 + 2] cycloadition reactions, 5, 308

Jasmonic acid
 biosynthesis
 via Nazarov cyclization, 5, 780
 methyl ester
 asymmetric synthesis, 6, 150
 synthesis, 3, 653
Jasmonic acid, dihydro-
methyl ester
 synthesis, 2, 710

Jasmonoids
 synthesis, 1, 566
 conjugate addition, 2, 331

Jatrophacones
 synthesis
 via Diels–Alder reaction, 5, 342

Jatrophone
 synthesis, 3, 26

Jatrophone, 28-hydroxy-
synthesis
 via [3 + 2] cycloadition reactions, 5, 311

Johnson–Faulkner rearrangement
 aldois, 5, 839

Johnson ortho ester rearrangement
 allyl alcohols
 remote stereocontrol, 5, 864
 variant of Claisen rearrangement, 5, 839

Johnson reaction
 use of N-methylphenylsulfonimidoylmethylthium, 1, 737

Jones oxidation
 chromium(VI) reagents
 alcohols, 7, 255
 ethers, 7, 240

Jones reagent
 cyclohexadienyliron complexes
 decomplexation, 4, 674

Joubertamine, 3-O'-methoxy-4'-O-methyl-
synthesis
 stereocontrolled, via Eschenmoser rearrangement, 5, 838

Joubertamine, O-methyl-
synthesis
 via cyclohexadienyliron complexes, 4, 674

Juglone
 Diels–Alder reactions, 5, 373, 376

Julia coupling
 allylsilanes, 2, 586
 reductive cleavage, 1, 794
 E/Z-selectivity, 1, 793
 sulfur-stabilized alkenations, 1, 792

Julolidine
 synthesis
 Eschenmoser coupling reaction, 2, 881

Juncusol
 synthesis
 via retro Diels–Alder reaction, 5, 572

Junenol
 synthesis
 ene reaction, 2, 541

Justicidin
 synthesis
 via ortho-directed addition, 1, 468

Juvabione
 synthesis, 2, 91; 8, 948
 from protected cyanohydrins, 3, 198
 via Cope rearrangement, 5, 821

Juvenile hormone
 synthesis, 3, 99, 107
 via iterative rearrangements, 5, 891
K-glucoride
synthesis, 8, 169
K-selectride — see Potassium tri-s-butylborohydride
Kahweol
synthesis
via cyclopropane ring opening, 4, 1044
Kainic acid
synthesis
via Diels–Alder reaction, 5, 468
α-Kainic acid
synthesis
via intramolecular ene reaction, 5, 14
via Ireland rearrangement, 5, 843
Karachine
synthesis
Mannich reaction, 2, 1013
Karahanaenone
synthesis
pinacol rearrangement, 3, 728
via Cope rearrangement, 5, 803, 976
via [4 + 3] cycloaddition, 5, 603
ent-Kaurane
microbial hydroxylation, 7, 64
Kaurene
rearrangement, 3, 715
synthesis
via Birch reduction, 8, 500
KDO synthetase
organic synthesis
use in, 2, 465
Kessanol
synthesis
diene reaction, 2, 551
Knoevenagel reaction, 2, 381
via cyclofunctionalization of cycloalkene, 4, 373
Ketal, cyclopropyldene
diol protection
removal, 6, 660
Ketal, cyclohexylidene
diol protection
removal, 6, 660
Ketal, cyclopentylidene
diol protection
removal, 6, 660
Ketal, isopropylidene
diol protection
removal, 6, 660
Ketals
cyclic
selective reduction, 8, 217
asymmetric epoxidation
compatibility, 7, 401
carbonyl group protection, 6, 675
chiral
conjugate additions, 4, 208–210
cyclic
diol protection, 6, 659
reduction
metal hydrides, 8, 267
α,β-unsaturated
addition reactions with alkylaluminum compounds, 1, 88
Ketals, cyclopentene
vinylcarbene generation
[4 + 3] cycloaddition reactions, 5, 599
Ketals, α-hydroxy
chiral
addition reactions with alkylaluminum compounds, 1, 89
Ketene, dichloro-
generation, 5, 86
Ketene, diphenyl-
reaction with n-allylpalladium complexes, 4, 602
reaction with benzoquinone, 5, 86
reaction with ethoxyacetylene, 5, 732
reaction with tricarbonyl(cycloheptatriene)iron complexes, 4, 710
Ketene, vinyl-
synthesis
via cyclobutene, 5, 675
Ketene acetals
[2 + 2] cycloaddition reactions, 5, 71
Diels–Alder reactions, 5, 461
ortho acid synthesis, 6, 556
preparation, 2, 605
Eschenmoser coupling reaction, 2, 869
reactions with isocyanates, 5, 103
reaction with vinyl ethers, 5, 684
synthesis
via Horner reaction, 1, 774
Ketene N,O-acetals
protonation, 6, 505
Ketene O,O-acetals
2,2-bis(dialkox)carbonitrile synthesis, 6, 564
Ketene S,N-acetals
alkylmercaptomethyleniminium salt synthesis, 6, 511
Ketene S,S-acetals
hydrolysis
synthesis of thiol esters, 6, 444
Ketene N,O-acetals, N-allyl-
Claisen rearrangement, 6, 861
Ketene acetals, bis(trimethylsilyl)-
reaction with imines, 5, 102
Ketene O-alkyl O'-silyl acetals
Vilsmeier–Haack reaction, 2, 792
Ketene aminals
amidinium salt synthesis, 6, 518
2,2-bis(dialkylamino)carbonitrile synthesis, 6, 577
reactions with isocyanates, 5, 103
tris(dialkylamino)alkane synthesis, 6, 582
Ketene dithioacetals
alkynylsilane cyclization reactions, 1, 608
coupling reactions
with alkyl Grignard reagents, 3, 448
deprotonation
γ-selectivity, 2, 72
synthesis, 6, 134
Ketene-N-methylinine, diphenyl-
cycloaddition reactions
metal catalyzed, 5, 1195
Ketenes
acetals
silyl enol derivatives, 3, 50
acylation, 6, 332
Ketenes, thiols, 6, 443
alkali metal enolates, 2, 107
bis(trimethylsilyl) acetals
aldol condensation, stereoselectivity, 2, 634
reaction with aldehydes, 2, 632
boron enolates
stereoselectivity, 2, 112
carbene precursors, 4, 961
dithioacetal monoxide
addition reaction with enolates, 4, 100, 109
electrocyclization, 5, 730-734
formation
lithium ester enolates, 2, 278
hydration, 4, 299
intramolecular [2 + 2] cycloaddition, 5, 1021
Perkin reaction, 2, 399
reaction with boron reagents
production of alkenyloxyboranes, 2, 242
reaction with carbonyl compounds
chemoselectivity, 5, 86
regioselectivity, 5, 86
stereoselectivity, 5, 87-89
reaction with dienes
transition metal catalysis, 4, 709-712
reaction with imines
chemoselectivity, 5, 92-99
regioselectivity, 5, 92-99
stereoselectivity, 5, 95-99
reaction with nitriles, 6, 401
reaction with silylamines, 2, 605
silyl acetals
reaction with nitroarenes, 4, 429
rhodium enolates, alde reaction, 2, 310
synthesis
via retro Diels–Alder reactions, 5, 558
thioacetal monoxides
Michael addition, 4, 10
tin enolates
synthesis, 2, 117
Ketenes, cyano-
generation, 5, 90
Ketenes, diacyl S,S-acetals
synthesis
Knoevenagel reaction, 2, 364
Ketenes, dimethyl-
synthesis
via retro Diels–Alder reactions, 5, 558
Ketenes, diphenyl-
[3 + 2] cycloaddition reactions
with n-pentyllithium complexes, 5, 277
Ketenes, diphenyl-
Knoevenagel reaction, 2, 395
Ketenes, β-keto
aminals
alkylation, 6, 518
Ketenes, methylene-
synthesis
Knoevenagel reaction, Meldrum’s acid, 2, 356
Ketenes, β-(methymercaptotioiicarbonyl)-
aminals
alkylation, 6, 519
Ketenes, vinyl-
[2 + 2] cycloaddition
1,3-dienes, 5, 1020
intramolecular cycloadditions, 5, 1029
synthesis
Ketocarbenes
rearrangement
inhibition by copper, 3, 896
Wolff rearrangement, 3, 893
Keto esters
dianions
aldo reactions, 2, 189
enzymic reductions
lactate dehydrogenases, 8, 189
reactions with organoaluminum-ate complexes
facial selectivity, 1, 86
Reformatsky reaction
regioselectivity, 2, 284
synthesis
double carbonylation, 3, 1039

α-Keto esters
synthesis, 7, 661
via oxalic acid derivatives, 1, 425

β-Keto esters
cleavage, 2, 855
decarboxylation, 2, 817
metal enolates
alkylation, 3, 54
sulfenylation, 7, 125
synthesis
Claisen condensation, 2, 817

γ-Keto esters
synthesis
via ester enolate addition reactions, 4, 109

α-Keto hydrazones
oxidation
synthesis of α-diazo ketones, 3, 890

α-Ketol acetates
reductive cleavage
iron carbonyls, 8, 993
metals, 8, 991

α-Ketol rearrangement
pinacol rearrangement
comparison with, 3, 722

Ketols
cleavage
mechanism, 8, 984
deoxygenation
metal ions, 8, 992

α-Ketols
reductive cleavage
metal ions, 8, 992
metals, 8, 991
synthesis
via samarium acyl anions, 1, 273

Ketone enolates
addition reactions
alkenes, palladium(II) catalysis, 4, 572
Michael additions, 5, 1082

Ketones
γ-acetoxy-α,β-unsaturated
reaction with cuprates, 4, 179
achiral
reactions with type I crotyl organometallics, 2, 9–19
reactions with type III crotyl organometallics, 2, 19–24
acyclic
aldol reaction, 2, 143
α-alkylated, synthesis, 3, 26

reduction, 8, 2
regiospecific alkylation, 3, 3
synthesis via retro Diels–Alder reactions, 5, 573
tandem vicinal difunctionalization, 4, 243–245
acyclic aliphatic
Baeyer–Villiger reaction, 7, 676
acyclic enolates
alkylation, 3, 17
acylation, 2, 795–863
acid catalysis, 2, 832
by esters, 2, 829
regiochemistry, 2, 835
acyloin coupling reactions
with esters, 3, 630
1,2-addition reactions
acyl anions, 1, 546
cyanoxydrin ethers, 1, 551
cyanoxydrins, 1, 548
α-(dialkylamino) nitriles, 1, 555
hydrazones, 2, 511
phosphonate carbamions, 1, 562
addition to diazo compounds, 3, 783
aldol reactions
external chiral reagents, 2, 262
self-addition, 2, 140
with aldehydes, 2, 142–156

aliphatic
Perkin reaction, 2, 400
alkenic
electroreduction, 8, 134
synthesis via Claisen rearrangement, 5, 827
γ-alkoxy-α,β-unsaturated
conjugate additions, organocuprates, 4, 179
alkyl–aryl
aldol reaction, 2, 150

α-alkylated
enantioselective synthesis, 3, 35
synthesis via dissolving metal conjugate reduction, 4, 254

α′-alkylated
synthesis, 3, 28
α-alkylation, 4, 260
alkyl enol ether derivatives
alkylation, 3, 25
alkylidenation
dihaloalkane reagents, 5, 1125
α-alkyl-β,γ-unsaturated
synthesis, 3, 23

alkynes from, 8, 950
alkynic
cyclization, catalysts, 5, 22
electroreduction, 8, 134
synthesis, 1, 405
synthesis from lactones, 1, 418
α,β-alkynic
reduction, 8, 357, 545

tonic
reduction, 8, 114
amides from
Beckmann rearrangement, 7, 694

aromatic
Birch reduction, 8, 508
hydrogenolysis, 8, 319
reactions with boron-stabilized carbanions, 1, 498
reduction, 8, 114, 115
Ketones

Cumulative Subject Index

aromatic methyl aldol reaction, 2, 150
arylation
regiochemistry, 4, 465
asymmetric aldol reaction
boron reagents, 2, 264
Barbier-type reactions
organosamarium compounds, 1, 256
bicyclic
alkylation, 3, 11
enzymic reduction, 8, 197
synthesis via palladium catalysts, 4, 841
bicyclic β,γ-unsaturated photosomerizations, 5, 222
boron trifluoride complex
NMR, 1, 292
bridged bicyclic
enzymic reduction, specificity, 8, 200
bromination
bromine, 7, 120
chiral enolates
aldol stereoselection, 2, 224
chiral β-hydroxy
aldol reaction, stereoselectivity, 2, 224
cross-coupling reactions
organoytterbium compounds, 1, 279
cyclic
aldol reaction, 2, 147
α-alkylated, synthesis, 3, 26
axial selectivity of alkyl addition, 1, 78
dehydogenation, 7, 132
dehydogenation using palladium(II) chloride, 7, 140
homologation, 3, 781
nucleophilic addition reactions, 1, 67
reactions with diazoalkanes, 1, 847
reduction, 8, 5, 14
regiospecific alkylation, 3, 3
ring contraction, 7, 831
ring expansion, 7, 831
stereocontrol, cathodic reduction, 8, 133
tandem vicinal difunctionalization, 4, 245
cyclic 2-alkoxy carbonyl
synthesis, 2, 806
β-cyclopropyl-α,β-unsaturated reaction with cuprates, 4, 180
Darzens glycidic ester condensation, 2, 424
dehydogenation, 7, 144
benzeneselenenyl chloride, 7, 135
copper(II) bromide, 7, 144
palladium catalysts, 7, 141
deprotonation
regioselectivity, 2, 183
dienolates
intramolecular γ-alkylation, 3, 25
dimethyloctacetal S,S-dioxides
ketone synthesis from, 3, 143
electron deficient
Diels–Alder reactions, 5, 432
eene reaction, 2, 538
electroreduction, 8, 132
stereocontrol, 8, 133
enantioselective reduction
Lewis acid coordination, 1, 317
enolate geometry
effect of base, 2, 192
enolates
addition reactions with alkenic π-systems, 4, 99–105
bromination, 7, 120
crystal structures, 1, 26
deprotonation regioselectivity, 2, 101
enolizable
methylenation using Tebbe reagent, 5, 1123
reactions with organocopper compounds, 1, 234
reactions with organosamarium(III) reagents, 1, 253
enol silyl ethers of, 2, 599
fluoro
synthesis, epoxide ring opening, 3, 748
α-formyl α,β-unsaturated synthesis, 2, 838
geminal dialkylolation
titanium(IV) reagents, 1, 167
halogenation, 7, 120
Henry reaction, 2, 329
homologation, 3, 783
diazo compounds, 6, 129
to enones, 7, 821
hydrogenation
catalytic, 8, 141
α-hydroxylation, 7, 152
hydrozirconation, 8, 683
intermolecular acylation, 2, 837
intermolecular additions
allylsilanes, 1, 610
intermolecular pinacol coupling reactions, 3, 570
intramolecular acylation, 2, 843
intramolecular additions
allyltrimethylsilane, 1, 612
Lewis acid complexes
rotational barriers, 1, 290
macrocyclic
lithiated imines, 3, 37
5–7-membered cyclic
syn selective aldol reaction, titanium enolates, 2, 306
metal enolates
alkylation, 3, 3
α-metallated
formation, 3, 3
O-metallated tautomers
formation, 3, 3
1-methoxy-substituted cyclic β,γ-unsaturated photosomerizations, 5, 226
methylenation, 1, 532
phenylthiomethylthyllithium, 6, 139
Tebbe reaction, 1, 746; 5, 1123
α-methyl α,β-unsaturated synthesis, 3, 33
mixed aldol reaction, 2, 142
monocyclic β,γ-unsaturated photosomerizations, 5, 222
nonalkenic
electroreduction, 8, 131
nonconjugated alkenic
electroreduction, 8, 134
optical resolution, 1, 534
photoysis, 7, 41
polyunsaturated
tandem vicinal difunctionalization, 4, 253
radical cyclizations, 4, 817
reactions with allylic organocadmium compounds, 1, 226
reactions with arynes, 4, 510
reactions with boron-stabilized carbanions, 1, 498
reactions with chloromethyleneiminium salts, 2, 785
reactions with diazoalkanes, 1, 845
homolagation, 3, 778
reactions with dienes
transition metal catalysis, 4, 709–712
reactions with dithioacetals, 1, 564
reactions with organoaluminum reagents
discrimination between aldehydes and, 1, 83
reactions with organocadmium compounds, 1, 225
reactions with organocuprates, 1, 233
reactions with organocopper compounds, 1, 116
reactions with organometallic compounds
chemoselectivity, 1, 145
Lewis acid promotion, 1, 326
reactions with samarium diiodide
pinacol coupling reactions, 1, 271
reactions with trialkylaluminum
synthesis of aluminum enolates, 2, 114
reactions with type I croytlyboron compounds, 2, 10–15
reactions with zinc ester dieneolates, 2, 286
reduction, 8, 923–951
Alpine borane, 7, 603
cathodic, 8, 131
chiral boron reagents, 8, 101
diimide, 8, 478
2,5-dimethylborolane, 2, 258
dissolving metals, 8, 307–323
dissolving metals, stereoselectivity, 8, 116
ionic hydrogenation, 8, 487
samarium diiodide, 8, 115
selective, 8, 18
reductive coupling
nitriles, 1, 273
Reformatsky reaction, 2, 281
saturated
cycloalkylation, 3, 18
saturated heterocyclic
aldol reaction, 2, 149
selenenylation, 7, 129, 131
kinetic product, 7, 130
self-condensation, 2, 141
spirocyclic β-γ-unsaturated
photoisomerizations, 5, 222
steroidal
synthesis, regiospecific alkylation, 3, 11
steroids
dehydrogenation, 7, 132, 136
α-substituted
reductive elimination, 8, 925
β-substituted α,β-unsaturated
reaction with cuprates, 4, 180
sulfenylation, 7, 125
sulfinylation, 7, 127
synthesis
α-alkoxy carbanions, 3, 197
alkylboronic esters, 3, 797
alkynylborates, 3, 799
carbonylation, 3, 1023
coupling reactions with organometallics, 3, 463
cyanoborates, 3, 798
α-heterosubstituted sulfides and selenides, 3, 141
intramolecular dehydrative acylations, 2, 711
intramolecular Friedel–Crafts reaction, 2, 710
organoboranes, 3, 780, 793
palladium mediated, 2, 749
syn selective aldol reaction, zirconium enolates, 2, 302
via acylation of boron-stabilized carbanions, 1, 497
via alkenes, 7, 600
via carboxylic acid derivatives, 1, 398
via β-hydroxyalkyl selenides, mechanism, 1, 718
via oxidation of secondary alcohols, 7, 318
via oxidative cleavage of alkenes, 7, 541
via Wacker oxidation of alkenes, 7, 450
Vilsmeier synthesis, 2, 748
tandem vicinal difunctionalization, 4, 242–246
tin enolates
synthesis, 2, 116
β-tosyloxyl-α,β-unsaturated
cyclopropanation, 4, 976
tricyclic
synthesis, regiospecific alkylation, 3, 11
unconjugated unsaturated
hydrogenation, 8, 439
unsaturated
reduction, diimide, 8, 476
α,β-unsaturated
addition reaction with Grignard reagents, 4, 83
Baeyer–Villiger reaction, 7, 684
1,3-carbonyl group transposition, 6, 836
conjugate additions, 4, 208–212
conjugate reduction, 4, 239
dehydrogenation, 7, 142
deprotonation, 2, 105
dimethylhydrazones, deprotonation, 2, 506
dissolving metal reduction, 8, 481
electroreduction, 8, 134
eene reactions, 5, 5
enzymic reduction, 8, 191, 205
Henry reaction, regioselectivity, 2, 330
Henry reaction, stereoselectivity, 2, 330
hydrazones, γ-deprotonation, 2, 509
hydride additions, 2, 106
hydrobromination, 4, 282
hydroformylation, 4, 924
hydrogenation, 8, 533
hydrogenation, homogeneous catalysis, 8, 452
α-hydroxylation, 7, 174
metal dienolates, alkylation, 3, 21
methylation, 3, 23
Michael acceptors, 4, 261
partial reduction, 8, 526
reaction with organocuprates, 1, 116
reaction with organolithium compounds, 4, 72
reaction with vinyl zirconium reagents, 1, 155
reduction, metal hydrides, 8, 15
sp² center, hydroxylation, 7, 179
synthesis, 3, 880, 894
synthesis via allylic anions, 2, 61
synthesis via cyclopropane ring opening, 4, 1020
synthesis via Knoevenagel reaction, 2, 359
synthesis via Mannich bases, 2, 897
synthesis via Ramberg–Bäcklund rearrangement, 3, 870
synthesis via retro Diels–Alder reactions, 5, 553, 573
α,β;β',γ',δ,ϵ-unsaturated
1,2-Ketones

photoisomerizations, 5, 229

β,γ-unsaturated

allylic oxidation, 7, 819

formation of, Friedel-Crafts reaction, 2, 708

rearrangement, 5, 216

stereoselective synthesis, 6, 851

synthesis via acylation of π-allyl nickel complexes, 1, 453

synthesis via π-allyl nickel halides, 3, 424

β,γ;β'γ'-unsaturated

photoisomerizations, 5, 229

γ,δ-unsaturated

synthesis via Claisen rearrangement, 5, 1004

unsymmetrical

Michael addition, 4, 6

regioselective alkylation, 3, 2

synthesis, 3, 199

unsymmetrical enamines

alkylation, 3, 30

unsymmetrical enolates

regioselective alkylation, 3, 7

1,2-Ketones

transposition

Baeyer–Villiger reaction, 7, 684

Ketones, α-acetoxy

reduction, 8, 935

Ketones, acyclic diaryl

Baeyer–Villiger reaction, 7, 678

Ketones, β-acylamide

synthesis, 6, 271

Ketones, 1-adamantyl ethyl

aldol reaction

stereoselectivity, 2, 193

Ketones, α-alkoxy

cyclic

nucleophilic addition reactions, 1, 52

reactions with organocuprates, 1, 108

Ketones, β-alkoxy

reduction, 8, 9

synthesis

via palladium(II) catalysis, 4, 553

Ketones, α-alkoxy acyclic

nucleophilic addition reactions

Grignard reagents, 1, 51

Ketones, alkoxyethyl vinyl

Michael addition, 4, 44

Ketones, alkyl phenyl

Baeyer–Villiger reaction

regiochemistry, 7, 673

Ketones, 2-(alkylsulfinyl)-1-alkenyl

reaction with amines, 6, 69

Ketones, α-alkylthio

reductive cleavage, 8, 993

Ketones, 2-(alkylthio)-1-alkenyl

reaction with amines, 6, 69

Ketones, alkynic

tandem vicinal difunctionalization, 4, 245

Ketones, α,β-alkynyl

allenolates

1,4-addition, 2, 116

reduction

Alpine borane, 7, 603

Ketones, alkynyl trifluoromethyl

conjugate additions

organocuprates, 4, 194

Ketones, allenyl

synthesis, 3, 991

tandem vicinal difunctionalization, 4, 245

Ketones, α-allyloxy

Claisen rearrangement, 5, 847

 enamates

Claisen rearrangements, 5, 1001

Wittig rearrangement, 3, 996

Ketones, allyl vinyl

cyclization, 5, 755–761

Rupe rearrangement, 5, 768

synthesis via hydration of dienylenes, 5, 752

Ketones, β-amido

preparation

Friedel–Crafts acylations, 2, 709

Ketones, γ-amido

synthesis

via aziridines, 6, 96

Ketones, amino

reduction, 8, 13

synthesis, 7, 506

Ketones, α-amino-

expansion, 1, 889

hydroxylation, 8, 13

rearrangement, 3, 790

Ketones, α-alkoxy-

Baeyer–Villiger reaction, 7, 756

Wolff–Kishner reduction, 8, 927

Ketones, β-amino

synthesis

Mannich reaction, 2, 902

Ketones, 2-amino-1-alkenyl

synthesis via substitution processes, 6, 69

Ketones, anthracene-9,10-diyl-bis(styryl)

reduction

aluminum hydrides, 8, 543

Ketones, 9-anthryl styryl

reduction

aluminum hydrides, 8, 543

Ketones, aryl

oxidative rearrangement, 7, 829

reduction

hydride transfer, 8, 91

synthesis via rearrangement of arylalkenes, 7, 828

Ketones, α-aryl

preparation via S$_{N}$1 reaction, 4, 463–466

synthesis

Friedel–Crafts reaction, 3, 306

Ketones, aryl alkyl

Baeyer–Villiger reaction, 7, 678

electroreduction, 8, 131

Ketones, aryl methyl

synthesis

carbonylation, 3, 1024

Ketones, γ-aryl-α-trifluoromethyl

cycloalkylation

Friedel–Crafts reaction, 3, 324

Ketones, β-asymmetric amino

nucleophilic addition reactions

stereoselectivity, 1, 60
Cumulative Subject Index

Ketones, aziridinyl
 synthesis
 via 1,3-dipolar cycloaddition, 4, 1101

Ketones, benzyl phenyl
 synthesis
 via oxidative rearrangement, 7, 829

Ketones, bicyclic
 preparation
 Friedel-Crafts reaction, 2, 711

Ketones, bicyclic halo
 Favorowski rearrangement, 3, 851

Ketones, β,β-bis(alky/thio)-α,β-unsaturated
 reduction, 8, 542
 selective reduction, 8, 540

Ketones, bis(phenylethynyl)
 Michael/an/anti-Michael addition
 with ethyl acetoacetate, 4, 46

Ketones, bridged bicyclic
 Baeyer-Villiger reaction, 7, 682

Ketones, bridged polycyclic
 Baeyer-Villiger reaction, 7, 682

Ketones, α-bromo
 enolates
 synthesis, 2, 109
 reactions with aldehydes, 1, 202
 synthesis, 7, 533

Ketones, α-bromoalkyl
 [4 + 3] cycloaddition reactions, 5, 595

Ketones, α-bromobenzyl
 [4 + 3] cycloaddition reactions, 5, 595

Ketones, α-bromo-β-hydroxy
 synthesis, 6, 26

Ketones, 4-tert-butylocyclohexymethyl
 exocyclic enolate
 methylation, 3, 16

Ketones, tert-butyl ethyl
 aldol reaction
 stereoselectivity, 2, 193, 195
 bromomagnesium enolate
 reaction with benzaldehyde, 2, 234
 magnesium bromide enolate
 crystal structure, 1, 29

Ketones, chloro
 Reimer-Tiemann reaction
 abnormal, 2, 773

Ketones, α-chloro
 homologation, 3, 787
 Reformatsky reaction, 2, 285
 synthesis, 7, 527, 538
 via diazo ketones, 6, 207

Ketones, α-chlorodibenzyl
 reaction with furan
 [4 + 3] cycloaddition, 5, 594

Ketones, β-chlorovinyl
 reaction with thiocarboxylic acids, 6, 508

Ketones, 2-cyano
 cyclic
 synthesis, 6, 240

Ketones, cyclobutyl phenyl reduction
 silanes, 8, 318

Ketones, cyclopentenyl methyl
 regioselective aldol cyclization, 2, 159

Ketones, cyclopropyl
 reduction, 8, 21
 dissolving metals, 8, 114
Ketones

Ketones, divinyl
- synthesis, 1, 430; 3, 844
Ketones, α,α'-divinyl
- cyclization, 5, 755–761
 - *in situ* generation, 5, 766–770, 775–778
- photocyclization, 5, 760
- ring closure
 - 2-cyclopentenone synthesis, 5, 752
- silicon-directed cyclization, 5, 761–766
Ketones, α,β-epoxy
- reduction, 8, 11, 21, 992
- ring opening
 - to 1,3-diones, 3, 771
- synthesis
 - tin enolates, 2, 424
 - via α-bromo-β-hydroxy ketones, 6, 26
Wharton reaction, 8, 927
Ketones, γ,δ-epoxy
- reduction, 8, 11
Ketones, cis-epoxy
- preparation, 2, 424
Ketones, 2-ethenyl
- synthesis
 - vinylmagnesium halide alkylation, 3, 242
Ketones, α-ethoxy
- synthesis
 - via 1,2-diketones, 1, 217
Ketones, ethyl
- aldol reactions
 - external chiral reagents, 2, 262
 - enolization, 2, 244
 - from carbohydrates
 - aldol reaction, stereoselection, 2, 226
 - stereoselective aldol reaction
titanium enolate, chiral auxiliary, 2, 307
Ketones, ethyl cyclohexyl
 - lithium enolates
 - aldol reaction, facial selectivity, 2, 221
Ketones, ethyl mesityl
 - aldol reaction
 - stereoselectivity, 2, 193
Ketones, ethyl trityl
 - aldo reactions
 - aluminum-mediated, 2, 269
Ketones, ethynyl methyl
 - Robinson annulation, 4, 43
Ketones, ethynyl phenyl
 - Michael addition, 4, 41
Ketones, α-fluoro
 - synthesis, 7, 538
Ketones, α-formyl
 - dehydrogenation, 7, 136
Ketones, fused ring bicyclic
 - Baeyer-Villiger reaction, 7, 680
Ketones, fused ring polycyclic
 - Baeyer-Villiger reaction, 7, 680
Ketones, α-halo
 - acyclic
 - Favorskii rearrangement, 3, 842
 - alkene synthesis from, 3, 871
 - [4 + 3] cycloaddition reactions, 5, 595
 - homologation, 3, 783
 - reaction with difluoromethane
 - organosamarium compounds, 1, 261
reaction with vinyl and aryl Grignard reagents, 3, 242
rearrangements, 3, 788, 828, 839
reduction, 8, 19
 - Alpine borane, 7, 603
 - stereoselectivity, 8, 3
 - reductive cleavage
 - metals, 8, 986
 - reductive elimination, 8, 925
 - reductive silylation, 2, 600
Ketones, 2-haloalkyl aryl ketals
 - rearrangement, 3, 789
Ketones, 2-halocycloalkyl rearrangements, 3, 845
Ketones, 2,4,6-heptatrienyl 4-methoxyphenyl synthesis
 - *via* monoacetylation, iron(III) catalyzed, 1, 416
Ketones, heteroaryl
Ketones, α-hydroperoxy
- synthesis
 - *via* 5π + 1 reaction, 4, 468
Ketones, α-hydroperoxy synthesis, 7, 156, 159
Ketones, hydroxy
 - α,β-unsaturated Diels–Alder reactions, 5, 359
Ketones, α-hydroxy
 - Diels–Alder reactions
 - intramolecular asymmetric, 5, 543
 - (Z)-enolates, 2, 102
 - hydrazones
 - asymmetric synthesis, 2, 506
 - rearrangements, 3, 791
 - reduction
 - diastereoselectivity, 8, 7
 - synthesis
 - carbonylation of lithium amides, 3, 1017
 - *via* benzoin condensation, 1, 542
 - *via* diaryl ketone dianions, 1, 280
 - *via* α-keto acetalcs, 1, 63
Ketones, β-hydroxy
 - aldol reaction
 - cerium enolates, 2, 311
 - reaction with allenylboronic acid, 2, 97
 - reduction, 8, 8
 - synthesis
 - *via* cerium reagents, 1, 244
 - *via* 1,3-dipolar cycloadditions, 4, 1078
 - *via* α,β-epoxy ketones, 3, 264
Ketones, γ-hydroxy
 - reduction, 8, 10
 - synthesis
 - *via* acylation of boron-stabilized carbanions, 1, 497
Ketones, hydroxymethyl
 - synthesis, 2, 838
Ketones, α-hydroxy(trifluoromethyl)-synthesis, 1, 543
Ketones, α-iodo
 - synthesis, 7, 530
Ketones, ω-iodoalkyl
 - reaction with samarium diiodide
 - synthesis of cyclopentanols, 1, 261
 - zinc compounds from
 - coupling reactions with alkenyl halides, 3, 443
Ketones, α-mercurio
 - aldol reaction
 - syn:anti selectivity, 2, 313
Ketosteroids

Cumulative Subject Index

Ketones, polyhalo
- Favorovskii rearrangement, 3, 843
Ketones, α-seleno
- metallation, 1, 642
Ketones, α-silyl
- rearrangement
 - enol ether preparation, 2, 601
Ketones, β-silyl
- synthesis, 1, 436
Ketones, β-silyl divinyl
- cyclization, 5, 762
Ketones, β-silyloxy
- intramolecular hydroxylation, 7, 645
Ketones, silyl vinyl
- synthesis, 2, 76
 - alkoxyallene, 2, 88
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, trichlorostannyl
- enone synthesis, 2, 443
Ketones, tri-methylsilyloxy
- aldol reaction, stereoselectivity, 2, 229

Ketones, α-sulfinyl
- enolates
 - aldol reaction, stereoselectivity, 2, 229
Ketones, tetramethyl dibromo
- [4 + 3] cycloaddition reactions, 5, 603
Ketones, tetrahydrofurfuryl
- reactions with Grignard reagents, 3, 996
Ketones, tetramethyl dibromo
- [4 + 2] cycloaddition reactions
 - with α-methyl styrene, 5, 283
Ketones, tetrasubstituted dibromo
- [4 + 3] cycloaddition reactions, 5, 603
Ketones, α-tosyl
- reduction, 8, 926
Ketones, α-(trialkylsilyl) vinyl
- reaction with enolates, 4, 100
Ketones, α-triazolyl
- reduction, 8, 13
Ketones, tribromo
- [4 + 3] cycloaddition reactions, 5, 603
Ketones, trichlorostannyl
- enone synthesis, 2, 443
Ketones, 1,1,1-trifluoromethyl
- ene reaction, 2, 538, 539
Ketones, α-trimethylsilyloxy
- aldol reaction
 - stereoselectivity, maximization, 2, 193
Ketones, β-trimethylsilyloxy
- preparation from silicon compounds, 2, 269
Ketones, vinyl
- arylation
 - organothallium compounds, 4, 841
Ketones, β-(2-vinylcyclopropyl)
- α,β-unsaturated
 - Cope rearrangement, 5, 979–984
Ketones, α-vinyl β-hydroxy
- reduction, 8, 10
Ketonitriles
- Reformatsky reaction
 - regioselectivity, 2, 284
Ketosteroids
- ecdysone side

Ketones, polyhalo
- Favorovskii rearrangement, 3, 843
Ketones, α-seleno
- metallation, 1, 642
Ketones, α-silyl
- rearrangement
 - enol ether preparation, 2, 601
Ketones, β-silyl
- synthesis, 1, 436
Ketones, β-silyl divinyl
- cyclization, 5, 762
Ketones, β-silyloxy
- intramolecular hydroxylation, 7, 645
Ketones, silyl vinyl
- synthesis, 2, 76
 - alkoxyallene, 2, 88
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, trichlorostannyl
- enone synthesis, 2, 443
Ketones, tri-methylsilyloxy
- aldol reaction
 - stereoselectivity, maximization, 2, 193
Ketones, β-trimethylsilyloxy
- preparation from silicon compounds, 2, 269
Ketones, vinyl
- arylation
 - organothallium compounds, 4, 841
Ketones, β-(2-vinylcyclopropyl)
- α,β-unsaturated
 - Cope rearrangement, 5, 979–984
Ketones, α-vinyl β-hydroxy
- reduction, 8, 10
Ketonitriles
- Reformatsky reaction
 - regioselectivity, 2, 284
Ketosteroids
- ecdysone side

Ketones, polyhalo
- Favorovskii rearrangement, 3, 843
Ketones, α-seleno
- metallation, 1, 642
Ketones, α-silyl
- rearrangement
 - enol ether preparation, 2, 601
Ketones, β-silyl
- synthesis, 1, 436
Ketones, β-silyl divinyl
- cyclization, 5, 762
Ketones, β-silyloxy
- intramolecular hydroxylation, 7, 645
Ketones, silyl vinyl
- synthesis, 2, 76
 - alkoxyallene, 2, 88
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, spirocyclic
- Baeyer–Villiger reaction, 7, 678
Ketones, 2-substituted
- hydroxylation, 8, 27
- intramolecular hydrosilylation, 7, 645
Ketones, trichlorostannyl
- enone synthesis, 2, 443
Ketones, tri-methylsilyloxy
- aldol reaction
 - stereoselectivity, maximization, 2, 193
Ketones, β-trimethylsilyloxy
- preparation from silicon compounds, 2, 269
Ketones, vinyl
- arylation
 - organothallium compounds, 4, 841
Ketones, β-(2-vinylcyclopropyl)
- α,β-unsaturated
 - Cope rearrangement, 5, 979–984
Ketones, α-vinyl β-hydroxy
- reduction, 8, 10
Ketonitriles
- Reformatsky reaction
 - regioselectivity, 2, 284
Ketosteroids
- ecdysone side
<table>
<thead>
<tr>
<th>Synthesis, Ketosteroids</th>
<th>7, 243</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>Beckmann rearrangement</td>
<td>6, 763; 7, 691</td>
</tr>
<tr>
<td>α-hydroxylation</td>
<td>7, 187</td>
</tr>
<tr>
<td>reactions with organometallic compounds</td>
<td>1, 387</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via nitroiminium chlorides</td>
<td>1, 121</td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>a-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
<tr>
<td>Ketoximes</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>unsymmetrical</td>
<td></td>
</tr>
<tr>
<td>deprotonation</td>
<td>3, 35</td>
</tr>
<tr>
<td>α-Ketoximes oxidation</td>
<td></td>
</tr>
<tr>
<td>synthesis of α-diazo ketones</td>
<td>3, 890</td>
</tr>
<tr>
<td>Ketoximes, α-hydroxy-photoreaction</td>
<td>6, 765</td>
</tr>
<tr>
<td>Ketoximes, O-substituted Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-tosyl-Beckmann rearrangement</td>
<td>7, 693</td>
</tr>
<tr>
<td>Ketoximes, O-unsaturated Beckmann rearrangement</td>
<td>7, 691</td>
</tr>
</tbody>
</table>
L-selectride — see Lithium tri-s-butylborohydride
Labda-7,14-dien-13-ol
synthesis, 3, 168
Lactaldehyde, 3-nitro-
cyclization of glyoxal with nitromethane, 2, 327
Lactam acetals
synthesis, 6, 566
β-Lactam antibiotics
synthesis, 6, 388
Mannich reaction, 2, 915
Reformatsky reaction, 2, 296
use of ester protecting groups, 6, 670
Lactamidines
aminol ester synthesis, 6, 575
reaction with isocyanates, 6, 579
Lactams
ω-allenyl
synthesis, 2, 89
bicyclic
alkylation, 3, 42
enolates
stereoselectivity, 2, 211
α-hydroxylation, 7, 183
microbial hydroxylation, 7, 60
reduction, 8, 248
metal hydrides, 8, 273
selenenylation, 7, 129
steroids
dehydrogenation, 7, 132
sulfenylation, 7, 125
synthesis, 6, 407
carboxylation, 3, 1035
via Ritter reaction, 4, 293
via unsaturated amides, 7, 524
Vilsmeier–Haack reaction, 2, 786
vinyllogous
synthesis, Knoevenagel reaction, 2, 368
β-Lactams
aldol reactions
syn stereoselectivity, 2, 304
synthesis of thienamycin, 2, 212
β-allylated
synthesis via radical addition reactions, 4, 745
bicyclic
synthesis via cyclization of allenic amines, 4, 410
enantiopure
synthesis via chiral ketenes or imines, 5, 96
homochiral
synthesis, 2, 256
synthesis via conjugate addition, 4, 231
in enolate–imine condensations
mechanism, 2, 917
stereoselective synthesis, 7, 517
sulfenylation
synthesis, via Pummerer rearrangement, 7, 202
synthesis, 3, 902; 5, 1107; 6, 389, 405, 579, 783; 7,
729
C—H insertion reactions, 3, 1056
Mannich reaction, 2, 917
Ugi reaction, 2, 1101
use of silyl enol ethers, 2, 636
via cyclization of β,γ-unsaturated amides, 4, 398
via 1,3-dipolar cycloadditions, 4, 1076
via intramolecular photocycloaddition, 5, 181
via ketenes and carbonyls, 5, 90
via ketocarbenoids, 4, 1057
via palladium(II) catalysis, 4, 563
via radical cyclization, 4, 795
via tandem vicinal difunctionalization, 4, 243
4-unsubstituted
synthesis, 2, 941
γ-Lactams
synthesis
C—H insertion reactions, 3, 1057
Knoevenagel reaction, 2, 367
e-Lactams
Beckmann rearrangement, 7, 691
γ-Lactams, N,O-acetal-
bicyclic
Diels–Alder reactions, 5, 372
Lactams, α-acetoxy-
reaction with tin(II) enol ethers, 2, 611
Lactams, N-alkyl-
heterocyclic
metallation, 1, 478
β-Lactams, 3-alkyldene-
synthesis
via cycloaddition with CSI, 5, 107
β-Lactams, α-amido-
synthesis
via Dane salts, 5, 95
β-Lactams, 3-amino-
synthesis
via homochiral ketenes, 5, 98
β-Lactams, azao-
synthesis, 3, 902
β-Lactams, N-benzyl-
Wittig rearrangement, 3, 979
Lactams, halo-
rarrangements, 3, 849
Lactams, hydroxy-
synthesis
via cyclic imide reduction, 8, 273
Lactams, iodo-
synthesis
via iodocyclization of allylic imidates, 4, 403
δ-Lactams, α-methylene-
synthesis
allyl organometallic compounds, 2, 980
β-Lactams, α-phenyleseleno-
metallation, 1, 642
Lactams, α-silyl-
Peterson alkenation, 1, 790
β-Lactams, N-tetrazol-5-yl-
synthesis
Mannich reaction, 2, 920
Lactate dehydrogenase
substrate specificity
synthetic applicability, 2, 456
Lactate dehydrogenases
reduction
keto acids, 8, 189
Lactic acid, ethyl ester, acrylate
Diels–Alder reactions, 5, 365
Lactic acid, ethyl ester, fumarate
Diels–Alder reactions, 5, 365
Lactic aldehyde, N-silylimine
synthesis, 2, 937
Lactim ethers
alkylation, 6, 505
reactions with amides, 6, 569
γ-Lactols
synthesis
via benzaldehyde, 1, 502
Lactones
alkynic ketone synthesis from, 1, 418
γ-amino-
synthesis via [2 + 2 + 2] cycloaddition, 5, 1138
aminolysis, 6, 389
β-amino-α,β-unsaturated
functionalized, synthesis, 6, 67
arene alkylation
Friedel–Crafts reaction, 3, 309
α,α-bisulfenylated
enolate precursors, 2, 186
bridged-ring
synthesis via cyclofunctionalization, 4, 373
bromination, 7, 121
Darzens glycidic ester condensation, 2, 420
dehydrative cyclization
via Friedel–Crafts reaction, 2, 711
enolates
stereoselectivity, 2, 200
five-membered ring
synthesis, carbonylation of allylic alcohols, 3, 1032
α-hydroxylation, 7, 179
α-ido-α,β-unsaturated
synthesis, 7, 536
macrocyclic
synthesis, 3, 431; 6, 438
methylenation
Tebbe reaction, 1, 744; 5, 1123
of silyl ketene acetals, 2, 605
reactions with organocerium reagents, 1, 239
reduction, 8, 246
metal hydrides, 8, 268
selenenylation, 7, 129
steroids
dehydrogenation, 7, 132, 136
sulfenylation, 7, 125
synthesis, 6, 323–376; 7, 517
carbonylation, 3, 1031
epoxide ring opening, 3, 752
Eschenmoser coupling reaction, 2, 890
via amides, 7, 524
via [3 + 2] cycloaddition reactions, 5, 297
via diols, 7, 312
via ethers, 7, 236
via monodecarboxylation of dicarboxylic acids, 7, 727
via organosamarium compounds, 1, 259, 266
via oxidative cleavage of alkenes, 7, 574
via selenolactonization, 7, 523
tandem vicinal difunctionalization, 4, 249
unsaturated
enolate Claisen rearrangement, 6, 859
synthesis, from alkynes, palladium(II) catalysis, 4, 567
β,γ-unsaturated
synthesis via [2 + 2 + 2] cycloaddition, 5, 1138
Vilsmeier–Haack reaction, 2, 786
α-Lactones
synthesis, 6, 342
β-Lactones
azide synthesis, 6, 253
Grignard reagent alkylation, 3, 245
quinone synthesis
Perkin reaction, 2, 399
reaction with organocopper compounds, 3, 227
β-substituted enolates
alkylation, 3, 41
synthesis, 6, 342
via C—C connections, 6, 350
via cyclization of β,γ-unsaturated acids, 4, 368
via cycloacetylation, 6, 346
via cycloalkylation, 6, 345
via ketenes and carbonyls, 5, 86
γ-Lactones
bicyclic
synthesis, 6, 356
Jones reagent, 2, 57
nitrile synthesis, 6, 236
opening
chlorination, 6, 206
β- and γ-substituted
alkylation, 3, 41
synthesis, 6, 350
carbonylation, 3, 1031
stereoselectivity, 4, 381, 382
via α-alkynyl carbonates, 4, 376
via cyclization of cycloalkeneacetic acids, 4, 369
via cyclization of β,γ-unsaturated acids, 4, 376
via iodolactonization of benzoic acids, 4, 374
via metal-catalyzed cycloaddition, 5, 1196, 1200
via rearrangements, 6, 362
unsaturated
synthesis, 6, 352
δ-Lactones
chiral
preparation, 2, 520
enolates
alkylation, 3, 41
synthesis, 6, 365
carbonylation of homoallylic alcohols, 3, 1033
stereoselectivity, 4, 381, 382
via α-alkynyl carbonates, 4, 376
via cyclization of 4,5-hexadienoic acid, 4, 396
via cyclofunctionalization, 4, 372
via lactonization of 5,7-dienoic acids, 4, 378
unsaturated
synthesis, Knoevenagel reaction, 2, 381
γ-Lactones, γ-alkylidene-
synthesis, 7, 524
via cyclofunctionalization of alkynoic acids, 4, 393
δ-Lactones, δ-alkylidene-
synthesis
via cyclofunctionalization of alkynoic acids, 4, 393
Lactones, allylic
reaction with sodium malonate
stereospecific reaction, 6, 848
Lactones, 2-(arylsulfinyl)-α,β-unsaturated
addition reaction with enolates, 4, 108
δ-Lactones, α-carboxy-
synthesis
Knoevenagel reaction, Meldrum’s acid, 2, 356
Lactones, epoxy-
preparation
Lactones, γ-hydroxy-synthesis
via [2 + 2 + 2] cycloaddition, 5, 1138

γ-Lactones, 2-hydroxy-synthesis
from protected cyanohydrins, 3, 198

γ-Lactones, 4-hydroxy-synthesis
homoadol reaction, 2, 445

Lactones, imino-synthesis, 7, 524

Lactones, α-methylene-synthesis, 5, 942; 7, 129
Knoevenagel reaction, Meldrum’s acid, 2, 356
Mannich reaction, 2, 904
via σ-alkyliron complexes, 4, 576
via allyl chromium reagent, 1, 189
via dehydrogenation reactions, 7, 125
via hydrocarboxylation, 4, 937, 941

Lactones, β-methylene-synthesis
via allenic sulfoxide, 6, 841

γ-Lactones, α-methylene-synthesis, 6, 784
β-Lactones, α-methylene-synthesis
Mannich reaction, 2, 911

Lactones, α-silyl-Peterson alkenation, 1, 790

γ-Lactones, β-(p-tolylsulfinyl)-synthesis
via 3-(p-tolylsulfinyl)propionic acid, 1, 513

Lactones, unsaturated macrocyclic epoxidation, 7, 361

Lactones, vinyl ring-opening and coupling reactions with Grignard reagents, 3, 476

Lactonization enantioselective, 6, 337

Ladenburg reduction pyridines, 8, 595
5α-Lanosta-2,8-diene synthesis, 8, 935

Lanostanol, 7, 11-dioxo-acetate
Wolff–Kishner reduction, 8, 330

Lanostanol, 11-oxo-acetate oxidative rearrangement, 7, 832

Lanost-8-en-3-one cycloaddition-oxidation, 7, 630
reduction, 8, 935

Lanthanide, dichlorocyclopentadienyltris-(tetrahydrofuran)-enone reduction, 8, 16

Lanthanide catalysts Diels–Alder reactions, 2, 667
Lanthanide complexes Diels–Alder reaction catalysts diastereofacial selectivity, 2, 679
β-diketonate, chiral
Diels–Alder reactions, absolute stereochemistry, 2, 682

Lanthanide compounds toxicity, 1, 252

Lanthanide homoenolates reactions with carbonyl compounds, 2, 446
Lanthanide metal enolates aldol reaction, 2, 301
structure, 2, 301
Lanthanide oxides dissociation energies, 1, 252

Lanthanides hard acids, 1, 252
hydrometallation, 8, 696
ionic radii, 1, 252
Lanthanide shift reagents carbonyl compound complexes NMR, 1, 294

Lanthanide triflates amidine synthesis, 6, 546

Lanthanide trihalides catalysts Friedel–Crafts reaction, 3, 295

Lanthanoid chlorides selective aldehyde reduction, 8, 17

Lanthanoid complexes hydrogenation alkenes, 8, 447

Lanthanoid compounds reaction with epoxides regioselectivity, 6, 9

Lanthanoid ions reduction enones, 8, 538

Lanthanoids use in pinacol coupling reactions, 3, 567

Lanthanoid trichlorides Friedel–Crafts catalysts, 3, 302
benzylation of benzene, 3, 302

Lanthanum nickel hydrides reduction unsaturated carbonyl compounds, 8, 551

Lantin synthesis
Diels–Alder reaction, 2, 699

Lasiodiplodin synthesis
via Diels–Alder reactions, 5, 330

Lasiodiplodin methyl ether synthesis
via Wacker oxidation, 7, 454

Lasubine II synthesis
via nitrene cyclization, 4, 1116

Laudanosine oxidation, 3, 685
oxidative coupling, 3, 670
synthesis, 3, 80

Laudanosoline methiodide oxidative coupling, 3, 666

Laureacetal-C synthesis
via intramolecular photocycloaddition, 5, 180

Laurencin synthesis, 3, 126

Laurenene synthesis, 3, 385
via photocycloaddition, 5, 144, 662, 663
via Wacker oxidation, 7, 455
Laurenyne

synthesis, 6, 752
type III ene reaction, 2, 555
via cyclization, 1, 591

Lavandulal

synthesis, 6, 455
Lavandulol

cyclization, 3, 345
synthesis, 2, 578
ene reaction, 2, 530

Lavendamycin

pharmacophores

synthesis, 7, 347

synthesis via Curtius reaction, 6, 814
via Diels–Alder reaction, 5, 492

Laxessone's reagent, 2, 867

Eschenmoser coupling reaction, 2, 867
thioacarboxylic ester synthesis, 6, 437

Lead, allyl-

reaction with aldimines, 2, 982

Lead, aryl-

vinyl substitutions

palladium complexes, 4, 841

Lead acetate

Erlenmeyer azlactone synthesis, 2, 402

Lead azide

azidation, 7, 488

Lead carboxylates

synthesis, 7, 719

Lead nitrate

benzylic halide oxidation, 7, 666

Lead phenylidodiocetate

oxidative cleavage of alkenes

with trimethylsilyl azide, 7, 588

Lead salts

decarboxylative halogenation, 7, 724
oxidative rearrangements, 7, 816

Lead tetraacetate

adamantane functionalization, 7, 14
alkane oxidation, 7, 13
allylic oxidation, 7, 92
decarboxylative halogenation, 7, 724
glycol cleavage, 7, 708
mechanism, 7, 709
Hofmann rearrangement, 6, 796
oxidative, 6, 802
α-hydroxylation
ketones, 7, 152
ketone α-acetoxylation, 7, 145
oxidation
aromatic compounds, 7, 338
organoboranes, 7, 602
oxidative cleavage of alkenes

with trimethylsilyl azide, 7, 588
oxidative decarboxylation, 7, 722
oxidative rearrangement, 7, 827
quinones

synthesis, 7, 352
reductive decarboxylation, 7, 720
silyloxy-2-cyclopropane
oxidation, 2, 445

Lead tetrabenzoate

α-hydroxylation
ketones, 7, 167
reaction with silyl dienol ethers, 7, 178

Lead tetrafluoroacetate
oxidation
aromatic compounds, 7, 338

Lead triacetate, alk-1-enyl-
synthesis, 7, 620

Lead triacetate, aryl-
aromatic arylation reactions, 3, 505

Lead trifluoroacetate
alkane oxidation, 7, 13

Lemieux–Johnson oxidation, 7, 711

Lemieux–von Rudloff oxidation, 7, 710
oxidative cleavage of alkenes

with permanganate and periodate, 7, 586

Lepidina

radical addition reactions, 4, 768

Lepidina, 2-chloro-
hydrogenation, 8, 905

Leucarins

synthesis

Reimer–Tiemann reaction, 2, 774

Leucine

β-butyl ester
imine anion alkylation, 6, 726
β-butyl ester, enamines
alkylation, 3, 36
synthesis via reductive amination, 8, 144

Leucine, N-β-butyloxyacarbonyl-
synthesis, 6, 816

L-Leucine, (S)-4-hydroxy-5-methyl-3-oxohexanoyl-
esters

synthesis, 6, 446

Leukart reaction

reductive alkylation of amines
ammonium formate, 8, 84

Leukotriene A4

synthesis, 3, 289
synthesis of intermediate via organocopper reagents, 1, 131

Leukotriene B4

synthesis, 3, 489
synthesis of analogs via carbocupration/1,2-addition, 1, 131

Leukotriene B4, 14,15-dehydro-
synthesis, 3, 289

Leukotriene D, 5-deoxy-
precursor synthesis via sulfoxide–sulfenate rearrangement, 5, 890

Leukotrienes

synthesis, 3, 289
organocopper compounds, 3, 217
via D-arabinose, 7, 242
via sulfur ylide reagents, 1, 821

Levoglucosenone

Diels–Alder reaction, 5, 350

Levulinic acid

ethyl ester
reaction with enol silyl ether, 2, 616

Levulinic acid, 3-arylidene-
Friedel–Crafts reaction, 2, 760

Levulinic acid esters

alcohol protection cleavage, 6, 658

Lewis acids

carbonyl compound complexes, 1, 283–321
σ- versus π-(n²)-bonding, 1, 284
conformation, 1, 285
NMR, 1, 292
theoretical studies, 1, 286
X-ray crystallography, 1, 299
carbonyl compound reduction
metal hydrides, 8, 314
Friedel–Crafts reaction
catalysts, 3, 295
hydroalumination
alkynes, 8, 750
promoters
Diels–Alder reactions, 5, 339–341
reactions
structural models, 1, 311
with organometallic compounds, 1, 325–353
Ritter reaction
initiators, 6, 283
transition metals, 1, 307
Lewis superacids
catalysts
Friedel–Crafts reaction, 3, 297
Libocedrol
synthesis
use of alkaline ferricyanide, 3, 686
Lieben’s rule
aldol reaction
aldehydes, 2, 139
Lignan, aryltetralin-
one-pot synthesis
ene reaction, 2, 533
Lignans
synthesis
via conjugate addition, 4, 258
via tandem vicinal difunctionalization, 4, 249
Ligularone
synthesis
via retro Diels–Alder reactions, 5, 579
Lilac alcohol
synthesis
via [4 + 3] cycloaddition, 5, 611
Limaspermine
synthesis
via cyclohexadienyl complexes, 4, 680
Limonene
anodic oxidation, 7, 796
hydroboration
protonolysis, 8, 726
hydroformation
phosphite-modified rhodium catalysts, 3, 1022
hydroformylation, 4, 922
hydrogen transfer
carbonyl compound reduction, 8, 320
oxiranes
rearrangement, 3, 771
synthesis, 7, 429
from α- and β-pinene, 3, 708
via stereospecific Ritter reaction, 6, 278
Vilsmeier–Haack reaction, 2, 782
Limonene, tetramethyl-
epoxidation, 7, 362
Linalool
cyclization, 3, 352
microbial hydroxylation, 7, 62
synthesis, 3, 170
via retro Diels–Alder reaction, 5, 555
Linalool, dehydro-
enie reaction, 5, 15
Linaloyl oxide
synthesis, 3, 126
Lincomycins
chlorination
displacement of hydroxy group, 6, 205
Lincosamine
synthesis
Diels–Alder reaction, 2, 694
Linderalactone
Cope rearrangement, 5, 809
Lipases
acylation, 6, 340
substrate specificity
synthetic applicability, 2, 456
Lipoamide
immobilization, 8, 369
reduction
isoxazoles, 8, 645
Lipoamide A2
iron complex
reduced form, 8, 649
Lipoic acid
synthesis, 7, 90
(+)-α-Lipoic acid
synthesis
via chiral acetals, 2, 651
Lipopolysaccharides
synthesis, 6, 57
Lipotoxins
synthesis
via metal carbene complexes, 1, 808
Lipstatin
β-lactone, 6, 342
Lipstatin, tetrahydro-
synthesis
chiral reaction, 2, 652
Liquid crystal properties
5-aryl arenecarbothioates
4,4’-disubstituted, 6, 441
Lithiation
nitrogen compounds
addition reactions, 1, 461
Lithiodithianes
acylation, 1, 568
Lithium
amalgam
reduction, 8, 115
Birch reduction, 8, 492
alkyl halides, 8, 795
deoxygenation
epoxides, 8, 889
in alcohol
alkyl halide reduction, 8, 795
liquid ammonia
carbonyl compound reduction, 8, 308
α,β-unsaturated ketone reduction, 8, 478
methylamine
amide reduction, 8, 294
carboxylic acid reduction, 8, 284
reduction
ammonia, 8, 113
carbonyl compounds, 8, 109
enones, 8, 524
epoxides, 8, 880
reductive cleavage
Lithium

α-alkylthio ketone, 8, 993
α-ketals, 8, 991
reductive dimerization
unsaturated carbonyl compounds, 8, 532
Lithium, alkényl-
coupling reactions
with alkenyl halides, 3, 485
Lithium, α-alkoxy-
carbanions
epoxidation, 1, 829
Lithium, alkoxallyl-
alkoxyallylaluminum compounds from, 2, 10
Lithium, alkyl-
C—P bond cleavage, 8, 859
enantioselective addition
aldehydes, 1, 72
enone additions, 4, 243
primary
coupling reactions with alkenyl halides, 3, 436
reactions with dienylcobalt complexes, 4, 691
reaction with cyclohexanone
stereoselectivity, 1, 79
tandem vicinal difunctionalization, 4, 257
Lithium, allenyl-
reaction with epoxides, 3, 264
Lithium, allyl-
configurational stability, 2, 21
crystal structure, 1, 18
reaction with glyceraldehyde acetonide, 2, 29
reaction with dienes, 4, 868
tetramethylthielenediamine complex
crystal structure, 1, 18
Wurtz coupling, 3, 419
Lithium, allylsulfonyl-
reaction with epoxides, 6, 7
Lithium, allylthiophenyl-
reaction with epoxides, 6, 7
Lithium, aryl-
alkylation, 3, 247
coupling reactions
with alkenyl halides, 3, 494
vinyl substitutions
palladium complexes, 4, 841
Lithium, benzyl-
crystal structure, 1, 11
Lithium, benzylthiocarbamato-
alkylation, 3, 95
Lithium, benzylphenylthio-
alkylation, 3, 95
Lithium, benzylthiolazolino-
alkylation, 3, 95
Lithium, bis(methylthio)allyl-
α,β-unsaturated aldehyde synthesis, 6, 138
Lithium, bis(phenylthio)benzyl-
synthesis, 3, 123
Lithium, bis(phenylthio)methyl-
synthesis, 3, 123
Lithium, 1,1-bis(seleno)alkyl-
reactions, 1, 694
reactivity
reactions with carbonyl compounds, 1, 672
Lithium, t-butoxymethyl-
synthesis, 3, 194
Lithium, n-buty1-
mixed aggregate complex with t-butoxide
crystal structure, 1, 10
nucleophilic addition reactions
stereoselectivity, 1, 70
Lithium, t-butyl-
coupling
dihalides, 3, 419
Lithium, 3-(t-butyl(dimethylsiloxy)allenyl-
reactions, 2, 89
Lithium, t-butylethynyl-
crystal structure, 1, 20
Lithium, o-(t-butylthio)phenyl-
crystal structure, 1, 23
Lithium, (2-carbamoylally1)-
Michael reactions, 4, 121
Lithium, chloro(methyl)allyl-
reaction with aldimes, 2, 982
Lithium, crotyl-
configurational stability, 2, 21
crotyl organometallics from, 2, 5
reaction with imines
regioselectivity, 2, 988

syn-anti selectivity, 2, 989
reaction with iminium salts, 2, 1000
structure, 2, 977
Lithium, 1-cyano-2,2-dimethylcyclopropyl-
crystal structure, 1, 32
Lithium, cyclohexadienyl-
alkylation, 3, 255
Lithium, cyclohexyl-
crystal structure, 1, 9
Lithium, cyclopentenyl-
synthesis, 3, 247
Lithium, (dialkoxyphosphory1)trimethylsilylalkyl-
alkylation, 3, 201
Lithium, dibromomethyl-
addition to esters, 1, 874
Lithium, 1,1-dichloroallyl-
synthesis
alkylation, 3, 202
Lithium, diethoxyethyl-
synthesis
by transmetallation, 3, 196
Lithium, (diethoxyphosphory1)dichloromethyl-
alkylation, 3, 202
Lithium, 1,1-difluoroallyl-
synthesis
alkylation, 3, 202
Lithium, 2,6-dimethoxyphenyl-
crystal structure, 1, 23
Lithium, o-(dimethylaminomethyl)phenyl-
crystal structure, 1, 23
Lithium, 2,6-dimethylaminophenyl-
crystal structure, 1, 23, 24
Lithium, 5,5-dimethyl-2-hexenyl-
synthesis
via carbolithiation, 4, 868
Lithium, dimethylphenylsil-
deoxygeneration
epoxides, 8, 886
Lithium, (dimethylphosphory1)methyl-
alkylation, 3, 201
Lithium, diphenylarsinomethyl-
alkylation
with epoxides, 3, 203
synthesis
by transmetallation, 3, 203
Lithium, diphenylcyclopropylcarbinyl-
Cumulative Subject Index

Lithium

ring opening, 4, 872
Lithium, (diphenylphosphino)alkylalkylation
with epoxides, 3, 201
Lithium, 1,1-(diseleno)alkylalkylation, synthesis, 3, 87
Lithium, 1,1-(diseleno)benzylalkylation, synthesis, 3, 87
Lithium, 1,1-(dithio)allylalkylation, synthesis, 3, 131
Lithium, 1,1-(dithio)propargylalkylation, synthesis, 3, 131
Lithium, ethylcrystal structure, 1, 9
Lithium, furyl-nucleophilic addition reactions
factors affecting stereoselectivity, 1, 54
Lithium, 2-furylecoupling reactions
with alkyl bromides, 3, 497
Lithium, glycosyl-synthesis by transmetallation, 3, 196
Lithium, 5-hexen-1-ylcyclization, 4, 871
Lithium, indenyl-tetramethylenediamine complex
crystal structure, 1, 19
Lithium, mesitylcryystal structure, 1, 23
Lithium, [methoxyl(phenylthio)(trimethylsilyl)methyl]-
tandem vicinal difunctionalization, 4, 259
Lithium, α-methoxyphenyl-
crystal structure, 1, 23
Lithium, 1-methoxy-1-phenylselenomethylreactivity
reactions with carbonyl compounds, 1, 672
Lithium, methoxy(phenylthio)(trimethylsilyl)methyl-
Peterson alkenation, 1, 787
Lithium, α-methoxyvinyl-
acyl anion equivalent, 1, 544
alkylation
alkyl enol ethers preparation, 2, 596
Lithium, methyl-
crystal structure, 1, 9
tetramethylenediamine complex
crystal structure, 1, 10
Lithium, 3-methyl-3-methoxy-1-butynyl-
conjugate additions
nontransferable ligand, 4, 176
Lithium, 1-methyleneseleno-2,2-dimethylpropyl-
reaction with heptanal
stereochemistry, 1, 677
Lithium, methylselenomethyalkylation, 3, 90
Lithium, methylthiomethyl-
epoxidation
2-cyclohexenone, 1, 826
Lithium, 1-octen-2-yl-
synthesis, 6, 781
Lithium, 1-pentynyl-
conjugate additions
nontransferable ligand, 4, 176
Lithium, perfluoroalkyl-
reactions with imines
Lewis acid pretreatment, 1, 350
Lithium, phenyl-
addition reactions
alkenes, palladium(II) catalysis, 4, 572
crystal structure, 1, 22
Lithium, phenylethynyl-
crystal structure, 1, 20
Lithium, 1-phenyl-2-methylseleno-2-oct-5-enyl-
cyclization, 1, 663
Lithium, 1-phenyleneseleno-1-hexyl-
alkylation, 3, 90
Lithium, phenylelenomethyl-
alkylation, 3, 90
synthesis, 1, 666
Lithium, 2-phenyleneseleno-2-propyl-
stability, 1, 632
synthesis, 1, 634
Lithium, 1-phenyleneseleno-1-thioalkyl-
reactivity
reactions with carbonyl compounds, 1, 672
Lithium, 1-phenyleneselenovinyl-
reactivity
reactions with carbonyl compounds, 1, 672
Lithium, α-(phenylsulfonyl)allyl-
X-ray structure, 1, 528
Lithium, α-(phenylsulfonyl)benzyl-
X-ray structure, 1, 528
Lithium, (phenylthio)methyl-
homologation
primary halides, 6, 139
ketones
methylenation, 6, 139
synthesis via thioanisole, 1, 506
Lithium, 1-phosphonato-1-phenylenalkyl-
reactivity
reactions with carbonyl compounds, 1, 672
Lithium, α-selenoalkyl-
acyl anion equivalents
synthesis, 3, 121
alkylation, 3, 88
allylation, 3, 91
nucleophilicity
reactions with carbonyl compounds, 1, 672
reactions, 1, 694; 3, 88
reactions with carbonyl compounds
reactivity, 1, 672
stereochemistry, 1, 677
synthesis, 1, 655; 3, 87
via selenium–lithium exchange, 1, 631
Lithium, α-selenoaallenyl-
synthesis, 3, 87
Lithium, α-selenoaalkyl-
alkylation, 3, 95
ambident reactivity, 1, 678
reactivity
reactions with carbonyl compounds, 1, 672
synthesis, 3, 87
Lithium, α-selenobenzyl-
alkylation, 3, 94, 95
reactions with alkenes, 1, 664
reactivity
reactions with carbonyl compounds, 1, 672
synthesis, 3, 87
Lithium, 1-selenocyclobutyl-
alkylation, 3, 90
<table>
<thead>
<tr>
<th>Lithium</th>
<th>Cumulative Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium, α-selenocyclopropylalkylation, 3, 90</td>
<td>Lithium, tris(trimethylsilyl)methylalkylation, 3, 290</td>
</tr>
<tr>
<td>reactions with carbonyl compounds, 1, 672</td>
<td>tetrahydrofuran complex crystal structure, 1, 16</td>
</tr>
<tr>
<td>Lithium, selenomethylsynthesis, 1, 631</td>
<td>Lithium, vinylalkylation, 3, 247</td>
</tr>
<tr>
<td>Lithium, α-selenopropargylalkylation, 3, 104</td>
<td>intramolecular carbolithiation, 4, 872</td>
</tr>
<tr>
<td>synthesis, 3, 87</td>
<td>oxidation with silyl peroxides, 2, 603</td>
</tr>
<tr>
<td>Lithium, 1-seleno-1-silylalkylreactivity reactions with carbonyl compounds, 1, 672</td>
<td>reaction with alkyl halides, 3, 247</td>
</tr>
<tr>
<td>Lithium, α-selenovinyl</td>
<td>Lithium acetylide ethylenediamine complex reaction with epoxides, 6, 7</td>
</tr>
<tr>
<td>Lithium, a-selenoxyalkyl</td>
<td>Lithium alkynyltriaalkylalanes conjugate additions α,β-enones, 4, 142</td>
</tr>
<tr>
<td>Lithium, a-thioalkylacyl anion equivalents synthesis, 3, 121</td>
<td>Lithium alkoxynaphthalenylalkylation reaction with methyl triflate, 3, 281</td>
</tr>
<tr>
<td>alkylation, 3, 88</td>
<td>Lithium alkylnylbimonates conjugate additions alkylideneacetooxacetates, 4, 148</td>
</tr>
<tr>
<td>reactions, 3, 88</td>
<td>Lithium alkylnycuprates reaction with haloallenes, 3, 274</td>
</tr>
<tr>
<td>synthesis, 3, 87</td>
<td>Lithium aluminu dum deutere reduction epoxides, 8, 872</td>
</tr>
<tr>
<td>Lithium, α-thiopropargylalkylation</td>
<td>Lithium aluminum hydride alcohol modifiers reduction, 8, 161</td>
</tr>
<tr>
<td>reaction with allyl halides, 3, 99</td>
<td>alkyl halide reduction mechanism, 8, 802</td>
</tr>
<tr>
<td>reaction with epoxides, 3, 100</td>
<td>chiral alkoxy derivatives synthesis, 8, 159</td>
</tr>
<tr>
<td>Lithium, α-thiobenzylalkylation</td>
<td>chiraloly modified reduction, 8, 160</td>
</tr>
<tr>
<td>with allyl bromides, 3, 497</td>
<td>copper chloride desulfurization, 8, 840</td>
</tr>
<tr>
<td>Lithium, α-thiopropargylalkylation, 3, 104</td>
<td>C—P bond cleavage, 8, 863</td>
</tr>
<tr>
<td>Lithium, trialkyvisildichloromethylalkylation, 3, 200</td>
<td>cyclic ketone reduction stereochemistry, 8, 5</td>
</tr>
<tr>
<td>Lithium, trialkylstannyltandem vicinal difunctionalization, 4, 257</td>
<td>demercuration, 8, 851</td>
</tr>
<tr>
<td>Lithium, trialkylstannylmethylalkylation reactions with carbonyl compounds methylenation, 1, 754</td>
<td>derivatives benzyl halide reduction, 8, 967</td>
</tr>
<tr>
<td>Lithium, triarylstannylmethylalkylation reactions with haloallenes, 8, 803</td>
<td>hydroalumination, 8, 736</td>
</tr>
<tr>
<td>reaction with dichloroethylaluminum, 2, 10</td>
<td>metal salt systems alkyl halide reduction, 8, 803</td>
</tr>
<tr>
<td>Lithium, trimethylsilylalkylation regioselectivity, 3, 200</td>
<td>reaction with ethylene, 8, 735</td>
</tr>
<tr>
<td>reaction with dichloroethylaluminum, 2, 10</td>
<td>reduction acetals, 8, 213</td>
</tr>
<tr>
<td>Lithium, triphenylmethylketone deprotonation, 2, 183</td>
<td>acyl halides, 8, 241, 263</td>
</tr>
<tr>
<td>Lithium, tris(phenylthio)methylalkylation, 3, 137</td>
<td>aliphatic nitro compounds, 8, 374</td>
</tr>
<tr>
<td>alkyl halides, 8, 802</td>
<td>amides, 8, 269</td>
</tr>
<tr>
<td>amides, 8, 269</td>
<td>benzyl halides, 8, 965</td>
</tr>
<tr>
<td>benzyl halides, 8, 965</td>
<td>carboxyl compounds, 8, 2, 5, 18, 313</td>
</tr>
<tr>
<td>carboxylic acids, 8, 237</td>
<td></td>
</tr>
</tbody>
</table>
epoxides, 8, 872
esters, 8, 245, 267hydrzones, 8, 345imines, 8, 26, 36lactones, 8, 247, 268nitriles, 8, 274phosphonium salts, 8, 860pyridines, 8, 579, 583tosylates, 8, 812unsaturated carbonyl compounds, 8, 536, 542, 545unsaturated hydrocarbons, 8, 483vicinal dibromides, 8, 797reaction with esters, 6, 206Lithium chloride
biomimetic reduction
allylic compounds, 8, 977Lithium compounds
comparison with boron compounds, 2, 239aminationalkyl or aryl, 6, 118use in intermolecular pinacol coupling reactionsaliphatic carbonyl compounds, 3, 570Lithium dialkenylcuprates
acetyl of, 1, 428Lithium dialkylamides
ester enolization
Claisen rearrangement, 5, 828
iminium anion synthesis, 6, 719Lithium dialkylcuprates
acetyl of, 1, 428
conjugate additions
enolate synthesis, 3, 8Lithium dialkyloxycyclooctanecuprates
structure, 3, 213Lithium dialkylcuprates
alkylation, 3, 256Lithium diallylcuprates
formation of 1,2-adducts, 1, 113Lithium bis(benzyl)dimethylsilylamide
descarbonylation, 1, 103
reduction
stereochemistry, 2, 59Lithium bis(phenyl)dimethylsilyllcuprate
introduction of hydroxy groups, 7, 646Lithium bis(trimethyl)silyllamide
Darzens glycidic ester condensation, 2, 427Lithium borohydride
ehtyl acetate system
hydroboration, 8, 709
reduction, 8, 880
1,3-diketones, 8, 13
epoxides, 8, 875
esters, 8, 244
Lewis acids, esters, 8, 244
unsaturated carbonyl compounds, 8, 536Lithium bromideacetone complexcrystal structure, 1, 299reaction with ethers, 6, 210Lithium bronze
reductionenones, 8, 526Lithium t-butoxycyclooctanecuprate
reduction kinetics, 8, 2Lithium n-butoxyaluminum hydride
synthesis, 8, 538Lithium n-butoxyaluminum hydride
reductionamides, 8, 272
unsaturated carbonyl compounds, 8, 544Lithium n-butoxyaluminum hydride
enolate formation
hindered base, 2, 182Lithium cations
acrolein complexes
structure, 1, 289Lithium chlorate
biomimetic reductionallylic compounds, 8, 977Lithium chloride
reaction with esters, 6, 206Lithium cobalt phthalocyanine
TcBoc removal, 6, 638Lithium compounds
aldol reactions
comparison with boron compounds, 2, 239aminationalkyl or aryl, 6, 118use in intermolecular pinacol coupling reactionsaliphatic carbonyl compounds, 3, 570Lithium dialkenylcuprates
acetylation of, 1, 428Lithium dialkylamides
erster enolization
Claisen rearrangement, 5, 828
iminium anion synthesis, 6, 719Lithium dialkylcuprates
acetylation of, 1, 428
coupled additions
enolate synthesis, 3, 8Lithium dialkyloxycyclooctanecuprates
structure, 3, 213Lithium dialkylcuprates
alkylation, 3, 256Lithium diallylcuprates
reactions with carbonyl compoundsformation of 1,2-adducts, 1, 113Lithium bis(benzyl)dimethylsilylamide
reductionpyridines, 8, 580Lithium 9,9-di-n-butyl-9-borabicyclo[3.3.1]nonanecuprate
reductionepoxides, 8, 876Lithium dibutylcuprate
reactions with ketones, 1, 116Lithium diethoxyaluminum hydride
reductionamides, 8, 271Lithium diisopropylamide
aldehyde reduction, 8, 88
Claisen condensation, 2, 182
deprotonation of N-allylamideγ-selectivity, 2, 61Lithium dimethylcyanocuprate
reductioncyclohexanones, 8, 14Lithium dimethylcuprate
acetyl ofmixture with waterstructure, 3, 212
reactions with aldehydes, 1, 108
reactions with α,β-dialkoxy aldehydes, 1, 109
reactions with dienyliron complexes, 4, 673reactions with epoxidesregioselectivity, 6, 5
reactions with ketones, 1, 116
stability, 3, 211
Claisen condensation, 2, 182
structure, 3, 211Lithium dimethylcyanocuprate
reaction with epoxidergioselectivity, 6, 5Lithium diorganocopper compounds
Lithium

Cumulative Subject Index

650

coupling, 3, 419
Lithium diphenycuprate
reaction with alkyl bromide, 3, 248
reaction with allylic acetate, 3, 257
Lithium diphenylmethane
lithium (12-crown-4) complex
crystal structure, 1, 11
Lithium diphenylphosphide
reduction
epoxides, 8, 885
Lithium diphenylphosphines
reactions with 13-allyl palladium complexes
regioselectivity, 4, 642
stereochemistry, 4, 625
Lithium divinylcuprates
coupling reactions
with enol triflates, 3, 487
vinyl halide coupling, 3, 482
Lithium ene reactions
intramolecular, 5, 37-46
Lithium enolates
aldol reactions
diastereofacial selectivity, 2, 217
alkylation, 3, 2
Claisen rearrangement, 5, 847
a-methyl substituents
axial alkylation, 3, 14
synthesis, 2, 100
thiol carboxylic esters
acylation, 6, 446
Lithium halides
catalysts
epoxide rearrangement, 3, 760, 763
Lithium halocarbenoids
alkylation, 3, 202
Lithium halocarbenoids, cyclopropylidene-
synthesis by halogen-lithium exchange
alkylation, 3, 202
Lithium--halogen exchange
dihalocyclopropanes, 4, 1007-1009
Lithium hexamethylsilazane
aldol reaction
stereoselectivity, 2, 192
enolate formation, 2, 182
Lithium hexamethylsilazide
crystal structure, 1, 6
Lithium hexamethyldisilylamide
ketone enolates
synthesis, 3, 3
Lithium hydride
reaction with ethylene, 8, 734
reduction
acyl halides, 8, 262
carbonyl compounds, 8, 22
Lithium iodide
β-alkoxy ketone reduction, 8, 9
catalysts
aldol reaction, 2, 146
iodination
esters, 6, 215
Lithium iodophenylcuprate
coupling with allylic alcohols, 3, 259
Lithium isohexylcyanocuprate
reaction with epoxides, 6, 9
Lithium isopropoxide
hydride donor
reduction of steroidal ketones, 8, 89
Lithium N-isopropylcyclohexylamide
ester enolates
generation, 2, 182
Lithium 3-lithiopropoxide
acylation, 1, 404
Lithium/magnesium acetylde
crystal structure, 1, 39
Lithium methoxide
reaction with formaldehyde
transition state, 8, 88
Lithium methoxyaluminum hydride
reduction kinetics, 8, 2
Lithium naphthalide
reduction, 3, 263
Lithium r-octyl-r-butyliumamide
ketone enolate synthesis, 3, 3
Lithium organo(fluorosily1)lamides
crystal structure, 1, 38
Lithium pentamethyltricuprate
structure, 3, 213
Lithium perchlorate
catalyst
epoxide ring opening, 3, 760, 761
Lithium phenylthiolom recalled
acetylation with carbonyls
2-oxetanone synthesis, 5, 116
Lithium phenylthio(2-vinylcyclopropyl)cuprate
conjugate additions
β-iodoenone, 4, 173
Lithium salts
acids, 8, 25
esters, 8, 261
lactones, 8, 268
nitriles, 8, 274
pyridines, 8, 580
unsaturated carbonyl compounds, 8, 542-544
Lithium thiocyanate
reduction
acetyl halides, 8, 263
carboxylic acids, 8, 260, 261
esters, 8, 267
lacetones, 8, 268
nitriles, 8, 274
pyridines, 8, 580
unsaturated carbonyl compounds, 8, 542-544
Lithium tri-1-butylborohydride
crystal structure, 1, 13
Lithium tri-1-butylborohydride

Cumulative Subject Index

Lycodoline

cyclic ketones, 8, 15

cyclohexanones, 8, 14

imines, 8, 36

keto sulfides, 8, 12

unsaturated carbonyl compounds, 8, 536

reduction

Lithium triethoxyaluminum hydride

reduction

amides, 8, 271

nitriles, 8, 274

Lithium triethylborohydride (Super Hydride)

reduction

alkyl halides, 8, 804, 805

allylic leaving group, 8, 960

epoxides, 8, 875

imines, 8, 36

ketones, 8, 10

nitrile oxides, 8, 377

tosylates, 8, 813

unsaturated carbonyl compounds, 8, 536

selective ketone reduction, 8, 18

Lithium trimethoxyaluminum hydride

cyclic ketone reduction

stereochemistry, 8, 5

reduction

acetyl halides, 8, 263

carboxylic acids, 8, 250

nitriles, 8, 274

unsaturated carbonyl compounds, 8, 542

Lithium trimethylcuprate

structure, 3, 213

Lithium tri-i-pentyloxyaluminum hydride

reduction

acetyl halides, 8, 263

Lithium triphenylcuprate

structure, 3, 213

Lithium triphenylmethane

crystal structure, 1, 11

Lithium tris[(-butylthio)aluminum hydride

reduction

unsaturated carbonyl compounds, 8, 543

Lithium tris[(3-ethyl-3-pentyl)oxy]aluminum hydride

reduction

aldehydes, 8, 17

Lithium triisamyborohydride

reduction

cyclohexanones, 8, 14

Lithium tris(trans-methylcyclopentyl)borohydride

reduction

cyclohexanones, 8, 14

Litioholic acid

microbial hydroxylation, 7, 73

Liver alcohol dehydrogenase

metal complex

models, 8, 82, 97

Living polymers

ring opening metathesis polymerization, 5, 1120

Locopodine

synthesis

via conjugate addition, 4, 240

Locorenine

related structure

synthesis via azomethine ylide cyclization, 4, 1140

Loganin, deoxy-
synthesis

Knoevenagel reaction, 2, 372

via Diels–Alder reaction, 5, 468

Loganin, 1-O-methyl-
synthesis

via Diels–Alder reactions, 5, 363

Loganin aglycone

synthesis, 7, 301

Loganin

aglucone 6-acetate

synthesis via photoisomerization, 5, 232

biosynthesis, 5, 468

synthesis, 3, 599

via [3 + 2] cycloaddition reactions, 5, 310

via photochemical cycloaddition, 5, 129

Loline

synthesis

via transannular cyclization, 4, 398

Longicamphor

reduction

dissolving metals, 8, 121

Longifolene

hydroboration, 8, 721

synthesis, 3, 599

pinacol rearrangement, 3, 729

via diazoalkene cyclization, 4, 1154

Wagner–Meerwein rearrangement, 3, 713

Looplure

synthesis, 3, 644

Lophotixin

synthesis, 3, 497

Loroxanthin

synthesis, 6, 782

Lossen reaction, 3, 908

Lossen rearrangement, 6, 821

hydroxamic acids, 6, 798

stereoselectivity, 6, 798

Lubimin, oxy-
synthesis, 7, 178

Luciduline

synthesis, 8, 945

via Cope rearrangement, 5, 814

via Diels–Alder reaction, 5, 351

Luciferin aldehyde

synthesis

epoxide ring opening, 3, 743

Lukes reduction

formic acid

pyridinium salts, 8, 590

Lumiflavin, 4α-hydroperoxy-
oxidation

sulfides, 7, 763

Lumisanthonin

photochemistry, 5, 730

Lumisterol

synthesis

via photochemical ring closure, 5, 700

Lupanone oxide

cyclopalladation–oxidation, 7, 630

Lupeol

reduction–alkylation, 8, 527

Lupinine

synthesis

Eschenmoser coupling reaction, 2, 881

Lycodine

synthesis

Mannich reaction, 2, 1013

Lycodoline

via Diels–Alder reaction, 5, 468

Loganin, 1-O-methyl-
synthesis

via Diels–Alder reactions, 5, 363

Loganin aglycone

synthesis, 7, 301

Loganin

aglucone 6-acetate

synthesis via photoisomerization, 5, 232

biosynthesis, 5, 468

synthesis, 3, 599

via [3 + 2] cycloaddition reactions, 5, 310

via photochemical cycloaddition, 5, 129

Loline

synthesis

via transannular cyclization, 4, 398

Longicamphor

reduction

dissolving metals, 8, 121

Longifolene

hydroboration, 8, 721

synthesis, 3, 599

pinacol rearrangement, 3, 729

via diazoalkene cyclization, 4, 1154

Wagner–Meerwein rearrangement, 3, 713

Looplure

synthesis, 3, 644

Lophotixin

synthesis, 3, 497

Loroxanthin

synthesis, 6, 782

Lossen reaction, 3, 908

Lossen rearrangement, 6, 821

hydroxamic acids, 6, 798

stereoselectivity, 6, 798

Lubimin, oxy-
synthesis, 7, 178

Luciduline

synthesis, 8, 945

via Cope rearrangement, 5, 814

via Diels–Alder reaction, 5, 351

Luciferin aldehyde

synthesis

epoxide ring opening, 3, 743

Lukes reduction

formic acid

pyridinium salts, 8, 590

Lumiflavin, 4α-hydroperoxy-
oxidation

sulfides, 7, 763

Lumisanthonin

photochemistry, 5, 730

Lumisterol

synthesis

via photochemical ring closure, 5, 700

Lupanone oxide

cyclopalladation–oxidation, 7, 630

Lupeol

reduction–alkylation, 8, 527

Lupinine

synthesis

Eschenmoser coupling reaction, 2, 881

Lycodine

synthesis

Mannich reaction, 2, 1013

Lycodoline
Lycopodine

synthesis
 Mannich reaction, 2, 1012
Lycopodine
 Mannich base, 2, 894
 synthesis, 2, 159
 Mannich reaction, 2, 1013
 use of cuprates derived from hydrazones, 2, 518
 via heteronucleophile addition, 4, 31
Lycoranes
 synthesis
 via arynes, 4, 502, 503
Lycorenine alkaloids
 synthesis, 1, 568
Lycoricidine

Lycorine alkaloids
 synthesis
 via arylolithium addition to α-nitroalkane, 4, 78
Lysergic acid
 synthesis, 6, 757
 via arynes, 4, 501
 via Diels–Alder reaction, 5, 414
 via spirolactonization, 6, 357
Lysergic acid, 2-methyl-
 synthesis, 3, 126
Lythrancepine alkaloids
 synthesis
 Eschenmoser coupling reaction, 2, 881
Macbecin 1
synthesis
(E)- and (Z)-selectivity, 1, 764
Macbecins
synthesis of segment
via Wittig or CrCl2 reaction, 1, 808
McMurry reaction, 3, 583
intermolecular, 3, 583
intramolecular, 3, 588
Macrocyclic compounds
synthesis
alkene metathesis, 5, 1118–1120
Eschenmoser coupling reaction, 2, 890
Macrocyclic ethers
Wittig ring contractions, 3, 1010
Macrocyclization
radical reactions, 4, 791
Macrolactams
synthesis
C—H insertion reactions, 3, 1057
Macrolactonization
enzymatic, 6, 376
δ-lactone synthesis, 6, 368
Macrolide antibiotics
synthesis, 2, 248; 7, 57
via cycloheptadienyliron complexes, 4, 686
via (Z)-selective Wittig reaction, 1, 763
via thiol esters, 6, 438
Macrolides
synthesis
via thallium(I) thiolates, 6, 440
synthesis, 3, 286
C—H insertion reactions, 3, 1058
Macrolides, oximino-
synthesis, 7, 507
Macromolecules
synthesis
Ugi reaction, 2, 1104
Macrophyllate, ethyl-
synthesis
use of alkaline potassium ferricyanide, 3, 665
Maesopsin
ring scission, 3, 831
Maesopsin, 4, 4',6-tri-O-methyl-
irradiation, 3, 831
Magic acid
catalyst
Friedel–Crafts reaction, 3, 297
Magnesium
deoxyxygenation
epoxides, 8, 889
desulfurization
sulfones, 8, 843
graphite-suspended
use in intermolecular pinacol coupling reactions, 3, 570
reduction
enones, 8, 524
nitro compounds, 8, 365
reductive dimerization
unsaturated carbonyl compounds, 8, 532
Magnesium, 1-alkenyl-
allylation, 5, 32
Magnesium, 2-alkenyl-
precursors
synthesis for magnesium-ene reaction, 5, 37
Magnesium, alkylbromoboronor trifluoride complex
reactions with acetals, 1, 346
Magnesium, alkynylhalo-
cross-coupling reactions
with vinyl iodides, 3, 527
Magnesium, allenylbromo-
synthesis, 2, 81
Magnesium, allylbromo-
reaction with aldoxime ethers, 2, 995
reaction with N-diphenylmethyleneaniline, 2, 976
reaction with N-methyl-4-ethylcyclohexylamine, 2, 983
reaction with sulfinimine, 2, 998
Magnesium, allylchloro-
crystal structure, 1, 18
Magnesium, aryl-
viny substitutions
palladium complexes, 4, 841
Magnesium, bis(2,4-dimethyl-2,4-pentadienyl)-
crystal structure, 1, 18
Magnesium, bis(indenyl)-
tetramethylethylene diamine complex
crystal structure, 1, 19
Magnesium, bis(phenylethynyl)-
tetramethylethylene diamine complex
crystal structure, 1, 21
Magnesium, bromocrotyl-
crotyl organometallics from, 2, 5
Magnesium, bromodecyl-
nucleophilic addition reactions
acrolein dimer, 1, 52
Magnesium, bromodisopropylamino-
Claisen condensation, 2, 182
Magnesium, bromoethynyl-
synthesis, 3, 271
Magnesium, bromomethyl-
reaction with ethyl acetate, 1, 398
tetrahydrofurane salt
Crystal structure, 1, 13
Magnesium, bromophenyl-
diethyl etherate
crystal structure, 1, 25
Magnesium, bromo(α-silylvinyl)-
alkylation, 3, 244
Magnesium, bromo(2-thiényl)-
reaction with vinylisoxirane, 3, 265
Magnesium, bromo-2,4,6-trimethylphenoxycatalyst
aldol reaction, 2, 137
Magnesium, bromovinyl-
alkylation, 3, 243
Magnesium, 1,2-buta dienylhalo-
reaction with aldehydes, 2, 91
Magnesium, chloro(diisopropoxymethyl)silylmethyl-
hydroxymethylolation with, 3, 200; 7, 647
Magnesium, chloroethy-
crystal structure, 1, 13

653
Magnesium

Magnesium, chloro(phenyldimethylsilyl)methyl-Peterson reaction, 1, 737
Magnesium, chloroprenyl-alkylation copper catalysis, 3, 215
Magnesium, crotyl-reaction with imines regioselectivity, 2, 988
syn–anti selectivity, 2, 989 reaction with iminium salts, 2, 1000 structure, 2, 977
Magnesium, 15-crown-4-xylylchloro-crystal structure, 1, 26
Magnesium, dialky-crystal structure, 1, 13 nucleophilic addition reactions stereoselectivity, 1, 72
Magnesium, diallyl-carbomagnesiation allylic alcohols, 4, 877
Magnesium, diethyl-18-crown-6 complex crystal structure, 1, 15
2,1,1-cryptand complex crystal structure, 1, 15
Magnesium, dimethyl-crystal structure, 1, 16
Magnesium, dineopentyl 2,1,1-cryptand complex crystal structure, 1, 15
Magnesium, diphenyl-tetramethyleneylethenediamine complex crystal structure, 1, 25
Magnesium, ethyl-diethyl ether solvate crystal structure, 1, 13
Magnesium, ethyl-3-(N-cyclohexyl-N-methylamino)propyl-crystal structure, 1, 14
Magnesium, ethyl-3-(N,N-dimethylamino)propyl-crystal structure, 1, 14
Magnesium, ethynylidenebis(brom0-
Magnesium, pentamethylene-crystal structure, 1, 16
Magnesium, propargyl-reactions with aldimines, 2, 992
Magnesium alkoide phosphorylation, 6, 603
Magnesium amides reactions with m-allylpalladium complexes, 4, 598
Magnesium amides, halo-oxirane ring-opening, 6, 91
Magnesium bromide catalyst allylstannane reaction with carbonyl compounds, 2, 573 Diels–Alder reaction, 2, 667 Friedel–Crafts reaction, 2, 737 Diels–Alder reaction catalysts diastereofacial selectivity, 2, 679 Tebbe reaction, 1, 746
Magnesium bromide, alkenyl-allylzincation, 4, 880 reaction with epoxides, 6, 5
Magnesium bromide, allyl-

reaction with homopropargylic alcohols, 4, 879
Magnesium bromide, isobornylhydroxy-hydride donor use in chiral syntheses, 8, 89
Magnesium bromide, isobutyl-reduction carboxylic acids, 8, 284
Magnesium bromide, 2,7-octadienyl-cyclization magnesium-ene reaction, 5, 38
Magnesium carbonate, methyl-ketone carboxylation Stile's reagent, 2, 841
Magnesium chloride sodium cyanoborohydride reductive amination, 8, 54
Magnesium chloride, (2-alkenyl)allyl-ene reactions, 5, 43
Magnesium cyclopropanolate cycloheptanone synthesis, 2, 448
Magnesium ene reactions, 5, 30 intramolecular, 5, 37–46, 59 ring size, 5, 60
Magnesium enolates aldol reactions diastereofacial selectivity, 2, 217
Claisen rearrangement, 5, 847 synthesis, 2, 110
Reformatsky reaction, 2, 186 thiol carboxylic esters acylation, 6, 446
Magnesium ester enolates reactions with nitriles Blaise reaction, 2, 298
Magnesium halides epoxide ring opening, 3, 754
Magnesium halides, allyl-carbomagnesiation, 4, 874
Magnesium hydride reduction cyclic carbonyl compounds, 8, 14
Magnesium monoperoxypthalate Baeyer–Villiger reaction, 7, 674 epoxidizing agent, 7, 374
Magnesium oxide catalyst Knoevenagel reaction, 2, 345
Magnesium perchlorate catalyst Friedel–Crafts reaction, 2, 737
Magnesiumcurarine methiodide model reaction dimerization, 3, 687
Mahubenolides synthesis, 6, 784
Makomakine synthesis use of ammonium ylides, 3, 955 via Ritter reaction, mercuration, 6, 284
Maleates, iodo-dimerization, 3, 482
Maleic acid hydride transfer with 1,4-dihydropyridines, 8, 93
Maleic acid bist(dimethylamide) dications, 6, 501
Maleic acid dinitrile, 1,2-diamino-
reactions with amines, 6, 517
Maleic anhydride
alkylated
synthesis, 7, 930
benzene irradiation
fulvene trap, 5, 646
[3 + 2] cycloaddition reactions
with \(\pi \)-allylpalladium complexes, 5, 275
Diels–Alder reactions
Lewis acid promoted, 5, 339
EDA complex
with hexamethylbenzene, 7, 856
ene reactions
intermolecular, 5, 2
Maleonitrile
synthesis
via 1,2-diiodoethylene, 6, 231
Malic acid
diethyl ester
alkylation, 3, 44
Malonamides
Knoevenagel reaction, 2, 357
Malonate, diethyl
reaction with \(\pi \)-allylpalladium complexes, 4, 590
Malonate, 5-methyl (5R)-methoxycarbonyl-
(3E)-deca-5,10-dienyl-
cyclization
palladium catalysis, 4, 650
Malonates
Michael addition, 4, 3
sulfenylation, 7, 125
Malonates, acyl-
reduction
sodium borohydride, 8, 277
Malonates, acylamino-
synthesis, 1, 373
Malonates, alkylidene-
addition reactions
with organomagnesium compounds, 4, 89
with organozinc compounds, 4, 95
Malonates, isopropylidemethylene-
addition reaction
with organomagnesium compounds, 4, 89
Malonic acid
diethyl ester
Claisen condensation, 2, 801
esters
Knoevenagel reaction, 2, 354
Knoevenagel reaction, 2, 356
Malonic acid, alkyl-
synthesis
via disubstituted organopotassium compounds, 7, 3
Malonic acid, benzylidene-
dimethyl ester
[3 + 2] cycloaddition reactions, 5, 302
Malonic acid, (o-bromoalkyl)diethyl ester
intramolecular alkylation, 3, 55
Malonic acid, methylene-
diesters
synthesis via retro Diels–Alder reaction, 5, 553
dimethyl ester
Diels–Alder reactions, 5, 356
dimethyl ester
cycloaddition reactions, 5, 272
Manganese
Malonic acid, oxo-
dialkyl esters
ene reaction, 2, 538
diethyl ester
ene reaction, 2, 538
Malonic acid, thioxo-
diethyl ester
Diels–Alder reactions, 5, 436
Malonic acid dibromide
synthesis
via oxalyl bromide, 6, 308
Malonic esters, acylimino-
reactions with organometallic compounds, 1, 373
Malonodialdehyde
Knoevenagel reaction
active methylene compound, 2, 358
Malonodiamides
Knoevenagel reaction, 2, 357
Malonodinitrile
Knoevenagel reaction, 2, 358
ylidene
Knoevenagel reaction, 2, 359
Malonodinitrile, 2-chlorobenzylidene-
synthesis
Knoevenagel reaction, 2, 385
Malononitrile
Vilsmeier–Haack reaction, 2, 789
Malononitrile, alkyldiene-
tandem vicinal difunctionalization, 4, 251
Malononitrile, benzylidene-
cycloaddition reactions, 5, 273
Malyngolide
synthesis
via chiral auxiliary, 1, 65
via conjugate addition to \(\alpha,\beta \)-unsaturated carboxylic amides, 4, 202
Mandelic acid
boron enolate
diastereofacial preference, 2, 232
homochiral
from alkenyloxyboranes, 2, 249
menthyl ester
synthesis, 1, 223
Mandelic acid, hexahydro-
synthesis
ketone oxalylation, 2, 838
Manganacycles
synthesis
via carbomanganation, 4, 906
Manganese, alkyl-
deoxyxygenation
epoxides, 8, 889
reactions with carbonyl compounds
Lewis acid promotion, 1, 331
Manganese, alkylpentacarbonyl-
reaction with alkynes, 4, 905
Manganese, arenetricarbonyl-
addition—oxidation reactions, 4, 542
nucleophilic reactions, 4, 689
synthesis, 4, 520
Manganese, butenetetraacarbonyl-
anion
synthesis, 4, 703
Manganese, chlorotetraphenylporphyrin-
alkane oxidation, 7, 11
Manganese, dicarboxyldienylnitrosyl-
Manganese

Cumulative Subject Index

synthesis, 4, 689
Manganese, tricarbonylcycloheptadienyl-
synthesis, 4, 689
Manganese, tricarbonylcyclohexadiene-
anion reaction with methyl iodide, 4, 704
synthesis, 4, 702
Manganese, tricarbonyl(η^4-diene)-
anions reactions with carbon electrophiles, 4, 702–705
Manganese, tricarbonyl(halobenzene)-
nucleophilic substitution, 4, 531
Manganese, tricarbonyl(1-methylbutadiene)-
anion synthesis, 4, 704
Manganese, tricarbonyl(η^4-polyene)-
anion synthesis, 4, 703
Manganese, tricarbonyl(η^6-(6-substituted)cyclo-
hexadienyl)-addition–oxidation reactions, 4, 542
Manganese acetate
radical addition reactions, 4, 763
radical cyclizations nonchain methods, 4, 806
reaction with alkenes, 7, 532
Manganese azide
1,2-diazides from alkenes and, 7, 487
Manganese chloride
lithium aluminum hydride unsaturated hydrocarbon reduction, 8, 485
Manganese complexes
allylic oxidation, 7, 95
Manganese complexes, dienyl-
synthesis, 4, 689–691
Manganese compounds, crotty-
type III reactions with aldehydes, 2, 24
Manganese dioxide
glycol cleavage, 7, 708
oxidation p-aminophenol, 7, 349
diols, 7, 318
primary alcohols, 7, 306
primary arylamines, 7, 738
secondary alcohols, 7, 324
quinone synthesis, 7, 142, 350, 355
Manganese enolates
synthesis and reaction, 2, 127
Manganese triacetate
allylic oxidation, 7, 92
α'-hydroxylation enones, 7, 174
α-oxidation enones, 7, 154
Manicone
enantioselective synthesis use of α-sulfinylhydrazones, 2, 516
Mannich bases
addition reactions acyl anions, 1, 547
denmination, 2, 897, 933
description, 2, 894
Mannich cyclization
molecular rearrangements, 2, 1040
Mannich reaction
Baldwin's rules, 2, 1008
bimolecular aliphatic, 2, 893–951
bimolecular aromatic, 2, 953–973
classical, 2, 893
intramolecular, 2, 1007–1044
limitations, 2, 896
mechanism, 2, 895, 954
regiochemistry, 2, 896
reviews, 2, 894
scope, 2, 896
steric factors, 2, 896
titanium tetrachloride mediated, 2, 897
Ugi reaction and, 2, 1090
with preformed iminium salts, 2, 898
Mannitol
chiral sulfur methylide, 1, 825
D-Mannofuranose, 2,3,5,6-di-O-isopropylidene-
transfer hydrogenation, 8, 552
β-D-Mannofuranosides
synthesis, 6, 56
Mannonojimycin, deoxy-
synthesis FDP aldolase, 2, 463
via aminomercuration–oxidation, 7, 638
D-Manno-2-octulosonate, 3-deoxy-
lipopolysaccharides, 6, 57
α-Mannopyranosides
synthesis, 6, 39
β-Mannopyranosides
synthesis, 6, 39, 43
D-Manose, 2,3,4,6-tetra-O-benzyl-
glycoside synthesis, 6, 57
α-D-Mannoside
reduction, 8, 226
Manoalide
synthesis carbonyl group protection, 6, 677
Marasmane
biosynthesis, 3, 404
Maritimol
synthesis, 3, 717
Marmine
synthesis, 7, 406
Marine
synthesis, 6, 746
Matsutake alcohol
synthesis via retro Diels–Alder reaction, 5, 554
Maysine
synthesis, 7, 57
Maytansine
precursor synthesis via nitrile oxide cyclization, 4, 1132
synthesis, 3, 126; 7, 380
Mazur oxidation, 7, 842
McFadyen–Stephens aldehyde synthesis, 8, 297
Mecambrine
synthesis alkaline photolysis, 3, 686
Meerwein arylation, 3, 505
atom transfer reactions radical addition reactions, 4, 757
intramolecular, 4, 804
Meerwein–Ponndorf reaction
organosamarium compounds, 1, 258
Meerwein–Ponndorf–Verley reaction
electron transfer mechanism, 3, 824
reduction of crotonaldehyde
aluminum isopropoxide in isopropyl alcohol, 8, 88
transition state, 8, 88
Meisenheimer rearrangement
amine oxides, 6, 834, 843
Meldrum's acid
flash vapour pyrolysis, 5, 732
imidoylation, 2, 356
Knoevenagel reaction
active methylene compound, 2, 355
Michael reaction, 2, 352
Melodinus alkaloids
synthesis
Mannich reactions, 2, 1042
Meloscine
biomimetic synthesis, 6, 755
synthesis
Menthadiene
cyclization, 3, 349
Menthol
asymmetric hydrogenation, 8, 144
esterification
enzymatic, 6, 341
lithium aluminum hydride modifier, 8, 161
oxidation
solid support, 7, 841, 845
(--)-Menthol, β-4-deoxy-L-glycoside
synthesis
Diels–Alder reaction, 2, 692
Menthol, phenyl-crotonate ester
addition reactions with organocuprate reagents, 1, 313
glyoxalate esters
nucleophilic addition reactions, 1, 65
Menthol, 8-phenyl-chiral malonic esters
intermolecular alkylation, 3, 56
conjugate additions
organocuprates, 4, 201
Menthone
oxime
Beckmann rearrangement, 7, 691
photoclyodaddition
with furan, 5, 170
rearrangement, 3, 831
reduction
dissolving metals, 8, 111
dissolving metals, stereoselectivity, 8, 116
electrolysis, 8, 321
lithium/ammonia/ethanol mixture, 8, 112
Menthyl acetate
chiral enolates
asymmetric induction, 2, 225
Methyl crotonate
addition reaction
phenylmagnesium bromide, 4, 200
Methyl esters
Mannich reaction, 2, 919
Reformatsky reaction, 2, 922
synthesis
Mannich reaction, 2, 924
Mercuration
activation barriers, 7, 869
charge transfer excitation energies
EDA complexes, 7, 870
EDA complexes
intermediates, 7, 868
Mercurilactonization
δ-lactone synthesis, 6, 366
reductive demercuration, 8, 853
unsaturated carboxylic acids, 6, 361
Mercury
reduction
α-bromo ketones, 8, 986
Mercury, allenyl-synthesis, 2, 85
Mercury, arylchloro-reaction with vinyl cuprates, 3, 497
Mercury, bis(bromomethyl)-addition to alkenes, 4, 968
Mercury, bromo-3-hexenyl-reductions, 8, 852
Mercury, bromo-4-methylcyclohexyl-reductions, 8, 852
Mercury, chlorovinyl-coupling reactions
with vinyl cuprates, 3, 489
Mercury, cycloperoxy-demercuration, 8, 855
Mercury, diaryl-extrusion of mercury, 3, 501
Mercury, diphenyl-acid anhydride synthesis, 6, 312
cleavage
acidic, 8, 850
Mercury, iodo(iodomethyl)-addition to alkenes, 4, 968
Mercury, propargyl-synthesis, 2, 85
Mercury, vinyl-dimerization
diene synthesis, 3, 484
Mercury acetate
α-acetoxylation
ketones, 7, 154
allylic oxidation, 7, 92, 108
dehydrogenation
steroids, 7, 93
ketone α-acetoxylation, 7, 145
Mercury acetate, cinnamyl-solvolysis, 7, 92
Mercury acetate, crotyl-solvolysis, 7, 92
Mercury bis(trifluoro)acetate
diene synthesis, 3, 342
Mercury carboxylates
acid anhydride synthesis, 6, 315
Mercury enolates
aldol reaction
syn stereoselective, 2, 314
Mercury hydride
radical addition reactions
alkenes, 4, 741
radical cyclizations, 4, 799
Mercury nitrate
oxidation
halides, 7, 665
reaction with alkenes, 7, 533
Mercury nitrite
Mercury oxide

nitration with, 6, 108
Mercury oxide
allylic oxidation, 7, 93
decarboxylative halogenation, 7, 724
Mercury salts
catalysts
Cope rearrangement, 5, 802
decarboxylative halogenation, 7, 724
halofunctionalization
alkenes, 7, 533
reactions with alkenes, 7, 3
Ritter reaction, 6, 283
Mercury-sensitized photoreactions
di-\(\pi\)-methane rearrangement, 5, 195
Mercury trifluoroacetate
electrophilic oxidation, 7, 868
Mercury trifluoroacetate, pentamethylphenyl-
synthesis, 7, 870
Mercury(II) acetate
oxidation of amines, 2, 1021
Mercury(II) salts, aryl-
dimerization, 3, 501
Merrifield synthesis
peptides, 6, 670
Mesaconitine
synthesis, 6, 402
\(\Delta^1\)-Mesembrinone
synthesis
Eschenmoser coupling reaction, 2, 885
Mesembrine
synthesis
\(N\) -acyliminium ions, 2, 1065
Mannich reaction, 2, 1010
via enaminines, 6, 717
Mesitonitrile oxide
cycloaddition reactions
tropones, 5, 626
Mesitylene
acylation
Friedel–Crafts reaction, 2, 735
amidoalkylation, 2, 971
formation, 2, 141
Mesitylene, diacetyl-
synthesis
Friedel–Crafts reaction, 2, 734
Mesitylene-2-sulfonylhydrazone
fragmentation, 6, 779
O-Mesitylenesulfonylhydroxylamine
Beckmann rearrangement, 6, 764
Mesityl nitrile oxide
use in 1,3-dipolar cycloadditions, 4, 1079
Mesityl oxide
synthesis, 8, 533
Mesionic compounds
1,3-dipolar cycloadditions, 4, 1096–1098
Mesopathodianthrone
synthesis
via photolysis, 5, 729
Mesoxylates
\(N\) -acylimines
Diels–Alder reactions, 5, 405
Diels–Alder reactions, 5, 432
Mesylates
alcohols
hydroxy group activation, 6, 19
bromination, 6, 210
chlorination, 6, 206
\(\alpha\) -Mesyloxylation
ketones, 7, 155
[3.3] Metacyclophane
synthesis
via arenne–metal complexes, 4, 540
[2.2] Metacyclophane, octamethyl-
synthesis, 6, 778
[2.2] Metacyclophane-4,9-diene, 15,16-dimethyl-
synthesis
via electrocyclization, 5, 705
Metacyclophanes
synthesis, 3, 126; 7, 354
5-Metacyclophanes
synthesis
via dihalocyclopropyl compounds, 4, 1017
Metal acetates
allylic oxidation, 7, 92
Metal alkoxides
catalysts
Friedel–Crafts reaction, 3, 296
Metal alkyls
catalysts
Friedel–Crafts reaction, 3, 296
Metal aluminides
synthesis, 8, 839
Metal amides
amidine synthesis, 6, 546
tandem vicinal difunctionalization, 4, 257
Metal borides
deselenations, 8, 848
Metal carboxyls
deoxygenation
epoxides, 8, 890
Metal complexes
cationic pentadienyl
nucleophilic addition, 4, 663–692
dienyl
nucleophilic addition, stereocontrol, 4, 685
Metal Dienolates
\(\alpha,\beta\) -unsaturated ketones
alkylation, 3, 21
Metal enolates
C-alkylation, 3, 4
O-alkylation
competition with C-alkylation, 3, 4
carboxylic acid derivative
alkylation, 3, 39
chirality transfer, 3, 13
molecular aggregates
dependence on solvent, 3, 3
saturated aldehydes
alkylation, 3, 20
stabilized
alkylations, 3, 54
Metal homoenolates, 2, 441–453
Metal hydrides
demercuration, 8, 851
radical addition reactions
alkenes, 4, 735–742
reduction
acets, 8, 213
acyl halides, 8, 240
alkyl halides, 8, 798
amides, 8, 249
arylsulfonylhydrazones, 8, 343
carbonyl compounds, 8, 1–22, 313
carboxylic acids, 8, 237, 259–279
epoxides, 8, 872
esters, 8, 244
amines, 8, 25–74
lactones, 8, 247
nitriles, 8, 253
pyridines, 8, 579
unsaturated carbonyl compounds, 8, 536
transition metal halides
reduction, mechanism, 8, 483
unsaturated hydrocarbon reductions, 8, 483

Metal ions
oxidation
thiols, 7, 759

Metallacycles
alkene metathesis, 5, 1115
Metallacyclobutane, 2-methylene-[3 + 2] cycloaddition reactions, 5, 293
Metallacyclobutane complexes
Tebbe reaction, 1, 748

Metallacyclopendadienes
reactions with alkenes
benzene synthesis, 5, 1144

Metallacyclopentadienes
reactions with alkenes, 5, 1142

Metallonaanes
structure, 2, 125

Metallation
acyclic systems
addition reactions, 1, 477
nucleophilic addition, 1, 461
alkynes, 3, 271
carbocyclic systems
addition reactions, 1, 461, 480
heterocyclic systems
addition reactions, 1, 470, 480

Metallic oxidants
ethers, 7, 236

Metallocarbenes
insertion, 3, 1047

Metallocene dichlorides
deoxygenation
epoxides, 8, 889

Metallocenes
bent
hydrometallation, 8, 669
Metallocene-Claisen reaction, 4, 880
Metallocenealumination, 8, 754
Metallocenamines, 2, 475–501
Metallo-ene reactions, 5, 29–60
intermolecular, 5, 30–37
intra molecular, 5, 37–59
regioselectivity, 5, 30, 60
ring size, 5, 59
stereochemistry, 5, 30, 60

Metalloproteases
peptide synthesis, 6, 395

Metals
reductive cleavage
α-halo ketones, 8, 986

Metazocines
synthesis, 3, 77

Methacylates, thienyl-synthesis, 7, 596
Methacrylic acid, α-phenylthio-
Methane

reaction with allylsilanes, 2, 580
Methane, dialkoxymethyl-
2,2-bis(dialkoxymethyl)carbonitrile synthesis, 6, 555
Methane, diazo-
C-acylation, 3, 888
Methane, dibenzyloxy-
synthesis
Claisen condensation, 2, 796
Methane, dibromo-
Simmons-Smith reaction, 4, 968
Methane, dichlorodiphenyl-
synthesis
Friedel-Crafts reaction, 3, 320
Methane, dimethoxy-
Reformatsky reagent, 2, 279
Methane, dimethylene-
Methane, di-N-morpholinyl-
[cycloaddition reactions, 5, 213-282
Methane, dipiperidyl-
Methane, ethoxy-N-morpholinyl-
nonprotic solvent, 2, 959
Methane, iodo-
acid chloride synthesis, 6, 503
Methane, iodomethylene-
Methane, methoxybis(trimethylsilyl)-
deprotonation
with s-butyllithium, 3, 198
Methane, methoxy(trimethylsilyl)-
deprotonation
with s-butyllithium, 3, 198
Methane, phenyl(iodomethyl)nitronate carbanion
Crystal structure, 1, 34
synthesis, 6, 105
Methane, phenyl(trimethylsilyl)phenylenediyne-
omatallation, 1, 642
Methane, polyhalo-
Methane, tetrachloro-
Methanol, dimethylamine-
Methane, trimethylene-
synthesis
Complexes
Crystal structure, 1, 34
[4 + 3] cycloaddition reactions, 5, 598
1,3-diyl trapping reaction, 5, 239
stereoselectivity, 5, 242
regioselectivity, 5, 240
synthetic equivalents, 5, 244
synthons
[3 + 2] cycloaddition reactions, 5, 287-312
Methane, triphenyl-
dyes
synthesis, Reiner-Tiemann reaction, 2, 774
Methane, tris(dimethoxyboryl)-
cleavage
alkylation of anion from, 3, 199
Methane, tris(dimethylamino)-
synthesis, 6, 579
Methane, tris(formylamino)-
synthesis, 6, 503
Methane, tris(methylseleno)-
methylation, 1, 641
Methane, tris(methylthio)-
keto homologation, 1, 878
Methane, tris(phenylseleno)-
methylation, 1, 641
Methane, triphenyl-
Methane phosphonate, 1-(trimethylsiloxy)phenyl-
diethyl ester
acyl anion equivalents, 1, 544
Methanesulfonyl chloride
reactions with alkenes, 7, 516
reactions with dienes, 7, 516
Methanesulfonic acid, aminoimino-
diaryl disulfide reduction, 4, 443
Methanesulfonic acid, trifluoro-
Ramberg-Bäcklund rearrangement, 3, 868
Methanesulfonylamide, trifluoro-
amine synthesis, 6, 83
Methanesulphonate, trifluoro-
viny ester
reaction with homoenolates, 2, 449
Methanesulphonate, trimethylsilyl trifluoro-
reaction with amides, 6, 502
Methanesulphonates
octyl esters
nitrile synthesis, 6, 236
Methanesulphonofluoride acid
Beckmann rearrangement, 7, 691
with phosphorus pentoxide, 6, 764
diisobutylaluminium salt
reactions with carbonyl compounds, 2, 68
Methanesulphonofluoride acid, trifluoro-
Beckmann rearrangement, 7, 695
catalyst
Friedel-Crafts reaction, 3, 297
esters
conversion to amides by carbonylation, 3, 1035
Friedel-Crafts reaction, 2, 754
bimolecular aromatic, 2, 739
ionic hydrogenation
carbonyl compounds, 8, 319
 trifluoroacetoyl ester
Cumulative Subject Index

Methylcupration

electrochemical amides, 7, 804 aromatic compounds, 7, 799 carbamates, 7, 804 ketones, 7, 798 Methoxymercuration carboxy-protecting groups deprotection, 6, 666 4-Methoxy-2,3,6-trimethylphenylsulfonyl group arginine guanidino protection, 6, 644 Methyl α-acetamidoacylate ene reactions Lewis acid catalysis, 5, 5 Methyl acetate, methoxy-boron trifluoride complex NMR, 1, 292 Methyl acrylate borane complexes structure, 1, 289 [3 + 2] cycloaddition reactions with electron deficient vinylcyclopropanes, 5, 281 Diels–Alder reactions, 5, 461 Lewis acid promoted, 5, 339 α-silapyran, 5, 1074 ene reactions intermolecular, 5, 3 Lewis acid complexes conformation, 1, 288 oxidation Wacker process, 7, 451 reaction with iron carbonyl, 5, 1131 reaction with vinyl chromium carbene complexes, 5, 1070 synthon tandem vicinal difunctionalization, 4, 247, 256 Methylalumination zirconium catalysis, 4, 890 Methylamine, alkoxy-Mannich reaction intermediate, 2, 895 Methylamine, bis(p-methoxyphenyl)- reaction with π-allyl complexes, 6, 86 Methylamine, N,N-bis(trimethylsilyl)methoxy-cleavage generation of N-silyliminium salts, 2, 913 formaldehyde imine equivalent, 1, 368 Methylamine, cyanimidium ion precursors, 4, 1088 Methylamine, hydroxy-Mannich reaction intermediate, 2, 895 Methyl benzoate reduction electrochemical, 8, 242 Methyl α-bromomethacrylate ene reactions Lewis acid catalysis, 5, 5 Methyl ceriferate synthesis, 3, 99 Methyl crotonate Diels–Alder reactions Lewis acid promoted, 5, 340 Lewis acid complexes NMR, 1, 294 reaction with Danishefsky’s diene, 5, 1072 Methylcupration

Friedel–Crafts reaction, 2, 740 Methanesulfonic acid esters, trifluoroamide alkylation, 6, 502 Methanesulfonic anhydride, acetyl-Friedel–Crafts reaction bimolecular aromatic, 2, 739 Methanesulfonic anhydride, trifluoro-activator DMSO oxidation of alcohols, 7, 299 reactions with amides, 6, 504 Methanesulfonyl azide diazo transfer reaction, 4, 1033 Methanesulfonyl bromide, bromo-reaction with alkenes, 4, 359 Methanesulfonyl chloride 2-hydroxyselenide elimination reactions, 3, 787 Methanesulfonyl chloride, trichloro-alkane chlorination, 7, 16 oxidation thiols, 7, 761 Methanesulfonyl chloride synthesis, 7, 14 Methanethiol, phenyl-dianions reactions with carbonyl compounds, 1, 826 Methanimine synthesis via retro Diels–Alder reactions, 5, 576 Methaniminium chloride, N,N-dimethylchlorosulfite Curtius reaction, 6, 810 1,6-Methano[10]annulene amide lithiation addition reactions, 1, 466 1,6-Methano[10]annulen-11-one synthesis via [6 + 4] cycloaddition, 5, 623 4,9-Methano[11]annulenone oxime Beckmann rearrangement, 6, 764 Methanols, trialkyl- synthesis, 3, 793, 794 2,4-Methanopropene synthesis via intramolecular photocycloaddition, 5, 179 9(0)-Methanoprostacyclin synthesis, 6, 780 Methionine N-(benzyloxy carbonyl) groups cleavage, 8, 959 Methoxatin synthesis, 7, 349 4-Methoxybenzyl esters carboxy-protecting groups cleavage, 6, 668 4-Methoxybenzyl group alcohol protection, 6, 23 ether protection, 6, 634 4-Methoxybenzoyloxy carbonyl group amino acid protecting group hydrogenolysis, 8, 958 protecting group cleavage, 6, 635 Methoxylamine oxidation synthesis of aziridines, 7, 744 α-Methoxylatation
Methyl α-cyanoacrylate

alkynes, 4, 898
Methyl α-cyanoacrylate
ene reactions
Lewis acid catalysis, 5, 5
Methyl cyanoformate
alkoxy-carbonylation
ketones, 2, 839
Methyl dihydrojasmonate
synthesis, 7, 457
δ-Methylidithiocarbonyl compounds
deoxygenation, 8, 818
Methyl β-ε-leostearate
hydrogenation
homogeneous catalysis, 8, 451
Methylation
aldehyde compounds, 1, 731
samarium induced, 1, 751
silicon stabilized, 1, 731
sulfur stabilized, 1, 737
Tebbe reagent, 1, 743
titanium stabilized, 1, 743
titanium-zinc, 1, 749
Methylenation
Methyl α-cyanoacrylate
alkynes, 4, 898
Methyl α-cyanoacrylate
enes reactions
Lewis acid catalysis, 5, 5
Methyl cyanoformate
alkoxy-carbonylation
ketones, 2, 839
Methyl dihydrojasmonate
synthesis, 7, 457
δ-Methylidithiocarbonyl compounds
deoxygenation, 8, 818
Methyl β-ε-leostearate
hydrogenation
homogeneous catalysis, 8, 451
Methylation
aldehyde compounds, 1, 731
samarium induced, 1, 751
silicon stabilized, 1, 731
sulfur stabilized, 1, 737
Tebbe reagent, 1, 743
titanium stabilized, 1, 743
titanium-zinc, 1, 749
Methylenation
Methyl α-cyanoacrylate
alkynes, 4, 898
Methyl α-cyanoacrylate
enes reactions
Lewis acid catalysis, 5, 5
Methyl cyanoformate
alkoxy-carbonylation
ketones, 2, 839
Methyl dihydrojasmonate
synthesis, 7, 457
δ-Methylidithiocarbonyl compounds
deoxygenation, 8, 818
Methyl β-ε-leostearate
hydrogenation
homogeneous catalysis, 8, 451
Methylation
aldehyde compounds, 1, 731
samarium induced, 1, 751
silicon stabilized, 1, 731
sulfur stabilized, 1, 737
Tebbe reagent, 1, 743
titanium stabilized, 1, 743
titanium-zinc, 1, 749
Methylenation
Methyl α-cyanoacrylate
alkynes, 4, 898
Methyl α-cyanoacrylate
enes reactions
Lewis acid catalysis, 5, 5
Methyl cyanoformate
alkoxy-carbonylation
ketones, 2, 839
Methyl dihydrojasmonate
synthesis, 7, 457
δ-Methylidithiocarbonyl compounds
deoxygenation, 8, 818
Methyl β-ε-leostearate
hydrogenation
homogeneous catalysis, 8, 451
Methylation
Cumulative Subject Index

Mitosane

carboxy-protecting group, 6, 639, 666
Methyl toluate
(2,6-di-t-butyl-4-methylphenoxydiethylaluminum complex
crystal structure, 1, 301
Methyl trifluoroacetate
hydrogenation, 8, 242
Methyl undecylenate
amidomercurial reduction, 8, 858
Methyl vemolate
rearrangement, 3, 752
Methymycin
synthesis
via macrolactonization, 6, 372
Methynolide
synthesis, 7, 246
stereocontrol, 3, 960
via iterative rearrangements, 5, 894
via macrolactonization, 6, 369
Mevalonolactone
synthesis, 7, 312, 316
Mevalonolactone, anhydro-
synthesis, 7, 240
Mevinic acids
synthesis
via Horner–Wadsworth–Emmons reaction, 1, 772
Mevinolin
analogs
synthesis, via chiral acetals, 2, 651
synthesis, 3, 589
diene reaction, 2, 548
via an alkyln ketone, 1, 405
via cyclofunctionalization of cycloalkene, 4, 373
via organocuprate conjugate addition, 4, 194
Meyer–Schuster reaction
propargylic alcohols, 6, 836
Meytansine
synthesis
via t-butyl (p-tolylsulfinyl)acetate, 1, 523
Michael acceptors
conjugate enolate anion addition, 4, 261
Michael addition
abnormal, 4, 4
antiparallel addition, 4, 23
closed transition state model
stereochemistry, 4, 21
definition, 4, 258
dienolate double, 4, 30
enantioselective, 6, 849
intermolecular, 4, 3–23
diastereoselectivity, 4, 18
intramolecular, 4, 24–30
Knoevenagel products
side reaction, 2, 352
mechanism, 4, 1
open transition state model
stereochemistry, 4, 21
radical cyclization, 4, 791
sequential, 4, 261
stereochemistry
solvent effect, 4, 20
tandem, 4, 121
under aprotic conditions, 4, 10
α,β-unsaturated carbene complexes, 5, 1081
Michael–Michael ring closure reactions, 7, 625
Michael ring closure
annulation, 4, 260
sequential, 4, 262
Microbial dehydrogenation
carbonyl compounds, 7, 145
Microbial epoxidation, 7, 429
Microbial hydroxylation
ketones, 7, 158
Microbial oxidation
alternatives, 7, 79
enantiotopic discrimination, 7, 57
mechanism, 7, 56
nonsteroidal substrates, 7, 56
steroids, 7, 56
unactivated C—H bonds, 7, 53–80
Microbacterium flavus
β-hydroxylation, 7, 56
Microorganisms
cultures
collections, 7, 55
immobilized
steroid dehydrogenation, 7, 68
mutation, 7, 56
oxidation
unactivated C—H bonds, 7, 53
uses, 7, 55
reduction
carbonyl compounds, 8, 185
sources, 7, 55
reduction, 8, 184
taxonomy, 7, 55
Milbemycin β1
synthesis
via Julia coupling, 1, 801
Milbemycin β3
synthesis
via activated esters, 6, 373
via Julia coupling, 1, 801
via lithium cuprate, 1, 128
via macrolactonization, 6, 375
via macrolide ring closure, 6, 369
Milbemycin E
spiroacetal fragment
synthesis, 1, 568
Milbemycins
synthesis, 7, 300
spiroketel portion, 1, 419
via carboalumination, 4, 893
via Horner reaction, 1, 779
via Julia coupling, 1, 797, 801
Minelsin
anticholinergic and spasmodlytic agent, 3, 826
Minisci reaction
alkenes, 7, 498
nucleophilic radical addition reactions, 4, 768
Mislow allyl sulfoxide–allyl sulfenate rearrangement
2,3-sigmatropic rearrangement, 6, 834
Mitomycin C
synthesis, 7, 353
Mitomycins
synthesis
via Baeyer–Villiger reaction, 7, 684
via Peterson methylation, 1, 732
Mitosane
synthesis
via selenoamination of allylic arylamines, 4, 403
Mitosene

Mitosene, 7-methoxy-synthesis
Mannich reaction, 2, 1015
synthesis, 3, 261

Mitsunobu reaction
1-O-activation
glycoside synthesis, 6, 49
activation of alcohols, 7, 752
bromides
alkyl alcohols, 6, 210
ester synthesis, 6, 333
fluorination
alkyl alcohols, 6, 218

MK-801
synthesis, 3, 71

Modhephene
synthesis, 5, 924
retrosynthetic analysis, 4, 732
via [3 + 2] cycloaddition reactions, 5, 310
via intramolecular ene reactions, 5, 11, 2
via Nazarov cyclization, 5, 779
via photocycloaddition, 5, 666
via photoisomerization, 5, 233

Mokupalide
synthesis, 3, 99
via carboxylation, 4, 893

Molecular sieves
asymmetric epoxidation, 7, 396
enamine synthesis
water removal, 6, 705

Molybdenes, decahydro[1,3]diboro[1,3]dithiophosphates
reduction
aldehydes, 8, 17

Molybdenum
oxidation
secondary alcohols, 7, 320

Molybdenum, arenetricarbonyl-catalyst
Friedel-Crafts reaction, 3, 300

Molybdenum, \(\eta^3\)-crotyl-
reaction with benzaldehyde
diastereoselectivity, 2, 35

Molybdenum, \(\eta^3\)-cyclopentadienylcrotylextendered stability, 2, 6

Molybdenum, dicyclopentadienyltetracarbonyl-(acetaldehyde)-
crystal structure, 1, 310

Molybdenum, hexacarbonyldihalogenation
\(\alpha\)-halocarbonyl compounds, 8, 991
\(\alpha\)-hydroxylation
ketones, 7, 167
transfer hydrogenation
unsaturated ketones, 8, 554

Molybdenum acetylacetonate complexes
deoxygenation
epoxides, 8, 889

Molybdenum catalysts
alkene metathesis, 5, 1118

Molybdenum complexes
cycloalkadiene complexes
reactions with \(N\)-substituted sulfoximine
carbonanions, 1, 535

Molybdenum complexes, alkylidene-
carbonyl alkylideneation, 5, 1126

Molybdenum complexes, carbene

chemistry, 5, 1091
Molybdenum complexes, hydrido-reduction
unsaturated carbonyl compounds, 8, 551
Molybdenum complexes, oxo-deoxygenation
epoxides, 8, 889
Molybdenum complexes, peroxy-epoxidations with, 7, 382
\(\alpha\)-hydroxylation
amides, 7, 183
enones, 7, 175
esters, 7, 180
ketones, 7, 160
ketoximes, 7, 187
Molybdenum dioxide diacetylacetone
oxidative cleavage of alkenes
with \(t\)-butyl peroxide, 7, 587
Molybdenum enolates
aldol reaction, 2, 312
synthesis and reaction, 2, 127
Molybdenum oxide
activator
DMSO oxidation of alcohols, 7, 299
Molybdenum pentachloride
catalyst
Friedel-Crafts reaction, 2, 737
reaction with alkenes, 7, 530
Molybdenum pentaoxide
oxidation
alkoxyloxyboranes, 7, 602
Molybdenum salts
reduction
alkenes, 8, 531
Molybdenum trioxide
catalyst
carbonyl compound hydrogenolysis, 8, 320

Monacolin-K
microbial oxidation, 7, 77

Monensin
synthesis
stereoselectivity, 4, 384
via alkynide addition, 1, 420
via Claisen rearrangement, 5, 853
via Lewis acid chelation-controlled addition, 1, 336
synthesis by Still
use of magnesium enolate, 2, 194

Monensin B
synthesis, 7, 361

Monensin lactone
synthesis
Diels-Alder reaction, 2, 701

Monic acid C
synthesis
via carbosulfenylation of alkenes, 4, 331

Monoacylation
polys
selective, 6, 337

Monobactam antibiotics
synthesis
from \(N\)-methyleneamines, 2, 941
Mannich reaction, 2, 913

Monoclonal antibodies
synthetic protein catalysts
Claisen rearrangement, 5, 855

Monocyclofamesol
Cumulative Subject Index

Muscopyridine

- asymmetric dihydroxylation, 7, 429
- oxidation
 - primary alcohols, 7, 309, 311
- 2-Morpholinocrotonyl isocyanide
 - amide synthesis, 6, 387
- Morpholinones
 - reduction, 8, 653
- Mosher–Yamaguchi reagent
 - reduction
 - unsaturated carbonyl compounds, 8, 545
- Moth pheromones
 - synthesis
 - via dieneicarboxyl complex, 4, 701
- MSD-92, 4-deaza-
 - synthesis, 7, 342
- Mukaiyama reaction
 - asymmetric synthesis
 - use of silyl enol ethers, 2, 629
 - mechanism, 2, 630
- Mukapolid
 - synthesis
 - reduction of sulfides, 3, 107
- Mukulol
 - synthesis
 - via cyclization, 1, 553
- Multifidene
 - synthesis
 - alkene protection, 6, 689
 - via Cope rearrangement, 5, 806
 - via retro Diels–Alder reactions, 5, 563
- Multifloramine
 - synthesis, 3, 807
 - use of ferricyanide, 3, 681
- Munchonones
 - cycloaddition reactions, 4, 1137–1139
 - 1,3-dipolar cycloadditions, 4, 1096
- Munchonones, C-alkenyl
 - azomethine ylides
 - cycloadditions, 4, 1139
- Munchonones, N-alkenyl
 - azomethine ylides
 - cycloadditions, 4, 1139
- Munchonones, trifluoroacetyl-
 - cyclization, 4, 1139
- Murein
 - synthesis, 6, 52
- Muscalure
 - synthesis, 3, 644
- Muscarine
 - synthesis, 6, 764
 - via [3 + 2] cycloaddition reactions, 5, 286
 - via [4 + 3] cycloaddition reactions, 5, 605
- Muscone
 - synthesis, 2, 270; 3, 168, 787; 7, 57; 8, 557
 - alkylation
 - Dieckmann reaction, 2, 824
 - via cyclization, 1, 553
 - via dihalocyclopropyl compounds, 4, 1018
 - via intramolecular Barbier reaction, 1, 262
 - via Julia coupling, 1, 803
 - via Raphael–Nazarov cyclization, 5, 779
 - via Wacker oxidation, 7, 455
 - via Wagner–Meerwein rearrangement, 7, 806
- (2)-Muscone
 - synthesis, 2, 166
- Muscopyridine
Mus musculus pheromone synthesis
via Raphael–Nazarov cyclization, 5, 779

Mus musculus pheromone synthesis
via cyclofunctionalization of cycloalkene, 4, 373

Mustard gas synthesis
via electrophilic addition, 4, 330

Muxone synthesis
via cyclobutene ring expansion, 5, 687

Mycinolide V synthesis
via macrolactonization, 6, 370

Mycinomycin synthesis, 3, 797

Mycophenolic acid synthesis
via cyclobutene ring opening, 5, 689
via electrocyclization, 5, 732

Myoporone, 7-hydroxy-synthesis, 7, 827

Myrcene synthesis
hydroisilylation, 8, 780
synthesis, 3, 429

Myrtenal optically active ligand from synthesis of homoallyl alcohols, 1, 612

Myrtenol synthesis, 7, 92, 99

Mytloxanthin synthesis
Claisen condensation, 2, 821
Nafion, 7, 511
chromium(III) oxidants
alcohol oxidation, 7, 282
Nafion-H
catalyst
Friedel–Crafts reaction, 2, 736
Nafion resin
catalyst, solid superacid
Friedel–Crafts reaction, 3, 298
Nagata's reagent
Michael addition, 4, 23
Nagilactones
synthesis, 7, 331
Nametkin rearrangement, 3, 706
Namaomycin
synthesis, 5, 1096
regioselective, 5, 1094
Namaomycin A
synthesis
via cyclobutene ring opening, 5, 690
via metal-catalyzed cycloaddition, 5, 1203
Naphthacene
hydrogenation
homogeneous catalysis, 8, 455
Naphthaldehyde
tandem vicinal difunctionalization, 4, 243
1-Naphthaldehyde
formylation
modified Gattermann–Koch reaction, 2, 749
imines
tandem vicinal difunctionalization, 4, 252
2-Naphthaldehyde, 1-chloro-3,4-dihydro-
hydrogenation, 8, 898
Naphthalene
alkylation
1-bromoadamantane, 3, 302
Friedel–Crafts reaction, 3, 304
anodic oxidation, 7, 799
Benkeser reduction
dissolving metals, 8, 516
Birch reduction
dissolving metals, 8, 496
carboliethiation, 4, 871
charge-transfer osmylation, 7, 864
competitive alkylation
Friedel–Crafts reaction, 3, 300
[4 + 3] cycloaddition reactions, 5, 608
formylation
dichloromethyl alkyl ethers, 2, 750
Gattermann–Koch reaction, 2, 749
hydrogenation
heterogeneous catalysis, 8, 439
homogeneous catalysis, 8, 454
palladium-catalyzed, 8, 438
isopropylation
Friedel–Crafts reaction, 3, 304
reductive silylation, 8, 518
regioselective isopropylation
Friedel–Crafts reaction, 3, 305
synthesis, 7, 628
via benzene Diels–Alder reactions, 5, 381
via electrocyclization, 8, 720
via ketocarbenoids, 4, 1056
via sequential Michael ring closure, 4, 262
thermal osmylation, 7, 863
Naphthalene, acetyl-
Birch reduction
dissolving metals, 8, 503, 510
reduction
ionic hydrogenation, 8, 319
Naphthalene, 2-(1-adamantyl)-synthesis
Friedel–Crafts reaction, 3, 302
Naphthalene, 1-alkanoyl-6-methoxy-
synthesis
via Birch reduction, 8, 510
Naphthalene, alkoxy-
Birch reduction
dissolving metals, 8, 496
Naphthalene, alkyl-
Birch reduction
dissolving metals, 8, 496
Naphthalene, 1-alkyl-2-nitro-
synthesis, 4, 429
Naphthalene, N-arenesulfenylimino-1,4-dihydro-
thermolysis
sulfenyl nitrenes from, 7, 483
Naphthalene, benzoyl-
Wolff–Kishner reduction, 8, 338
Naphthalene, 1-bromo-
reduction, 8, 908
Naphthalene, t-butyl-
synthesis
Friedel–Crafts reaction, 3, 311
Naphthalene, 3-butyl-2-methyl-1-nitro-
synthesis, 4, 428
Naphthalene, chloro-
hydrogenolysis, 8, 906
Naphthalene, 2-chloro-
synthesis
via dichlorocarbene, 4, 1016
Naphthalene, dihydro-
metal complexes
addition reactions, 4, 546
Pauson–Khand reaction, 5, 1049
synthesis
via thermolysis, 5, 713
Naphthalene, 1,2-dihydro-
synthesis
via FVP, 5, 718
Vilsmeier–Haack reaction, 2, 782
Naphthalene, 1,4-dihydro-
photoisomerization, 5, 197
Naphthalene, 9,10-dihydro-
hydride transfer, 8, 92
cis-Naphthalene, 9,10-dihydro-
synthesis
via thermal isomerization, 5, 716
trans-Naphthalene, 9,10-dihydro-
photolysis, 5, 716
Naphthalene, dihydrothienyl-
synthesis, 3, 497
Naphthalene, 1,4-dimethoxy-
metal complexes
Cumulative Subject Index

Naphthalene

addition reactions, 4, 536
Naphthalene, 1,6-dimethoxy-
Birch reduction
dissolving metals, 8, 503
Naphthalene, 1,8-dimethylamino-
proton sponge
cyclization reactions, 4, 843
Naphthalene, 1,8-divinyl-
isomerization, 5, 68
Naphthalene, 1-fluoro-
hydrogenolysis, 8, 904
Naphthalene, halo-
S_N1 reaction, 4, 461
Naphthalene, hexahydro-
synthesis
via Diels–Alder reaction, 5, 331
Naphthalene, iodo-
coupling with naphthoxides, 4, 470
Naphthalene, 1-methoxy-4-nitro-
synthesis, 6, 111
Naphthalene, methyl-
isomerization
Friedel–Crafts reaction, 3, 327
Naphthalene, 2-methyl-
Friedel–Crafts reaction
isobutyl fluoride, 2, 735
Naphthalene, octahydro-
cis-fused
synthesis via palladium-ene reaction, 5, 50
Naphthalene, tetrafluoro-
hydrogenolysis, 8, 904
Naphthalene, tetrahydro-
chiral derivatives
synthesis, 3, 327
synthesis
Friedel–Crafts reaction, 3, 311
Naphthalene, 2-trimethylsilyl-
Birch reduction
dissolving metals, 8, 513
1,2-Naphthalenedicarboxylic anhydride
reduction
borane, 8, 240
1,5-Naphthalenedisulfonate
reduction, 8, 918
stability, 8, 916
Naphthalene phosphonate, dimethyl-
synthesis, 4, 446
Naphthalenesulfonyl azide
diazo transfer reaction, 4, 1033
2-Naphthalenetellurenyl iodide
synthesis, 7, 774
Naphthalen-1,4-IMines, 1,4-dihydro-
synthesis
via Diels–Alder reactions, 5, 382
Naphthalen-2-ol, 4a-decahydro-
synthesis, 7, 413
Naphthalen-2-ol, 4a-methyl-2,3,4,4a,5,6,7,8-octahydro-
synthesis, 7, 413
Naphthalen-1-ol, 2-(N-substituted
amino)-1,2,3,4-tetrahydro-
synthesis, 6, 787
Naphthalen-1(2H)-one, 7-acetyl-3,4-dihydro-
synthesis
Friedel–Crafts reaction, 2, 760
Naphthalen-1(2H)-one, 3,4-dihydro-5,8-dimethoxy-
synthesis, 2, 763
Naphthalen, 1,2-dihydro-
synthesis
via conjugate addition to oxazolines, 4, 206
1,2-Naphthylene
addition reactions, 4, 493
coupling reactions
selectivity, 4, 492
generation, 4, 489
Naphthene, 2-diazoox-
ring contraction, 3, 902
Naphthol[b]cyclopentene
cycloadDITION reactions
metal catalyzed, 5, 1199
Naphthol[1,8-cd]-1,2-diselenole
oxidation, 7, 770
Naphthoic acids
oxazolines from
tandem vicinal difunctionalization, 4, 252
1-Naphthoic acids
Birch reduction
dissolving metals, 8, 502
2-Naphthoic acids
Birch reduction
dissolving metals, 8, 502, 503
2-Naphthoic acids, 3-mercapto-
flash pyrolysis
synthesis of β-thiolactones, 6, 440
1-Naphthoic acid, 2-methoxy-
Birch reduction
dissolving metals, 8, 502
1-Naphthoic acids, 4-methoxy-
Birch reduction
dissolving metals, 8, 503
2-Naphthoic acids, methoxy-
Birch reduction
dissolving metals, 8, 503
Naphthoic acids, tetrahydro-
Birch reduction
dissolving metals, 8, 503
1,8-Naphthoic anhydride
reduction
borane, 8, 240
Naphthol
hydrogenation, 8, 912
Reimer–Tiemann reaction
normal, 2, 769
synthesis, 7, 144
via FVP, 5, 732
1-Naphthol
oxidation
solid support, 7, 843
reaction with dipiperidylmethane
Mannich reaction, 2, 958
synthesis
Knoevenagel reaction, 2, 354
2-Naphthol
Birch reduction
dissolving metals, 8, 493, 497
Mannich reaction with ethoxy-N-morpholinylmethane
nonprotic solvent, 2, 959
oxidative dimerization, 3, 665
reaction with benzaldehyde
Mannich reaction, 2, 960
reaction with benzoxazines
Mannich reaction, 2, 970
reaction with dipiperidylmethane
Mannich reaction, 2, 958

2-Naphthol, 6-methoxy-
 Birch reduction
dissolving metals, 8, 497

1-Naphthol, 2-methyl-
 Mannich reactions
 with preformed salts, 2, 960

Naphthoquinones
 synthesis
 via 'one-pot' ortho lithiation, 1, 466
 via metal-catalyzed cycloaddition, 5, 1202

1,4-Naphthoquinones
 in microbial dehydrogenation
 steroids, 7, 67
 synthesis, 7, 345

Naphthoquinones, 2-alkyl-
 asymmetric epoxidation, 7, 425

1,4-Naphthoquinones, 2,3-dichloro-
 monoalkylation
 with tetraalkyltins or alkylzirconium complexes, 3, 458

1,4-Naphthoquinones, 2-hydroxy-
 Mannich reaction, 2, 960

Naphthoquinones, tetrahydro-
 Diels–Alder reactions, 5, 394

Naphtho[2,1-d]thiazolium salts
 catalysts
 benzoin condensation, 1, 543

Naphthoxazine
 synthesis, 6, 787

Naphthoxides
 arylation, 4, 470
 coupling with iodonaphthalenes, 4, 470

Naphthylamines
 amine–amine exchange reactions, 4, 435

1-Naphthylimine
 reactions with organometallic compounds, 1, 383

Naphthylimine, N-cyclohexyl-
 addition reactions
 with organolithium compounds, 4, 76

1,8-Naphthyridinium chlorochromate
 oxidation
 alcohols, 7, 270

1,8-Naphthyridinium dichromate
 oxidation
 alcohols, 7, 278

Naproxen
 asymmetric synthesis, 3, 789
 synthesis, 3, 1022; 7, 506
 via hydroformylation, 4, 932

Naphthaldehyde-9-carboxylic acid
 synthesis, 3, 828

Narbomycin
 synthesis
 via cuprate acylation, 1, 436

Nargenicin A1, 18-deoxy-
 synthesis
 via macro lactonization, 6, 370

Narwedge
 synthesis, 3, 683

Nauclefine
 synthesis
 Mannich reaction, 2, 913

Nazarov cyclizations, 5, 751–781
 abnormal, 5, 760

Neuraminic acid
 cyclopentenones by, 2, 710
 mechanism, 5, 754
 stereochemistry, 5, 754
 tin-directed, 5, 765

Nazarov-type cyclization reactions
 vinylsilanes, 1, 585

Neber rearrangement, 6, 786

β-Necrodol
 synthesis
 via conjugate addition to sultam, 4, 204
 via magnesium-ene reaction, 5, 45

Nef reaction
 nitroalkanes, 2, 324
 solid support, 7, 842, 844

Neocarzinostatin
 synthesis
 via electrocyclization, 5, 736

Neoclovene
 synthesis, 3, 386

Neohexene
 synthesis
 via Phillips Triolefin Process, 5, 1117

Neolignan
 synthesis
 use of silver oxide, 3, 691

Neomethynolide
 synthesis
 via alkynyl acylation by lactones, 1, 421

Neopentane
 synthesis, 3, 415

Neopentyl alcohol
 reaction with dichlorotriphenylphosphorus, 6, 205

Neopentyl bromide
 nitrile synthesis, 6, 229

Neopentyl compounds
 deoxygenation, 8, 820

Neopentyl iodide
 synthesis, 6, 213

Neopentyl tosylate
 reaction with lithium bromide, 6, 210

Neosporol
 synthesis
 via Claisen rearrangement, 5, 832

Nepetalactone, dihydro-
 synthesis
 via Cope rearrangement, 5, 812

Neral
 asymmetric reduction
 aluminum hydrides, 8, 545
 hydrogenation
 homogeneous catalysis, 8, 462

Nerol
 asymmetric hydrogenation
 synthesis of citronellol, 8, 462
 oxidation, 7, 306
 synthesis
 stereoselectivity, 3, 180

Nerol, neryl-
 synthesis, 3, 170

Nerolidol
 synthesis, 3, 170
 via retro Diels–Alder reaction, 5, 555

Neryl acetate
 allylic oxidation, 7, 89

Neuraminic acid, N-acetyl-
 2α-glycoside
Nezukone

Cumulative Subject Index

670

synthesis via carbosulfenylation of alkenes, 4, 331
synthesis
Diels–Alder reaction, 2, 694
(Z)-selectivity, 1, 765

Nickel

alumina
hydrogenation catalyst, 8, 319
catalyst
cross-coupling reactions, 3, 523
hydrosilation, 8, 556
hydrogenation catalyst
pyridines, 8, 597
Nickel, acyl-
reactions with π-allylpalladium complexes
regioselectivity, 4, 642
Nickel, π-allylhalo-
chemoselectivity, 3, 424
preparation, 3, 423
reactions, 3, 423
Nickel, bipyridyl(cyclooctadiene)-
desulfurization, 8, 838
Nickel, bis(acrylonitrile)-
catalyst
Sicyclo[1.1.0]butane cycloaddition reactions, 5, 1186
[3 + 2] cycloaddition reactions, 5, 293
Nickel, bis(1,5-cyclooctadiene)-
alkenyl halide dimerization
diene synthesis, 3, 483
catalyst
Ullmann reaction, 3, 500
Nickel, bis(N-methylsalicylaldimine)-
catalyst
reduction, unsaturated ketones, 8, 558
Nickel, dichloro(1,2-bis(diphenylphosphino)ethane)-
catalyst
Grignard reagents, 3, 228
Nickel, dichloro(1,3-bis(diphenylphosphino)propane)-
catalyst
crossed alkene coupling, 3, 484
Grignard reagents, 3, 228
Nickel, dichlorobisis(trialkylphosphine)
catalyst
Ullmann reaction, 3, 500
Nickel, dichlorobisis(triphosphinephosphine)-
catalyst
crossed alkene coupling, 3, 484
Grignard reagents, 3, 228
Nickel, trans-dichlorobisis(triphosphinephosphine)-
nitrile synthesis, 6, 232
Nickel, phosphine
catalyst
epoxide hydrogenation, 8, 882
Nickel, phosphinecarbonyls
catalysts
alkyne trimerization, 5, 1145
Nickel, tetracarbonyl-
reduction
alkyl halides, 8, 797
Nickel, tetrakis(triphenylphosphine)-
catalyst

crossed alkene coupling, 3, 484
Ullmann reaction, 3, 500
Nickel, tris(triphenylphosphine)-
nitrile synthesis, 6, 232
Nickel acetate
2,5-dimethyhexanediol
cyclical ketone reduction, 8, 14
sodium hydride
unsaturated hydrocarbon reduction, 8, 483
Nickelacyclopentenediones
synthesis
via phenylacetylenes, 5, 1130
5-Nickelafuranones
2-pyrones from
via [2 + 2 + 2] cycloaddition, 5, 1157
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1138
Nickel/aluminum alloy
reduction
aromatic nitro compounds, 8, 373
Nickel benzoate
oxidation
diols, 7, 316
Nickel borate
catalyst
epoxide hydrogenation, 8, 882
Nickel boride
catalysts
aliphatic nitro compound reduction, 8, 375
C—Se bond cleavage, 8, 996
deselenations, 8, 848
desulfurizations, 8, 839
reduction
benzylic dithioacetals, 8, 968
Nickel cataysis
acylation, 1, 450
carbonion alkylations, 3, 227
cycloaddition reactions
methylenecyclopropanes, 5, 1188
Nickel chloride
catalysts
aliphatic nitro compound reduction, 8, 375
lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 485
Nickel complexes
catalysts
desulfurizations, 8, 836
Grignard reagent alkylaation, 3, 244
hydroxylation, 8, 764
Wurtz reaction, 3, 421
Nickel complexes, π-allyl-
regioselectivity, 3, 426
stereoeselectivity, 3, 426
Nickel-ene reactions, 5, 35-37, 56–59
Nickel 2-ethylhexanoate
oxidation
diols, 7, 316
Nickel peroxide
aromatization, 7, 143
oxidation
primary amines, 7, 738
Nickel salts
catalysts
hydroalumination, 8, 752
Nickel sulfide
catalyst
silane reaction with carbonyl compounds, 2, 603
Nicoteline
synthesis, 3, 510
Nicotinaldehyde acetal
synthesis, 6, 557
Nicotinamide
electroreduction, 8, 592
reduction
borohydrides, 8, 580
Nicotinamide, 1-benzyl-1,4-dihydro-
dermecurations, 8, 858
reduction
aryl bromides, 8, 908
unsaturated carbonyl compounds, 8, 562
Nicotinamide, 1-(2,6-dichlorobenzyl)-1,4-dihydro-
reductions
aryl nitroso compounds, 8, 373
Nicotinamide, 1,4-dihydro-
bioimimetic reducing agents, 8, 977
heterocycle reduction
catalysis, 8, 97
hydride donors, 8, 92
reaction with water, 8, 94
Nicotinamide, 1-phenyl-1,4-dihydro-
bioimimetic reduction
allylic compounds, 8, 977
Nicotinamide, 1-propyl-1,4-dihydro-
bioimimetic reducing agents, 8, 977
Nicotinates, 5-aryl-
synthesis, 3, 515
Nicotine adenine dinucleotide
bioimimetic reducing agents, 8, 977
models
bioimimetic reductions, 8, 561
reduction
aryl nitroso compounds, 8, 373
Nicotinic acid
hydrogenation, 8, 599
microbial hydroxylation, 7, 79
Nicotinic acid, 6-hydroxy-
synthesis
via microbial hydroxylation, 7, 79
Nicotinium dichromate
oxidation
alcohols, 7, 277
Nifedipin
synthesis
Knoevenagel reaction, 2, 377
NIH shift
microbial hydroxylation
aromatic compounds, 7, 78
Nikkomycin
synthesis
Ugi reaction, 2, 1096
Niobates, carbonyl
dicyclopentadienylhydrido-
reduction
acyl chlorides, 8, 290
Niobium
catalysts
alkylidenation, carbonyl compounds, 5, 1125
hydrometallation
mechanism, 8, 672
Nitrate esters
alkoxy radicals from, 4, 813
Nitrites
alcohol inversion, 6, 21
Nitrile oxides
oxidation
halides, 7, 664
Nitration
electrochemical
aromatic compounds, 7, 800
secondary amines, 7, 746
Nitrenes
alkenic
intramolecular cyclization, 7, 476
reactions with enamines
stereochemical control, 6, 717
synthesis
via alkenes, 7, 470
Nitrenes, amino-
synthesis
via oxidation of 1,1-disubstituted hydrazines, 7, 742
Nitrenes, aryl-
aaziridines from, 7, 476
Nitrenes, benzamido-
synthesis, 7, 482
Nitrenes, cyano-
synthesis, 7, 479
via decomposition of cyanogen azide, 7, 10
Nitrenes, ethoxy carbonyl-
reactions with alkenes, 7, 10
synthesis, 7, 478
Nitric acid
quinone synthesis, 7, 355
Nitric oxide
reactions with alkenes, 7, 488
α-Nitrile anions
addition reactions
with alkenic π-systems, 4, 99–113
conjuate addition reactions, 4, 111–113
Nitrite esters
alkoxy radicals from, 4, 812
Nitrile imines
aryl-bridged
cyclizations, 4, 1150
cyclizations, 4, 1150
open-chain
cyclizations, 4, 1150
Nitrile imines, alkynyl
cyclizations, 4, 1150
Nitrile imines, alkynyl
cyclizations, 4, 1151
Nitrile imines, cycloalkenyl
cyclizations, 4, 1151
Nitrile oxides
alicyclic-bridged
cycloadditions, 4, 1129–1131
aryl-bridged
cycloadditions, 4, 1131
cyclizations, 4, 1124–1134
cycloaddition reactions, 5, 257
diastereoselective, 5, 260
tropones, 5, 626
with acrylates, 5, 263
deoxygenation, 8, 390
1,3-dipolar cycloadditions, 4, 1070, 1078–1081
intramolecular cycloaddition, 4, 1124
reaction with alkenes, 5, 260
tandem reaction sequences
cyclizations, 4, 1132
Nitrile oxides, alkenyl
Nitrile oxides

Cumulative Subject Index 672

cyclic
 intramolecular cycloaddition, 4, 1127–1132
cyclization, 4, 1125, 1126
long-chain
cyclization, 4, 1127
open-chain
cyclization, 4, 1125–1127
Nitrile oxides, alkynyl
 INOC reactions, 4, 1133
Nitrile oxides, tert-butyl
 use in 1,3-dipolar cycloadditions, 4, 1079
Nitrile oxides, cycloalkenyl
 intramolecular cycloadditions, 4, 1128
Nitrile oxides, furanyl-
cyclization, 4, 1129
Nitriles
 acylation, 2, 795–863
 alkoxy methyl enimium salt synthesis, 6, 506
 allenic
 hydrochlorination, 4, 277
 amide synthesis, 6, 400
 hydration, 6, 400
 amidine synthesis, 6, 546
 amidinium salt synthesis, 6, 516
 β-amino-α,β-unsaturated functionalized, synthesis, 6, 67
 α-aryl
 synthesis via Schiff reaction, 4, 468
 bisdithioester synthesis, 6, 455
Blaise reaction
 acylation, Reformatsky reagents, 2, 297
boron trifluoride complex
 NMR, 1, 292
carbonanions
 intramolecular alkylation, 3, 49
cocyclization reactions
 alkenes, 5, 1152
Darzens glycidic ester condensation, 2, 419
 phase-transfer catalysis, 2, 429
Diels–Alder reactions, 5, 416
Hougen–Hoesch synthesis, 2, 747
hydrozirconation, 8, 683
imidate synthesis, 6, 533
imidoyl halide synthesis, 6, 526
intramolecular alkylation, 3, 48
lithium enolate
 crystal structure, 1, 32
metallation
 addition reactions, 1, 468
 radical additions
 alkoxy radicals, 4, 815
 reactions with amides, 6, 569
 reactions with amines, 4, 497
 reactions with diaryl ketone dianions
 organoytterbium compounds, 1, 280
 reactions with hydrogen halides, 6, 497
 reactions with organocericum compounds, 1, 236
 reactions with organocopper complexes, 1, 123
 reactions with thiols, 6, 511
reduction, 8, 251, 298
 metal hydrides, 8, 274
reductive coupling
 ketones, 1, 273
substitution reactions, 6, 261–296
synthesis, 6, 225–255
 via amides, 6, 489
via amines, 7, 739
via oxidative cleavage of alkenes, 7, 542, 588
tandem vicinal difunctionalization, 4, 251
thiolysis, 6, 430
α,β-unsaturated hydrobromination, 4, 282
hydrogenation, homogeneous catalysis, 8, 452
synthesis, 1, 560, 774
synthesis via Ramberg–Bäcklund rearrangement, 3, 870
tandem vicinal difunctionalization, 4, 251
Vilsmeier–Haack reaction, 2, 789
Nitriles, alkane
 synthesis
 via alcohols, 6, 234
Nitriles, α-amino-acyl anion equivalents, 1, 559
 synthesis
 via Lewis acid catalysis, 1, 349
Nitriles, (α-amino)alkyl-
synthesis, 8, 368
Nitriles, (α-aryl)alkyl-
 acyl anion equivalents, 1, 562
Nitriles, γ-bromo-β-oxo-
dehydrohalogenation
generation of oxyallyl cations, 5, 595
Nitriles, α-(dialkylamino)-
 acyl anion equivalents, 1, 544, 554
Nitriles, N,N-(disubstituted)aminomethyl-
 reactions with Grignard reagents, 1, 370
Nitriles, epoxy-
 aromatic
 α-cleavage, 3, 748
Nitriles, α-keto-
 O,N-acetals
 O-ethyl arenecarbothioate synthesis, 6, 452
 reduction
 Alpine borane, 7, 603
 synthesis, 6, 316
 via acid halides, 6, 317
Nitriles, β-keto
 Knoevenagel reaction, 2, 361
Nitriles, α-methylthio-
synthesis
 via cyano sulfenylation, 6, 239
Nitriles, (nitroaryl)alkyl-
 reduction, 8, 368
Nitriles, 4-oxo-
synthesis
 via benzenoid condensation, 1, 542
Nitriles, α-seleno-
 metallation, 1, 642
Nitriles, β-trimethylsilyloxy-
synthesis
 via oxiranes, 6, 237
Nitrile-stabilized anions
 addition reactions
 alkenes, palladium(II) catalysis, 4, 572
Nitrile sulfides
 cyclizations, 4, 1165
Nitrile ylides
 ary1-bridged
 intramolecular cycloadditions, 4, 1144
 cyclizations, 4, 1141–1144
 cycloaddition reactions
fulvenes, 5, 630
1,3-dipolar cycloadditions, 4, 1081–1083
open-chain
\[\text{intramolecular cycloadditions, 4, 1143} \]
structure, 4, 1082
Nitrile ylides, alkanyl
\[\text{intramolecular cycloadditions, 4, 1142–1144} \]
Nitrile ylides, alkynyl
\[\text{intramolecular cycloadditions, 4, 1144} \]
Nitrilimines
\[\text{1,3-dipolar cycloadditions, 4, 1083–1085} \]
Nitrilimines, diphenyl-
\[\text{cycloaddition reactions tropones, 5, 625} \]
Nitrilium ions
\[\text{intramolecular Ritter reaction, 6, 278} \]
cyclization, 6, 272
Nitrilium salts
\[\text{alkoxy methyl enaminium salt synthesis, 6, 507} \]
amidine synthesis, 6, 543
\[\text{amidinium salt synthesis, 6, 516} \]
imidate synthesis, 6, 529
\[\text{synthesis via nitriles, 8, 275} \]
Nitrilium salts, N-alkyl-
\[\text{Houben–Hoesch synthesis, 2, 748} \]
Nitrimines
\[\text{reduction sodium cyanoboro hydride, 8, 74} \]
Nitrites
\[\text{oxidation halides, 7, 664} \]
\[\text{reaction with alkyl sulfonates, 6, 22} \]
\[\text{trapping ary l radicals, 4, 453} \]
Nitroacetamidation
\[\text{alkenes, 4, 356} \]
Nitro alcohols
\[\text{reduction, 8, 374} \]
2-Nitro alcohols
\[\text{O-trialkylisilyl ethers synthesis, 2, 335} \]
Nitroaldol reaction — see Henry reaction
\[\text{o-Nitrobenzhydryl esters carboxy-protecting groups photolytic cleavage, 6, 668} \]
\[\text{o-Nitrobenzyl group phosphoric acid protecting group, 6, 624} \]
\[\text{p-Nitrobenzyl group protecting group cleavage, 6, 635} \]
\[\text{o-Nitrocinnamoyl group amine-protecting group, 6, 642} \]
\[\text{p-Nitrocin namoyl group amine-protecting group, 6, 641} \]
Nitro compounds
\[\text{aliphatic synthesis, 6, 104} \]
\[\text{aromatic reduction, 8, 364, 366, 367, 371} \]
\[\text{synthesis, 6, 110} \]
\[\text{reactions with alkenes, 7, 488} \]
\[\text{reactions with organocerium compounds, 1, 233} \]
\[\text{reduction, 8, 363–379} \]
ammonium formate, 8, 84
\[\text{synthesis, 6, 103–132; 7, 493} \]
\[\text{via nitrilo compounds, 7, 752} \]
\[\text{via N-oxidation of oximes, 7, 751} \]
\[\text{via oxidation of primary amines, 7, 736} \]
\[\text{via solid support oxidation of amines, 7, 842} \]
\[\text{α,β-unsaturated hydrogenation, homogeneous catalysis, 8, 452} \]
Nitrogen
\[\text{extrusion diene synthesis via retro Diels–Alder reaction, 5, 567} \]
Nitrogen-centered radicals
\[\text{cyclizations, 4, 811–814} \]
Nitrogen compounds
\[\text{oxidation, 7, 735–753} \]
Nitrogen dioxide
\[\text{reactions with alkenes, 7, 488} \]
Nitrogen nucleophiles
\[\text{functionalization oxidative cleavage, 7, 588} \]
Nitrogen nucleophiles
\[\text{addition reactions alkenes, 4, 559–563} \]
\[\text{aromatic nucleophilic substitution, 4, 433–437} \]
\[\text{reactions with π-allylpalladium complexes, 4, 598} \]
Nitrogen trichloride
\[\text{reaction with organoboranes, 7, 604} \]
Nitro ylides
\[\text{preparation, 3, 918} \]
\[\text{rearrangement, 6, 855} \]
Nitro groups
\[\text{arenes nucleophilic addition, substitution by, 4, 425} \]
Nitromercuration
\[\text{alkenes, 7, 501, 534} \]
\[\text{regioselectivity, 6, 108} \]
Nitronates
\[\text{addition reactions carbon-centered radicals, 4, 765} \]
\[\text{reduction borane, 8, 74} \]
Nitronates, bicyclic trimethylsilyl
\[\text{Henry reaction stereoselective, 2, 336} \]
Nitronates, silyl
\[\text{Henry reaction, 2, 335} \]
Nitrones
\[\text{acyclic chiral reactions with organometallic compounds, 1, 391} \]
\[\text{chiral reaction with silyl ketene acetal s, 2, 647} \]
\[\text{cyclic exo transition state, 5, 255} \]
\[\text{intramolecular cycloaddition, 4, 1120} \]
\[\text{reactions with organometallic compounds, 1, 393} \]
\[\text{synthesis via cyclization of α-allylamine, 4, 412} \]
\[\text{thiolactam synthesis, 6, 428} \]
\[\text{cyclizations, 4, 1113–1124} \]
\[\text{cycloaddition reactions, 5, 254} \]
\[\text{diastereoselective, 5, 260} \]
\[\text{deoxygenation, 8, 390} \]
\[\text{α-hydroxylation, 7, 186} \]
\[\text{E/Z-isomerization, 5, 255} \]
\[\text{optimally active cycloaddition reactions, 5, 264} \]
Nitrones

reactions with enol silanes
Lewis acid mediated, 2, 635
reactions with organometallic compounds, 1, 391
reduction
lithium aluminum hydride, 8, 64
reversible cycloaddition reactions, 5, 256
synthesis
via oxidation of imines, 7, 750
tandem Michael-cyclization reactions, 4, 1121
Nitrones, alkenyl-
allylcylic-bridged
cyclization, 4, 1120
aryl-bridged
cyclization, 4, 1119
cyclic
cycloaddition, 4, 1117–1120
open-chain
cyclizations, 4, 1113–1117
Nitrones, C-(5-alkenyl)-
cyclization, 4, 1113
Nitrones, C-(6-alkenyl)-
cyclization, 4, 1114
Nitrones, N-(alkenyl)-
cyclization, 4, 1115–1117
Nitrones, alkynyl-
cycloadditions, 4, 1124
Nitrones, allenyl-
cycloadditions, 4, 1124
Nitrones, C-(cycloalkeny1)-
cyclization, 4, 1117–1119
Nitrones, N-(cycloalkeny1)-
intramolecular cycloaddition, 4, 1119
Nitrones, C,N-diphenyl-
[4 + 3] cycloaddition reactions, 5, 600
reactions with diethyl methylenemalonate, 4, 1077
Nitrones, N-methyl-
reactions with diethyl methylenemalonate, 4, 1077
Nitronic acids
Henry reaction
acid strength, 2, 322
Nitric acids, α-hydroxy-
preparation, 2, 323
Nitronic esters
tandem Diels–Alder–cyclization reactions, 4, 1122–1124
Nitronium hexafluorophosphate
nitrilation with, 6, 109
Nitronium tetrafluoroborate
nitrilation with, 6, 105, 107–109
hydrazines, 7, 745
reactions with alkenes, 4, 356; 7, 488
α-Nitrophenoxycetyl group
amine-protecting group, 6, 642
α-Nitrophenylacetyl group
amine-protecting group, 6, 642
3-(α-Nitrophenyl)propionyl group
amine-protecting group, 6, 642
α-Nitrophenylsulfenyl group
amine-protecting group
peptides, 6, 644
Nitrosamine anions
deprotonation, 1, 476
Nitrosamines
anions
alkylation, 3, 66
deprotonation, 3, 65
photoaddition to alkenes, 7, 488
reductive cleavage, 8, 388, 389
synthesis
via secondary amines, 7, 746
N-Nitrosamines
reduction, 6, 119
Nitrosamines, diphenyl-
synthesis
via oxidation of 1,1-diphenylhydrazine, 7, 744
N-Nitrosation
secondary amines, 7, 746
β-Nitroselation
alkenes, 7, 496
Nitroselenenylation
alkenes, 6, 109
Nitroso compounds
aromatic
reduction, 8, 364, 366, 367
Diels–Alder reactions, 5, 417–422
oxidation, 7, 751
reactions with alkenes, 7, 488
reduction, 8, 363–379
synthesis, 6, 103–132
via nitro compound reduction, 8, 364
via oxidation of N-alkylhydroxylamines, 7, 748
via oxidation of primary amines, 7, 736
Nitroso compounds, acyl-
Diels–Alder reactions, 5, 419–421, 485
synthesis
via oxidation of hydroxamic acids and
N-acylhydroxylamines, 7, 748
Nitroso compounds, ary1-
Diels–Alder reactions, 5, 417
Nitroso compounds, α-chloro-
Diels–Alder reactions, 5, 418
Nitroso compounds, cyan0-
Diels–Alder reactions, 5, 421
Nitroso compounds, sulfonyl-
Diels–Alder reactions, 5, 421
Nitroso compounds, vinyl-
Diels–Alder reactions, 5, 422, 485
Nitrosomium fluoroborate
Ritter reaction, 6, 287
Nitrosomium hexafluorophosphate
Ritter reaction, 6, 270
Nitrosomium ions, N-alkyl-N-vinyl
imide synthesis
amide protection, 6, 672
Nitrosomium ions, vinyl-
Diels–Alder reactions, 5, 501
intramolecular, 5, 539
Nitrosomium ions, N-vinyl-N-cyclohexyl-
Diels–Alder reactions, 5, 501
Nitrosyl chloride
alkane chlorination, 7, 15
aziridine synthesis, 7, 474
imidoyl halide synthesis, 6, 526
Nitrosyl cyanide
Diels–Alder reactions, 5, 421
Nitrosyl fluoride
allylic oxidation, 7, 113
Nitrosyl halides
reactions with alkenes, 4, 337; 7, 500
Nitrosyl hydrogen sulfate
addition to alkenes, 7, 493
Nitrosylsulfuric acid
Cumulative Subject Index

Norbornadiene

synthesis
via nitrosating agent, 7, 740
Nitrous oxide
methane oxidation, 7, 14
oxidative rearrangement, 7, 833
Nitrooxides
synthesis
via oxidation of secondary amines, 7, 745
Noril chloride
addition reactions
alkenes, 7, 500
nitration with, 6, 108
Noril fluoride
nitration with, 6, 109
Noril fluorosulfonate
addition to perfluoroalkenes, 7, 493
Noril halides
reactions with alkenes, 4, 357
Noril iodide
addition reactions
alkenes, 7, 502
nitration with, 6, 108
reaction with isoprene, 7, 505
synthesis, 7, 534
Noril tetrafluoroborate
addition to alkenes, 7, 493
Nocardia corallina
epoxidation, 7, 429
Nocardicins
synthesis
Nodusmycin
synthesis
via macrolactonization, 6, 373
Nojirimycin, 1α-cyano-1-deoxy-1α-amino derivative
synthesis, 1, 364
Nojirimycin, deoxy-synthesis
FDP aldolase, 2, 463
Nojirimycin, 1-deoxy-synthesis
via aminomercuration–oxidation, 7, 638
Nonacetic acid
methyl ester
synthesis, 1, 131
synthesis
via chiral acetals, 2, 651
via [4 + 3] cycloaddition, 5, 611
1,2-Nonadiene
hydrogenation
homogeneous catalysis, 8, 450
1,8-Nonadiyne
oxidative polymerization, 3, 552
Nonanal
reaction with iodobenzene
chromium(II) chloride, 1, 193
synthesis
via hydroformylation, 4, 918
1,9-Nonanedioic acid, 5-methylene-dimethyl ester
intramolecular acyloin coupling reaction, 3, 625
2,5-Nonanedione
aldol cyclization, 2, 161
Nonanoic acid, 2-methyl-dimethyl ester
intramolecular acyloin coupling reaction, 3, 625
2,4,6,8-Nonatraenaaldehyde, 9-phenyl-synthesis, 8, 273
Nonatrienes
Diels–Alder reactions
diastereoselection, 5, 515–527
twist asynchronicity, 5, 516
heteroatom substituted
Diels–Alder reactions, 5, 527–532
1,4,8-Nonatrienes
hydroboration, 8, 708
1,6,8-Nonatrienes
cis-fused
Diels–Alder reactions, 5, 524
Nonatrienes, amido-
Diels–Alder reactions
intramolecular, 5, 529
1,6,8-Nonatrienes, sulfonyle-
Diels–Alder reactions
intramolecular, 5, 522
trans-Non-6-enal
synthesis
via photocycloaddition, 5, 165
1-Nonene, 3-acetoxy-
oxidation
Wacker process, 7, 453
2-Nonene, 1-acetoxy-
Wacker oxidation, 7, 453
1-Nonene, 6,7-dihydroxy-
Wacker oxidation
synthesis of brevicomin, 7, 451
8-Nonenoate, (R)-3-oxo-7-(methoxycarbonyloxy)-palladium complex
chirality transfer, 4, 649
trans-Non-6-en-1-ol
synthesis
via photocycloaddition/reduction, 5, 165
Non-Kolbe electrolysis, 3, 634
carbenium ions, 3, 649
experimental procedure, 3, 654
Nonmetalloaldehyde synthesis, 8, 754
Nonylamine, 2-hydroxy-
synthesis
chiral, 1, 559
Nookatone
synthesis
via Raphael–Nazarov cyclization, 5, 779
via Wacker oxidation, 7, 458
Nopol
synthesis
ene reaction, 2, 529
Nopol benzyl ether
reduction
9-borobicyclo[3.3.1]nonane, 8, 102
Noradamantane
synthesis, 3, 854
epoxide ring opening, 3, 746
Norbornadiene
anodic oxidation, 7, 796
carboliithiation, 4, 869
carbonylation
cobalt carbonyl catalyst, 3, 1024
[2 + 2 + 2] cycloaddition reactions, 5, 1130
dissolving metal reductions, 8, 481
homo-Diels–Alder cycloaddition, 5, 1141
hydrobromination, 4, 283
Norbornadiene

hydrochlorination, 4, 276
hydrogenation
hydroisylolation, 8, 781
oxidation
Pd(II) catalysis, 4, 559
oxidative halogenation, 7, 528
oxide
rearrangement, 3, 736
Pauson–Khand reaction, 5, 1049
photocyclization
chemoselectivity, 5, 206
synthesis
via photosimerization, 5, 205
Norbornadiene, 7-alkoxy-reduction
diimide, 8, 475
Norbornadiene, 2,3-dimethoxycarbonyl-
[3 + 2] cycloaddition reactions
with methylenecyclopropane, 5, 289
Norbornadiene, 7-methylene-
adduct with tetracyanoethylene, 5, 65
Norbornadienol
oxidative rearrangement, 7, 824
7-Norbornadienol
sodium salt
1,3-sigmatropic shift, 5, 1003
Norbornane
carboxations
rearrangement, 3, 707
Norbornane, 2-bromo-
synthesis, 7, 604
Norbornane, 1-iodo-
bromide substitution, 6, 3
Norbornane-2-carboxylic acid
enolates
diastereoselective alkylation, 3, 39
Norbernanethiocarboxamides, 3-oxo-
synthesis
via dithiocarboxylic acids, 6, 421
Norbornanonane
synthesis
via sequential Michael ring closure, 4, 262
Norborne
aziridination, 7, 479
[2 + 2 + 2] cycloaddition reactions, 5, 1130
deuterium addition, 8, 427
hydrocarboxylation, 4, 939
hydroformylation, 4, 932
hydroxiroration, 8, 689
metalalo-alkylation/methoxycarbonylation
nickel-ene reaction, 5, 36
oxidative halogenation, 7, 528
oxide
rearrangement, lithium halide catalyzed, 3, 764
rearrangement, lithium perchlorate catalyzed, 3, 761
reduction, dissolving metals, 8, 880
2,3-exo-oxides
rearrangement, 3, 740
Pauson–Khand reaction, 5, 1049
reaction with lithium organometallics, 4, 869
ring opening metathesis polymerization, 5, 1120
synthesis
via vinyliclopropane rearrangement, 5, 1013
1-Norbornene
dimerization, 5, 65
Norbornene, endo,endo-5,6-bis(methoxycarbonyl)
living polymer synthesis, 5, 1121
Norbornene, 2-chloro-
exo-oxide
rearrangement, 3, 739
5-Norbornene-2-carboxylic acid
synthesis
via Diels–Alder reaction, 5, 365, 366
Norbornene, exo-methylene-
synthesis
via Diels–Alder reactions, 5, 324, 358
Norbornen-2-ols
Pauson–Khand cycloaddition
regioselectivity, 5, 1042
Norbornenone
Baeyer–Villiger reaction, 7, 682
homologation of ketones, 3, 783
2-Norbornenones
Pauson–Khand cycloaddition
regioselectivity, 5, 1042
Norcamphor
Baeyer–Villiger reaction, 7, 682
ethylene ketal
reduction, 8, 222
ketals
selective reduction, 8, 218
Norcaradiene
tautomerism, 5, 713
Norcarane
oxidation, 7, 12
Norcarane, dibromo-
rerearrangement
bicyclobutane derivative, 4, 1013
Norcarane, dichloro-
synthesis
via dichlorocarbene, 4, 1000
Norcardiacin
synthesis, 6, 760
A-Nor-5α-cholestan-3β-ol, 3α-carboxy-
synthesis, 3, 834
A-Nor-5α-cholestan-2β-ol-2-carboxylic acid
rearrangements, 3, 832
synthesis, 3, 833
Norcoralidine
synthesis, 3, 81
Norephedrine
N-acyl-2-oxazolidone from, 2, 251
18-Nor-D-homo steroids
angular alkylation, 3, 17
Norjasmone, dihydro-
synthesis
via conjugate addition to α,β-unsaturated
carboxylic acid, 4, 202
Norlongifolane, 3-keto-
semicarbazono
reduction, 8, 338
Norpercatatone
synthesis
via conjugate addition to α,β-unsaturated
carboxylic acid, 4, 202
Norpinane, 2-ethylidine-
π-allylpalladium complexes from, 4, 587
A-Nor-5α-pregnan-2-ol-20-one-2-carboxylic acid
synthesis, 3, 833
Norpyrenophorin
synthesis, 3, 126
Norrish type II reaction
 cyclobutanol, 3, 1048
Norsecurinine
 synthesis
 via Horner–Wadsworth–Emmons reaction, 1, 769
Norsterepolide
 synthesis
 via Raphael–Nazarov cyclization, 5, 779
Norsteroids
 synthesis
 via benzocyclobutene ring opening, 5, 693
19-Norsteroids
 synthesis
 polynene cyclization, 3, 371
A-Norsteroids
 synthesis, 3, 903
D-Norsteroids
 synthesis, 3, 901
19-Nortestosterone
 synthesis, 7, 460
Nortricyccline, 3-methoxy-
 synthesis, 3, 653
A-Nortriterpenes
 synthesis, 3, 903
Novobiocin
 microbial oxidation, 7, 77
Nozaki protocol
 application
 1,4- and 1,2-addition, 1, 101
Nuciferal
 synthesis, 3, 161
Nuclear magnetic resonance
 carbamions, 1, 41
carbonyl compounds
 Lewis acid complexes, 1, 292
Knoevenagel reaction products
 structure determination, coupling constants, 2, 345
Nucleophilic addition
 arenne–metal complexes, 4, 517–547
donor radical cations, 7, 878
electrophilic coupling
carbonions, 4, 237–263
radical cations
bimolecular reaction, 7, 859
Nucleophilic aromatic substitution
 diastereoselectivity, 4, 426
enantioselectivity, 4, 426
regioselectivity, 4, 426
solid-state, 4, 445
Nucleophilic coupling
 aryl radicals, 4, 451–480
arynes, 4, 483–513
Nucleophilic/electrophilic carbocondensation
 definition, 4, 238
Nucleosides
 amino sugars
 synthesis, 7, 712
 analogs
 synthesis, Eschenmoser coupling reaction, 2, 889
 5’-hydroxyl group
 selective masking, 6, 657
phosphorylation, 6, 603
 synthesis
 via Peterson alkenation, 1, 792
C-Nucleosides
 synthesis
 via Baeyer–Villiger reaction, 7, 682
 via [4 + 3] cycloaddition, 5, 605, 611
 via organomercury compounds, 4, 839
Nucleosides, 6-alkylpurine
 synthesis
coupling reactions, 3, 462
Nucleosides, 4-amino-5-aminocarbonylimidazolyl-
 alkylation, 6, 501
C-Nucleosides, 3-deoxy-
 synthesis, 1, 113
Nucleotides
 amide-type protecting groups, 6, 642
Nystatin
 synthesis
 use of aldol reaction, 2, 195
Nystatin, N-(deoxyfructosyl)-
 synthesis, 6, 789
Obaflorin
\(\beta\)-lactone, 6, 342

Obtusilactone
synthesis, 3, 844; 6, 784

Occidentiol
synthesis, 8, 924
dia retro Diels–Alder reaction, 5, 569

Ochratoxins
synthesis
via ortho lithiation, 1, 470

Ochromycinone
synthesis, 1, 567

Ocimene
synthesis
via carboalumination, 4, 893

Ocimenones
synthesis
diene acylation, 2, 720

Ocoteine
intracoupling reaction
with benzyltetrahydroisoquinoline, 3, 670
synthesis, 3, 81

Octadecane, 9,10-epoxy
synthesis, 1, 718

Octadecene, 7,8-epoxy-2-methyl-synthesis
via t-butyl 5-methylhexyl sulfoxide, 1, 514

9-Octadecen-18-olide
synthesis
alkene metathesis, 5, 1118
1,7-Octadiene
microbial epoxidation, 7, 429
2,6-Octadiene
cyclization, 3, 342
1,7-Octadiene, 3-acetoxy-
cyclization
palladium-ene reaction, 5, 50
synthesis
via palladium-catalyzed oxidation, 7, 460

Octadiene, 4,5-dimethyl-
Cope rearrangement, 5, 821
1,7-Octadien-3-one
synthesis
via hydrolysis and oxidation, 7, 460
2,7-Octadienyl acetates, 4-alkyl-4-hydroxy-
cyclization
palladium-ene reaction, 5, 47

1,7-Octadiyne, 1,8-diethoxy-
bicyclization, 5, 1171
\(\Delta^{10}\)-Octalin
reduction
triakylsilane, 8, 486
\(\Delta^4\)-Octalin, 4-(3-butenyl)-3-oxo-
synthesis
via Michael addition and aldol condensation, 7, 460

\(\Delta^4\)-Octalin, 4,4,10-trimethyl-
allylic oxidation, 7, 100

Octalinediones
synthesis
via intramolecular addition, 4, 46

Octalin-1-one
synthesis
via homoenoate addition reaction, 4, 120

1(9)-Octalin-2-one
\(\alpha\)-alkylation, 3, 21
cross conjugated lithium dienolate
metallation, 3, 21

1(9)-Octalin-2-one, 10-methyl-
cyclohexylamine
methylation, 3, 33

Octalins
conformation, 3, 354
2,3-sigmatropic rearrangement
chirality transfer, 6, 893

\(\beta\)-Octalone
hydrogenation
catalytic, 8, 460

\(\Delta^{14}\)-2-Octalone
synthesis
via cyclohexanone, 7, 460

Octalone, methyl-
synthesis, 7, 464

Octalones
addition to allene
photochemical cycloaddition, 5, 130
aldo cyclization, 2, 162
Clemmensen reduction, 8, 312
Nazarov cyclization, 5, 757
reduction
dissolving metals, 8, 525
synthesis
metal-ammonia reduction, 2, 184
via Robinson annulation, 4, 7

Octanal, 2-methyl-
synthesis
via hydroformylation, 4, 918

Octane, 2-bromo-
reaction with cyclohexanone
samarium diiodide, 1, 259

Octane, 1-cyano-
synthesis
via 2-octyl sulfonate, 6, 236

Octane, 1,2-epoxy-
hydride migration
epoxide ring opening, 3, 742

Octane, 2-iodo-
Kornblum oxidation
solvent, 7, 655

Octane, methoxy-
synthesis, 7, 603

1,8-Octanedioic acid, 2,7-dimethyl-
dimethyl ester
synthesis, 3, 623

1,2-Octanediol
oxidative cleavage, 7, 708

3,4-Octanediene, 2-acetoxy-
cycloaddition reactions, 5, 247

2-Octanol
catalytic hydrogenation, 8, 814
oxidation
solid support, 7, 845

2-Octanone
reduction
samarium diiodide, 8, 115

678
Cumulative Subject Index

Ophiobolins

4-Octanone, 5-hydroxy-
synthesis
acyloin coupling reaction, 3, 619
3-Octanone, 2-hydroxy-2,6-dimethyl-
Wolff–Kishner reduction, 8, 926
Octetetrynediamines
synthesis, 3, 555
1,3,5-Octatriene
intermediate
2,4,6-octatriene electrocyclization, 5, 702
2,4,6-Octatriene
electrocyclization, 5, 702
selective reduction, 8, 568
1,4,7-Octatriene, 2,7-dimethyl-
synthesis
via cycloaddition of 1-methylbicyclo[1.1.0]butane, 8, 1186
2-trans-4-trans-6-trans-Octatrienoic acid, 3,7-dimethyl-
synthesis
via sulfones, 6, 157
1,4,7-Octatriyne-3,6-diol, 3,6-di-t-butyl-
synthesis, 3, 557
Octavalene, 3-phenyl-5-bromo-
synthesis
via dihalocyclopropyl compounds, 4, 1017
trans-2-Octenal
synthesis, 6, 139
6-Octenyl, 7-methyl-
enone reaction, 2, 541
Octene
hydrozirconation, 8, 673
1-Octene
carbolithiation, 4, 868
diene reactions
Lewis acid catalysis, 5, 4
hydroisilylation, 8, 763, 774
oxidation
Wacker process, 7, 451, 452
4-Octene
hydroformylation, 4, 918
1-Octene, 1,3-bis(methylthio)-
synthesis, 6, 139
4-Octene oxide
deoxygenation, 8, 888
1-Octen-3-01
synthesis
via retro Diels–Alder reaction, 5, 554
2-Octenol
acetate
oxidation, 7, 464
6-Octen-3-one, 8-bromo-4-methyl-
cyclization
samarium diiodide, 1, 266
1-Octen-3-one, 1-halo-
reduction, 8, 163
Octenyl radicals
cyclization, 4, 786
6-Octen-1-yn- cyclization
intramolecular ene reaction, 5, 15
1-Octen-7-yn-8-(trimethylsilyl)-
reaction with cyclopentadienylzirconium complexes, 5, 1165
Octosyl acid A
synthesis, 7, 245
Diels–Alder reaction, 2, 696
Oppenauer oxidation

via alkenylchromium reagents, 1, 200
via Cope rearrangement, 5, 806
via Nazarov cyclization, 5, 759
via oxy-Cope rearrangement, 1, 883

Oppenauer oxidation
primary alcohols, 7, 309
trichloroacetaldehyde
secondary alcohols, 7, 320

Oppolzer's chiral auxiliary
use in amine synthesis, 6, 77

Oppolzer’s chiral sultam

Orantine, O-methyl-
synthesis
via iodine azide addition to alkenes, 4, 350

Orcinol
synthesis, 2, 170

Orellanine
synthesis, 3, 509

Organic conductors
S-aryl arenecarbothioates, 6, 441

Organic oxides
oxidation
thiols, 7, 760

Organoauminum reagents, 1, 77–105
acylation
palladium catalysis, 1, 450
1,2-addition reactions
carbon–nitrogen compounds, 1, 98
alkene protection, 6, 690
Claisen rearrangement
catalysis, 5, 850
ate complexes
reactions with keto esters, 1, 86
ate complexes, silyl
acyl silane synthesis, 1, 97
chiral
site selective addition reactions, 1, 78
stereoselective addition reactions, 1, 78
conjugate additions
alkenes, 4, 140–144
nucleophilic addition to \(\pi \)-allylpalladium complexes, 4, 595
regioselectivity, 4, 635
stereocchemistry, 4, 620
reactions with acid derivatives, 1, 92
reactions with epoxides
alkyl synthesis, 6, 4
reactions with \(\alpha, \beta \)-unsaturated carbonyl compounds
site selectivity, 1, 81
tandem vicinal difunctionalization, 4, 257

Organobismuth reagents
pentavalent
glycol cleavage, 7, 704

Organoboranes
autoxidation, 7, 598
deprotonation, 1, 490
electrocyclic reactions, 7, 594
group transfer
radical addition reactions, 4, 756
ionic reactions
stereocchemistry, 7, 594
oxidations, 7, 594

Organoboronic acids
vinyl substitutions
palladium complexes, 4, 841

Organocadmium reagents, 1, 211–227
addition reactions, 1, 225
with alkenic \(\pi \)-systems, 4, 98
diastereoselective addition reactions, 1, 220
reactions with carbonyl compounds
Lewis acid promotion, 1, 326
reactions with imines
Lewis acid promotion, 1, 349

Organocadmium reagents, allylic
addition reactions, 1, 226

Organocadmium reagents, benzylic
addition reactions, 1, 226

Organocerium reagents, 1, 231–248
reactions, 1, 233
synthesis, 1, 232, 233
thermal stability, 1, 233

Organochromium reagents, 1, 173–207
carbanion equivalents, 1, 174
C–C bond forming reactions, 1, 175
reactions with carbonyl compounds
Lewis acid promotion, 1, 331
structure, 1, 174
synthesis, 1, 174

Organocobalt complexes
radical cyclizations
nonchain methods, 4, 805

Organocopper, allylic reagents
reaction with benzaldehyde, 1, 113

Organocopper reagents, 1, 107–136
acylation, 1, 426
palladium catalysis, 1, 450
stoichiometric, 1, 426
1,2-additions
aldehydes and ketones, 1, 108
amines, nitriles and amides, 1, 119
alkylation
nonstabilized carbanions, 3, 208
alkynyl
reactions with enones, 1, 118
association with boron trifluoride
increased reactivity, 1, 347
catalysts, 3, 210
preparation, 3, 208
conjugate additions, 4, 228, 240
alkenes, 4, 148–153
coupling, 3, 415
cross-coupling reactions
unsaturated halides, 3, 522
enolates

Organolanthane reagents
radical reactions, 7, 594
reactivity, 7, 593
rearrangements, 3, 779
\(\alpha \)-substituted
cleavage, 1, 490
synthesis, 8, 703
Wurtz coupling, 3, 418

Organoboranes, dialkoxy(\(\alpha \)-phenylthio)-
oxidation, 7, 604

Organoboron compounds
conjugate additions
alkenes, 4, 144–148
oxidation, 7, 330
rearrangements, 3, 793

Organoboronic acids

radical reactions, 7, 594
reactivity, 7, 593
rearrangements, 3, 779
\(\alpha \)-substituted
cleavage, 1, 490
synthesis, 8, 703
Wurtz coupling, 3, 418

Organoboranes, dialkoxy(\(\alpha \)-phenylthio)-
oxidation, 7, 604

Organoboron compounds
conjugate additions
alkenes, 4, 144–148
oxidation, 7, 330
rearrangements, 3, 793

Organoboronic acids
vinyl substitutions
palladium complexes, 4, 841

Organocadmium reagents, 1, 211–227
addition reactions, 1, 225
with alkenic \(\pi \)-systems, 4, 98
diastereoselective addition reactions, 1, 220
reactions with carbonyl compounds
Lewis acid promotion, 1, 326
reactions with imines
Lewis acid promotion, 1, 349

Organocadmium reagents, allylic
addition reactions, 1, 226

Organocadmium reagents, benzylic
addition reactions, 1, 226

Organocerium reagents, 1, 231–248
reactions, 1, 233
synthesis, 1, 232, 233
thermal stability, 1, 233

Organochromium reagents, 1, 173–207
carbanion equivalents, 1, 174
C–C bond forming reactions, 1, 175
reactions with carbonyl compounds
Lewis acid promotion, 1, 331
structure, 1, 174
synthesis, 1, 174

Organocobalt complexes
radical cyclizations
nonchain methods, 4, 805

Organocopper, allylic reagents
reaction with benzaldehyde, 1, 113

Organocopper reagents, 1, 107–136
acylation, 1, 426
palladium catalysis, 1, 450
stoichiometric, 1, 426
1,2-additions
aldehydes and ketones, 1, 108
amines, nitriles and amides, 1, 119
alkylation
nonstabilized carbanions, 3, 208
alkynyl
reactions with enones, 1, 118
association with boron trifluoride
increased reactivity, 1, 347
catalysts, 3, 210
preparation, 3, 208
conjugate additions, 4, 228, 240
alkenes, 4, 148–153
coupling, 3, 415
cross-coupling reactions
unsaturated halides, 3, 522
enolates
acylation, 2, 832
from chiral carbonations
conjugate additions, 4, 227
natural product synthesis, 1, 125
reactions with aldehydes, 1, 108
reactions with amides, 1, 124
reactions with electrophiles
mechanism, 3, 213
reactions with epoxides
rates, 1, 343
reactions with imines, 1, 119
reactions with ketones, 1, 116
reactions with nitriles, 1, 123
synthesis, 3, 208, 419
tandem vicinal dialkylation, 4, 254–257
Organocuprates (see also Cuprates)
conjugate addition reactions, 4, 169–195
alkenes, 4, 148–153
Lewis acid effects, 4, 179
mechanism, 4, 170
reagent variations, 4, 173
solvent effects, 4, 178
nontransferable ligands, 4, 175–177
organiozinc compounds in synthesis, 4, 175
reactions with epoxides
alcohol synthesis, 6, 4
reactions with α,seleno-α,β-unsaturated ketones, 1, 669
synthesis, 4, 170
triorganotin groups
transfer, 4, 174
Organofluorosilicates
synthesis, 7, 642
Organoiron phthalocyanines
vinyl substitutions
palladium complexes, 4, 841
Organolithium reagents
acylation, 1, 399
addition reactions
with alkenic π-systems, 4, 72–83
aggregation, 4, 257
aromatic nucleophilic substitution, 4, 427
asymmetric
nucleophile addition reactions, 1, 69
chiral dipole-stabilized
stereoselective alkylation, 3, 75
conjugate additions, 4, 229
cyclization, 4, 871
deselenations, 8, 849
enantioselective addition
aldehydes, 1, 70
indicator
1,3-diphenylacetone tosylhydrazone, 6, 784
ketone synthesis
from carboxylic acids, 1, 411
nucleophilic addition reactions
carboxyl compounds, 1, 49
chiral ketones, 1, 58
nucleophilic addition to π-allylpalladium complexes, 4, 596
regioselectivity, 4, 635–637
stereochmistry, 4, 620
oxidation, 7, 330
phosphonium ylide synthesis, 6, 174
reactions with acetals, 1, 347
reactions with carbonyl compounds
Lewis acid promotion, 1, 329
reactions with epoxides
use of Lewis acids, 1, 343
Wurtz coupling, 3, 419
Organomagnesium compounds
addition reactions
copper catalyzed, 4, 89–93
with alkenic π-systems, 4, 83–89
oxidation, 7, 330
primary
coupling reactions with alkenyl halides, 3, 436
Wurtz coupling, 3, 415
Organomanganese compounds
addition reactions
with alkenic π-systems, 4, 98
Organomercury compounds, 1, 211–227
acylation
palladium catalysis, 1, 450
addition reactions, 1, 225
addition to alkenes, 4, 968
reaction with π-allylpalladium complexes
stereochmistry, 4, 620
vinyl substitutions
palladium complexes, 4, 838
Organometallic compounds
acylation
palladium catalysis, 1, 450
alkyl
reactions with epoxides
alkeny1
[3 + 2] cycloaddition reactions, 5, 277
allyl
[3 + 2] cycloaddition reactions, 5, 277–281
allyl
cycloaddition reactions, 5, 272–277
isotopic perturbation techniques, 2, 977
allyl and propargyl/allenic
reactions with imines, 2, 975–1004
aromatic nucleophilic substitution, 4, 427–429
cross-coupling reactions
with unsaturated halides, 3, 522
crotyl
isotopic perturbation techniques, 2, 977
reactions with aldimines, regiochemistry, 2, 978
reactions with aldimines, stereochemistry, 2, 978
hydride transfer
reduction of carbonyls, 8, 98
nitrile synthesis, 6, 241
oxidation, 7, 613
reactions
Lewis acids, 1, 325–353
reactions with aldehydes
Cram versus anti-Cram selectivities, 1, 80
reactions with cyclic ketones
stereoelectivity, 1, 333
reactions with epoxides
alcohol synthesis, 6, 4
Organometallic compounds, alkenyl-carbozincation, 4, 880
reaction with 1-alkynyl halides, 3, 529
Organometallic compounds, ary1-
reaction with oxygen, 7, 329
Organometallic compounds, π-silyl-
addition reactions, 1, 618
Organometallic compounds, vinyl-
acylation, 1, 401
Organometallic polymers

alkynylation, 3, 521
Organometallic polymers
synthesis, 3, 557
Organonickel compounds
acylation, 1, 451
catalysts
alkynylations, 3, 228
Organopalladium compounds
catalysts
Grignard reactions, 3, 230
synthesis, 4, 834
vinyl substitutions, 4, 833–861
Organophosphoric acids
derivatives, 6, 601–627
Organophosphorus reagents
amide synthesis, 6, 389
Organosamarium 'ate' complexes, 1, 253
Organosamarium halides
reactions with aldehydes, 1, 254
Organosamarium reagents
Barbier-type reactions, 1, 255
carbonyl addition reactions, 1, 253
reactions with enolizable reagents, 1, 253
synthesis via transmetallation, 1, 253, 254
Organoselenium reagents
carbanions, 1, 629–724
oxidation
allylic alcohols, 7, 307
Organosilanes
addition reactions
with alkenic π-systems, 4, 98
conjugate additions
alkenes, 4, 155–158
Mannich reactions, 2, 1030
reactions with carbonyl compounds
Lewis acid promotion, 1, 327
reductive cleavage
benzylic compounds, 8, 969
Organosilicon compounds
bond energies, 1, 582
carbanions
field effects, 1, 580
hyperconjugation, 1, 581
inductive effects, 1, 580
p-π bonding, 1, 581
reactions with carbonyl compounds
selectivity, 1, 580
nucleophilic substitution reactions, 1, 582
reactivity
carbanions, 1, 580
Organosilvere compounds
carbolinylation, 3, 905
Organosodium compounds
coupling, 3, 414
vinyl substitutions
palladium complexes, 4, 841
Organostannanes
acylation
acid chlorides, 1, 446
palladium complex catalysis, 1, 436
α-alkoxy organolithiums from, 3, 195
conjugate additions
alkenes, 4, 155–158
hydride donors
reduction of carbonyls, 8, 98
reactions with carbonyl compounds
Lewis acid promotion, 1, 327
toxicity, 7, 614
Organotellurides
dehalogenation
α-halocarbonyl compounds, 8, 990
Organothallium compounds
arylation
vinyl ketones, 4, 841
reactions with π-allylpalladium complexes, 4, 595
Organotin compounds
coupling reactions
with alkyl halides, 3, 442
with aromatic halides, 3, 452
3-iodo-2-[(trimethylsilyl)methyl]propene
trimethylenemethane synthetic equivalent, 5, 246
nucleophilic addition to π-allylpalladium complexes, 4, 594
regioselectivity, 4, 633
stereochemistry, 4, 619
primary alkyl
coupling reactions with aromatic halides, 3, 453
Organometallation reagents
properties, 1, 140
reactions with carbonyl compounds
Lewis acid promotion, 1, 330
reactivity, 1, 144
synthesis, 1, 142
Organometatallation reagents
reactions with carbonyl compounds
synthesis of alcohols, 1, 277
use, 1, 276
Organozinc reagents, 1, 211–227
acylation
palladium catalysis, 1, 448
addition reactions, 1, 215
with alkenic π-systems, 4, 93–97
conjugate additions, 4, 229
copper-catalyzed reactions, 3, 221
coupling reactions
with alkyl halides, 3, 442
with aromatic halides, 3, 452
diastereoselective addition reactions, 1, 220
hydride donors
reduction of carbonyls, 8, 99
1-methoxy-2-butyne, 2, 91
nickel catalysts, 3, 228
nucleophilic addition to π-allylpalladium complexes, 4, 595
regioselectivity, 4, 634
stereochemistry, 4, 619
perfluoroalkyl
with alkyl halides, 3, 444
primary alkyl
coupling reactions with alkyl halides, 3, 442
coupling reactions with aromatic halides, 3, 453
reactions with carbonyl compounds
Lewis acid promotion, 1, 326
reactions with imines
Lewis acid promotion, 1, 349
secondary alkyl
coupling reactions with alkyl halides, 3, 442
Wurtz coupling, 3, 420
synthesis, 1, 211, 8, 698
transmetallation, 1, 214
Organozinc reagents, allylic
synthesis, 1, 212
Organozinc reagents, benzylic
synthesis, 1, 212
Organozirconium reagents, 1, 139–170
conjugate additions
alkenes, 4, 153–155
nucleophilic addition to \(\pi \)-allylpalladium complexes, 4, 595
regioselectivity, 4, 635
stereochemistry, 4, 620
properties, 1, 140
reactivity, 1, 144
synthesis, 1, 142
tandem vicinal difunctionalization, 4, 257
Orientalone
synthesis
use of potassium ferricyanide, 3, 680
Ornithine, \(N \)-benzyl-threo-\(\beta \)-hydroxy-
synthesis, 8, 648
Ornithine, \(\beta \)-hydroxy-
synthesis, 8, 648
Orsellinic acid
synthesis, 8, 648
synthesis, 2, 170
Ortho acids
synthesis, 6, 556
Ortho amides
alkoxymethyleniminium salt synthesis, 6, 505
alkylmercaptomethyleniminium salt synthesis, 6, 511
amide acetal synthesis, 6, 571
aminocarbonyl synthesis, 6, 553
amidinium salt synthesis, 6, 518
aminal ester synthesis, 6, 575
hydride donating ability, 8, 85
imidate synthesis, 6, 533
tandem vicinal dialkylations, 4, 261
tris(dialkylamino)alkane synthesis, 6, 581
Orthocarbonates
nitrile synthesis, 6, 238
Orthocarbonic acids
alkylmercaptomethyleniminium salt synthesis, 6, 512
derivatives
tandem vicinal dialkylations, 4, 261
tris(dialkylamino)alkane synthesis, 6, 582
Orthocarboxylic esters
ortho ester synthesis, 6, 562
Ortho esters
acylation
hydrogen sulfide, 6, 450
2-\(O \)-acylglycosyl halides, 6, 49
amide acetal synthesis, 6, 570
aminocarbonyl synthesis, 6, 553
aminium salt synthesis, 6, 518
aminal ester synthesis, 6, 574
tandem vicinal dialkylations, 4, 261
tris(dialkylamino)alkane synthesis, 6, 582
Ortho esters
acylation
hydrogen sulfide, 6, 450
2-\(O \)-acylglycosyl halides, 6, 49
amide acetal synthesis, 6, 570
aminocarbonyl synthesis, 6, 553
aminium salt synthesis, 6, 518
aminal ester synthesis, 6, 574
tandem vicinal dialkylations, 4, 261
tris(dialkylamino)alkane synthesis, 6, 582
Ortho formic acid
synthesis
Reimer–Tiemann reaction, 2, 774
Orthoformylation
aromatic compounds, 3, 969
Orthopropionic acid, methyl-3-phenylsulfonyl
cyclopentanulation, 6, 164
Orthohydroformates
Michael donors, 4, 259
Orthorhizobenzolate, 3-iodomethyl-
reaction with methanol, 6, 564
Oryn
anticholinergic and spasmylytic agent, 3, 826
Osmylation
catalyst
reagent
Diels–Alder reactions, 5, 341
Osmylation, tri-\(\alpha \)-butyl
synthesis, 6, 556
Osmylation, tri-\(\alpha \)-butyl
synthesis
Reimer–Tiemann reaction, 2, 774
Orthoformylation
aromatic compounds, 3, 969
Orthopropionic acid, methyl-3-phenylsulfonyl
cyclopentanulation, 6, 164
Orthohydroformates
Michael donors, 4, 259
Orthorhizobenzolate, 3-iodomethyl-
reaction with methanol, 6, 564
Oryn
anticholinergic and spasmylytic agent, 3, 826
Osmylation
catalyst
reagent
Diels–Alder reactions, 5, 341
Oudemansins

charge-transfer
- amines, 7, 865
- features, 7, 865
- thermal
- features, 7, 865

Oudemansins

synthesis

via Horner reaction, 1, 777

Ovalicin

synthesis, 6, 784

Ovatodiolide

transannular cyclization, 3, 407

Overlap control

Darzens glycidic ester condensation, 2, 413

Perkin reaction, 2, 398

Oxaallylic anions

aldol reaction

Group III enolates, 2, 1

1-Oxa-2-aza-di-\(\tau \)-methane rearrangements

photoisomerizations, 5, 202

Oxabetweenolenes

synthesis

organocopper compounds, 3, 223

7-Oxabicyclo[2.2.1]heptane, tetramethylene-

Diels–Alder reactions, 5, 384

7-Oxabicyclo[2.2.1]hept-5-en-2-one

reactions with organocuprates, 1, 117

9-Oxabicyclo[3.3.1]nonane

synthesis, 2, 623

8-Oxabicyclo[3.2.1]oct-6-ene

Pauson–Khand reaction, 5, 1050, 1051

3-Oxabicyclo[3.3.0]oct-6-en-7-ones

synthesis

use of cobalt complexes, 3, 1025

8-Oxabicyclo[3.2.1]oct-6-en-3-ones

[4 + 3] cycloaddition reactions

tropane synthesis, 5, 609

synthesis

via [4 + 3] cycloaddition, 5, 594, 597, 605

Oxabicyclo[2.2.2]octyl ortho esters

carboxy group protection

organometallic transformation, 6, 673

1-Oxa-1,3-butadienes

cationic

Diels–Alder reactions, 5, 501

Diels–Alder reactions, 5, 453–458

intramolecular, 5, 464–468

electron-deficient

Diels–Alder reactions, 5, 458–464

electron-donating substituted

Diels–Alder reactions, 5, 464

hetero

Diels–Alder reactions, 5, 468

Oxacephem

synthesis, 5, 1107

Ugi reaction, 2, 1103

4-Oxa-5x-cholestan-3-one

hydrogenation, 8, 247

Oxacines, dihydro-

synthesis

via cyclobutene ring expansion, 5, 687

2-Oxacyclopentylidene

transition metal complexes

synthesis, 5, 1076

4H-1,3,4-Oxadiazinium salts

synthesis

via iodocyclization of allylbenzohydrizides, 4, 391

Oxadiazin-5-ones

reduction, 8, 663

1,2,4-Oxadiazoles

reduction, 8, 663

1,2,5-Oxadiazoles

reduction, 8, 664

1,3,4-Oxadiazoles

Diels–Alder reactions, 5, 491

reduction, 8, 664

1,2,4-Oxadiazoles, 3-azido-

synthesis, 6, 245

1,3,4-Oxadiazoles, 2,5-diaryl-

synthesis, 6, 490

1,2,4-Oxadiazoline, 3-phenyl-

reduction, 8, 663

\(\Delta^3 \)-1,3,4-Oxadiazolines

thermolysis

carbonyl ylide generation, 4, 1089

Oxadiazolin-5-ones

carbon dioxide elimination

nitrilamines from, 4, 1084

1,3,4-Oxadiazonium salts

reduction

sodium sulfide, 8, 664

Oxa-di-\(\tau \)-methylene rearrangements

applications, 5, 229–235

mechanism, 5, 216–219

photoisomerizations, 5, 200, 215–235

limitations, 5, 228

substrates, 5, 219–228

Oxahydridene

synthesis, 7, 300

via heteronucleophile addition, 4, 34

Oxalacic acid

hydrogenolytic asymmetric transamination, 8, 147

Oxalates, bishioxo-
dialkyl esters

synthesis, 6, 450

Oxalates, methyl

reduction

stannanes, 8, 824

Oxalic acid

reactions with Grignard reagents

synthesis of \(\alpha \)-keto esters, 1, 425

2-Oxalin-5-one, 4-arylmethylene-

synthesis

Perkin reaction, 2, 404

Oxalylc acid ketones, 2, 838

Oxalyl chloride

acid chloride synthesis, 6, 304

acid halide synthesis, 6, 308

activator

DMSO oxidation of alcohols, 7, 296

alcohol oxidation

dimethyl sulfoxide, 7, 291

chloromethyleneiminium salt preparation, 2, 779

reactions with alkanes, 7, 7

Oxalyl chloride, ethyl-

Friedel–Crafts reaction, 2, 741

Oxalyl dichloride

imidoyl halide synthesis, 6, 523

Oxalyl dihalides

reaction with amides, 6, 495

Oxamates
Cumulative Subject Index

synthesis

carbonylation of amines and alcohols, 3, 1040

Oxametallacyclic compounds

ytterbium, 1, 279

2-Oxa-3-metalla-1,5-diene

3,3-sigmatropic rearrangement, 2, 6

Oxamination

alkenes, 7, 488

vicinal

palladium(II) catalysis, 4, 560

7-Oxanorbornadiene

Pauson–Khand reaction, 5, 1050

Oxapenam

synthesis, 5, 1107

1,2-Oxaphosphetanes

intermediates in Wittig reaction, 1, 755

Oxaphospholene, methylene-
synthesis

from activated allene, 4, 57

Oxaporphine

synthesis

oxidative coupling, 3, 670

Oxasoalkylation

chain extension

via Grob fragmentation, 6, 1048

1-Oxa-2-silacyclohexa-3,5-diene, 2,2-dimethyl-

Oxasilatane

Peterson alkenation, 1, 785

Oxaspiro[cyclopentane

use in synthesis, 5, 919

Oxaspiro[2.0.n]heptanes

synthesis, 1, 712

Oxaspiro[2.0.n]hexanes

synthesis, 1, 712

Oxaspirolactone

synthesis

via cyclofunctionalization of hydroxyoctynoic acid, 4, 394

1-Oxaspiro[2.6]nonane

solvolysis

transannular hydride shifts, 3, 735

Oxaspiro[2.0.n]octanes

synthesis, 1, 712

Oxaspiropentanes

rearrangement

lithium perchlorate catalyzed, 3, 761

synthesis

via diphenylcyclopollysulfonium halides, 1, 820

1,3-Oxathiane

carbonyl group protection, 6, 680

metallated

alkylation, 3, 135

nucleophilic addition reactions

stereoselectivity, 1, 61

1,3-Oxathiane, 2-alkyldihydro-

alkylation, 3, 137

Oxathianes

chiral

nucleophilic addition reactions, 1, 63

reduction, 8, 231

1,4-Oxathiocine

synthesis

via ketocarbeneoids and thiophenes, 4, 1063

Oxathiolenes

reduction, 8, 231

1,3-Oxathiolenes

carbonyl group protection, 6, 680

Oxathiolenes, 4,4-dimethyl-

3,3-dioxide

alkylation, 3, 136

1,2,3,4-Oxatriazoles

synthesis

via acyl azides, 6, 251

7-Oxatricyclo[4.2.0.0^8]octane

synthesis

via Paterno–Büchi reaction, 5, 157

Oxazaborolidine

synthesis, 8, 171

Oxazaborolidine, 8-methylated

synthesis, 8, 171

1,3,5-Oxazaphospholes, 4,5-dihydro-
nitrile ylides from, 4, 1081

1,3,2-Oxazaphosphorinane

Claisen rearrangement, 5, 847

Oxazepanediene

Knoevenagel reaction, 2, 357

Oxazepane-5,7-dione

Knoevenagel reaction

stereoselectivity, 2, 351

Oxazepines

addition reaction

with organomagnesium compounds, 4, 89

Michael additions, 4, 206

reductive alkylation

Birch reduction, 8, 508

1,2-Oxazepines, dihydro-
synthesis

via cyclization of β-allenec oximes, 4, 397

1,2-Oxazine-3,6-dione, tetrahydro-
photochemical decarboxylation, 7, 729

1,2-Oxazines

chiral

deprotonation, 2, 486

reduction, 8, 652

1,3-Oxazines

reduction, 8, 653

synthesis, 6, 534

1,4-Oxazines

reduction, 8, 653

1,3-Oxazines, 2-alkyldihydro-

alkylation, 3, 53

1,3-Oxazines, allyloxymethyl-

Wittig rearrangement, 3, 1005

Oxazines, dihydro-
synthesis

via cyclization of methylimidates, 4, 388

via Diels–Alder reaction, 5, 418

via iodocyclization of penta- nenol imidates, 4, 408

1,2-Oxazines, 3,6-dihydro-
synthesis

via Diels–Alder reactions, 5, 417

1,3-Oxazines, dihydro-
reaction with carbonyl compounds

two-carbon homologation, 2, 493

reduction

sodium borohydride, 8, 275

synthesis

via carboxylic acids, 8, 275

via Ritter reaction, 6, 273, 295

α,β-unsaturated

preparation, 2, 493
1,3-Oxazines

1,3-Oxazines, 5,6-dihydro-
bicyclic
 synthesis, 2, 1071
 synthesis
 via photocycloaddition, 5, 161
1,3-Oxazines, 2-methylidihydro-
methallated
 reactions, 2, 492
1,3-Oxazines, 2-styryldihydro-
addition reactions
 with organolithium compounds, 4, 76

Oxazines, tetrahydro-
synthesis
 via cyclization of pentenol derivatives, 4, 408
 via allylic systems, 6-endo cyclization, 4, 386
 via iodocyclization of unsaturated amine oxides, 4, 391

1,4-Oxazines, tetrahydro-
reduction, 8, 653

1,3-Oxazines, 4,4,6-trimethyl-5,6-dihydro-
methiodide salt
 reactions with organometallic compounds, 1, 366

1,3-Oxazin-2-one
 reactions with organometallic compounds, 1,366
 synthesis
 N-acyliminium ions, 2, 1054

6H-1,3-Oxazin-6-one
 synthesis
 via retro Diels–Alder reactions, 5, 584
Oxazin-2-one, 3-bromotetrahydro-
synthesis, 1, 376

Oxazinone, tetrahydro-
synthesis
 via bromocyclization of allylamine carbamates, 4, 387

Oxazinones
 synthesis, 2, 1071

Oxazirinacycloheptenes
 synthesis
 via dienylzirconium reagents, 1, 162

Oxaziridines
 reduction, 8, 395
 spirocyclic
 synthesis, 1, 838
 synthesis, 1, 834
 via imines, 1, 837
 via oxidation of imines, 7, 750

Oxaziridines, 2-aryl-3-sulfamyl-
oxidation
 sulfides, 7, 778

Oxaziridines, 2-arylsulfonyl-3-phenyl-
α-hydroxylation
 ketones, 7, 162

Oxaziridines, camphorsulfonyl-
α-hydroxylation
 ketones, 7, 162

Oxaziridines, pentamethylene-
reaction with alkenes, 7, 470

Oxaziridines, 2-sulfamyl-
oxidation of sulfides
 synthesis of sulfoxides, 6, 150

Oxaziridines, 2-sulfamyl-
α-hydroxylation
 amides, 7, 183
 enones, 7, 176
 esters, 7, 181
 ketones, 7, 162

Oxaziridines, 2-sulfamyl-
α-hydroxylations
 diastereoselective alkylation, 3, 40

Oxazolidine-N-oxyl, 4,4-dimethyl
 nitroxide

Oxazolidines
 enolates
 diastereoselective alkylation, 3, 40
 Mannich reaction, 2, 965
 synthesis
 via cyclization of amidals, 4, 408
 synthesis, 7, 492

Oxazolidinides
 acylation, 2, 846

Oxazolidinum salts
 synthesis
 via bromocyclization of dialkylaminomethyl ethers, 4, 407

Oxazolidinones
 asymmetric hydroxylation, 7, 184
 enolates
 α-hydroxylation, 7, 184
 synthesis, 1, 273

Oxazolines
 oxidation
 selenides, 7, 772

Oxazole, 3-acetyl-2,3-dihydro-2,2-dimethyl-
photochemistry, 5, 160

Oxazole, dihydro-
enolates
 diastereoselective alkylation, 3, 40

Oxazole, 4,5-diphenyl-
synthesis
 protected carboxy groups, 6, 675

Oxazole, 5-methyl-
methallation, 1, 477

Oxazole, 2-stannyl-
coupling reactions, 3, 511
 with bromobenzenes, 3, 514

1,3-Oxazole-2,4-diones
 synthesis
 via [2 + 2 + 2] cycloaddition, 5, 1141

Oxazoles
 Diels–Alder reactions, 5, 382, 491
 metallation
 addition reactions, 1, 471
 reduction, 8, 650
 synthesis
 from acrylic imidate salts, 2, 488
 via Ritter-type reactions, 6, 275

Oxazolidine, phosphorobis-
phosphorylating agent, 6, 619

Oxazolidine, 4,5-dialkyl-
synthesis
 via heterocyclization of acylaminomethyl ethers, 4, 407

Oxazolidine, α,β-ethylenic
 conjugate additions
 organocopper compounds, 4, 210

1,3-Oxazolidine, 3-methyl-
Mannich reaction, 2, 965
 1,2,4-triazole–catalyzed, 2, 965

Oxazolidine, 5-phenyl-
synthesis, 7, 492

1,3-Oxazolidine-4-carboxylic acid
 methyl ester
 addition reactions with nitroalkenes, 4, 109

Oxazolidine-N-oxyl, 4,4-dimethyl
 nitroxide
 synthesis, 1, 393

Oxazolidines
 enolates
 diastereoselective alkylation, 3, 40
 Mannich reaction, 2, 965
 synthesis
 via cyclization of amidals, 4, 408
 synthesis, 7, 492

Oxazolidinimidides
 acylation, 2, 846

Oxazolidinum salts
 synthesis
 via bromocyclization of dialkylaminomethyl ethers, 4, 407

Oxazolidinone enolates, N-(α-bromoacetyl)-
Darzens glycidic ester condensation, 2, 437

Oxazolidinones
 asymmetric hydroxylation, 7, 184
 enolates
 α-hydroxylation, 7, 184
 synthesis, 1, 273
Cumulative Subject Index

Oxazolines

via bromocyclization of allylamine carbamates, 4, 387
via bromocyclization of thiocarbamidate, 4, 406
via cyclization of allylamines, 4, 389
via Ritter reaction, 6, 279

Oxazolidinones, N-acyl-
chiral
Diels–Alder reactions, 5, 361
Diels–Alder reactions
intramolecular asymmetric, 5, 543
α,β-unsaturated
Diels–Alder reactions, 1, 312

Oxazolidinones, N-acyriloxy-
[2 + 2] cycloaddition reaction
1,1-bis(methylthio)ethylene, 5, 24

Diels–Alder reactions, 5, 376

Oxazolidinones, N-crotonoyl-
Diels–Alder reactions, 5, 362

Oxazolidinones, N-(α-haloacetyl)-
asymmetric
Darzens glycidic ester condensation, 2, 436
preparation, 2, 436

1,3-Oxazolidin-2-ones, 4-isopropyl-3-phenacyl-
sodium borohydride, 8, 652

1,3-Oxazolidin-2-ones, 4-isopropyl-3-phenacyl-
synthesis
from organic isocyanates and terminal alkene epoxides, 3, 765

2-Oxazolidones, N-acyl-
chiral
conversion to boron enolate, 2, 250

2-Oxazolidones, 2, 805
alkenic
iodolactamization, 7, 503
arene substitution reactions, 4, 425
aromatic
carboxyl group protection
organometallic transformation, 6, 674
chiral
conjugate additions, 4, 204–206
dehydrogenation
use of benzeneselenenic anhydride, 7, 132

2-Oxazolidones, 2-alkyl-
alkylation, 3, 53
metallated achiral
reactions with carbonyl compounds, 2, 489

2-Oxazolidones, 2-ethyl-
reactions, 2, 489
metallated

2-Oxazolidones, 2-methyl-
reactions, 2, 489
metallated

2-Oxazolidones, 4,4-dimethyl-
methiodide salt
reactions with organometallic compounds, 1, 366

2-Oxazolidones, 4,5-dialkyl-
synthesis
via stereoselective cyclization, 4, 386

2-Oxazolidones, 4,4-dimethyl-
methiodide salt
reactions with organometallic compounds, 1, 366

2-Oxazolidones, 5-methylene-
synthesis
via cyclization of propargylamines amides, 4, 387

2-Oxazolidones, 1-naphthyl-
vicinal dialkylations, 4, 257

2-Oxazolidones, allyloxymethyl-
Wittig rearrangement, 3, 1005

2-Oxazolidones, allyloxymethyl anions
Wittig rearrangement
lithium cation chelation, 3, 1006

2-Oxazolidones, a-(phenylthio)vinyl-
addition reactions

2-Oxazolidones, 3-pyridyl-
addition reactions
with organolithium compounds, 4, 76

2-Oxazolidones, naphthyl-
vicinal dialkylations, 4, 257

2-Oxazolidones, 3-pyridyl-
addition reactions
with organolithium compounds, 4, 427

2-Oxazolidones, 4-pyridyl-
ortho-metallation, 4, 428

1,2-Oxazolines
synthesis
via cyclization of allylic amides, 4, 386

1,3-Oxazolines
alkylation, 6, 505
synthesis, 6, 534
via iodocyclization of trichloroacetimidates, 4, 407

2-Oxazolines
reaction with amines, 6, 74
synthesis
via Ritter reaction, 6, 295

 Oxazolines, 2-alkyl-
alkylation, 3, 53
metallated achiral
reactions with carbonyl compounds, 2, 489

 Oxazolines, allyloxymethyl-
Wittig rearrangement, 3, 1005

 Oxazolines, allyloxymethyl anions
Wittig rearrangement
lithium cation chelation, 3, 1006

 Oxazolines, aryl-
vicinal dialkylations, 4, 257

 Oxazolines, chiral
nucleophilic addition reactions
remote asymmetric induction, 1, 60

 Oxazolines, 4,5-dialkyl-
synthesis
via stereoselective cyclization, 4, 386

 Oxazolines, 2-ethyl-
methiodide salt
reactions with organometallic compounds, 1, 366

 Oxazolines, 2-ethyl-
methylation
reactions, 2, 490

 Oxazolines, 2-methyl-
methylation
reactions, 2, 489

1,2-Oxazolines, 5-methylene-
synthesis
via cyclization of propargylamines amides, 4, 387

 Oxazolines, 1-naphthyl-
vicinal dialkylations, 4, 257

 Oxazolines, α-(phenylthio)vinyl-
addition reactions
with organolithium compounds, 4, 76

 Oxazolines, 3-pyridyl-
reaction with organometallic compounds, 4, 427

 Oxazolines, 4-pyridyl-
ortho-metallation, 4, 428
Oxazolines

Cumulative Subject Index

688

Oxazolines, 2,4,4-trialkyl-N-oxide
 reactions with Grignard reagents, 1, 393

Oxazolines, vinyl-addition reactions
 with organolithium compounds, 4, 76

Oxazolinium salts, N-methyl-electrochemical addition reactions, 4, 130

Oxazolones
 reduction, 8, 650

Oxazolin-4-ones
 cycloadditions, 4, 1163

2-Oxazolin-5-ones
 reduction
 sodium borohydride, 8, 651

3-Oxazolin-2-ones
 reduction
 LAH, 8, 652

4-Oxazolin-2-ones
 photocycloaddition reaction, 5, 160

Oxazolin-5-ones, 4-benzylidene-2-methylhydroxylation, 2, 406

Oxazolin-5-ones, 4-benzylidene-2-phenylhydroxylation, 2, 406

\(\Delta^2 \)-Oxazolium 5-oxides
 azomethine ylides from, 4, 1097

Oxazolium salts
 electroreduction
 acyl carbanion equivalents, 1, 544
 reduction, 8, 650

2-Oxazolone, 3-ketopinyl-cleavage
 lower order cuprate, 1, 119

Oxazol-5-one, 2-phenyl-
 Perkin reaction, 2, 403

Oxazolone, triphenyl-synthesis
 via Ritter-type reactions, 6, 276

Oxazolones
 Friedel–Crafts reaction, 2, 744
 geometric isomers, 2, 403
 Michael addition, 4, 12
 Perkin reaction, 2, 405
 synthesis
 Erlenmeyer, 2, 396
 via Ritter-type reaction, 6, 276

Oxazol-2-ylacetic acid, 4-cyano-5-methyl-ethyl ester
 synthesis, 6, 775

Oxepane
 synthesis
 via photochemical reaction, 6, 448

Oxepine, dihydro-synthesis
 via Cope rearrangement, 4, 1049

Oxepinobenzofuran
 synthesis
 ferricyanide oxidation, 3, 666

Oxepins
 Prins reaction, 2, 564
 synthesis
 via oxirane rearrangement, 5, 929
 via photocycloaddition, 5, 165

3-Oxetanecarboxylic acid
ester
 Wolff rearrangement, 3, 902

Oxetanes
 alkylation with
 sulfur- and selenium-stabilized carbanions, 3, 86

 alkynylation
 use of boron trifluoride, 1, 343
 arene alkylation by
 Friedel–Crafts reaction, 3, 314

 coupling reactions
 with phenyllithium, 3, 466

 reaction with lithiodithiane, 1, 569

 reaction with \(\alpha \)-selenoalkyllithium, 3, 91

 Ritter reaction, 6, 276
 strained tricyclic
decomposition, 5, 178

 synthesis
 via epoxides, 1, 820
 via cyclofunctionalization of allylic alcohols, 4, 368
 via Paterno–Büchi reaction, 5, 151

 unsaturated
 stereoselective synthesis via photocycloaddition, 5, 176

Oxetanes, alkoxy-
synthesis
 via photocycloaddition, 5, 161

Oxetanes, 2-alkoxy-
synthesis
 via thermal cycloaddition, 5, 151

Oxetanes, 3-alkoxy-
synthesis
 via Paterno–Büchi reaction, 5, 151, 159

Oxetanes, 2-alkylidine-synthesis
 via photocycloaddition, 5, 167

Oxetanes, trans-4-alkyl-3-methylthio-
synthesis
 via Paterno–Büchi reaction, 5, 160

Oxetanes, alkynyl-
synthesis
 via photocycloaddition, 5, 176

Oxetanes, \(\alpha \)-chloro
 synthesis, 7, 725

Oxetanes, 2-imino-
synthesis
 via ketenimines, 5, 114
 via lithium \((N\text{-phenyl})\text{phenylethylnamide}
 cycloaddition, 5, 117
 via photocycloaddition, 5, 167

Oxetanes, 3-methoxy-
synthesis, 1, 670

Oxetanes, 2-methyl-
benzene alkylation by
 Friedel–Crafts reaction, 3, 314

Oxetanes, 2-methylene-
synthesis
 via retro Diels–Alder reactions, 5, 577

Oxetanes, 3-methylene-
synthesis
 via retro Diels–Alder reactions, 5, 577

Oxetanes, 3-siloxy-
synthesis
 via Paterno–Büchi reaction, 5, 158

Oxetanes, 2-thiaoxy-
synthesis
 via lithium thioalkynolate cycloaddition, 5, 117

Oxetanocin
synthesis
via Paterno–Büchi reaction, 5, 151

2-Oxetanones
synthesis
via ketenes and carbonyls, 5, 86–89
via lithium phenylethynolate cycloaddition, 5, 116

Oxetenes
synthesis
via photocycloaddition, 5, 162
via ynamines and carbonyls, 5, 116

Oxetin
synthesis
via Paterno–Büchi reaction, 5, 151

Oxidation
activated C—H bonds, 7, 83–113
alcohols, 7, 251–286, 291–302, 305–325
dehydrogenation, 7, 119–146
ethers, 7, 235–248
hydroylation, 7, 151–187
quinone synthesis, 7, 345–356
sulfur compounds, 7, 193–214
vinyllic, 7, 329–344
allylic stannanes, 7, 616
π-allylpalladium complexes, 7, 629
erenes
nucleophilic displacement of hydrogen by, 4, 423
azo compounds
synthesis of azoxy compounds, 7, 750
biomimetic, 7, 40
by pyridinium salts
of primary and secondary alcohols, 8, 96
carbon–boron bonds, 7, 593–608
carbon–carbon bonds
microbial, 7, 66
carbon–halogen bonds
remote functionalization, 7, 39–51
carbon–mercury bonds, 7, 631
carbon–metal bonds, 7, 613–638
carbon–palladium bonds, 7, 629
carbon–silicon bonds, 7, 641–650
carbon–tin bonds, 7, 614
unactivated, 7, 614
definition, 7, 39
electrochemical, 7, 707, 789–811
alkenes, 7, 98
enzymatic, 7, 99
hydroamination adducts, 8, 753
nitrogen compounds, 7, 735–753
nitroso compounds, 7, 751
oximes, 7, 751
phosphorus compounds, 7, 735–753
primary alcohols, 7, 305
primary amines, 7, 736
secondary amines, 7, 745
selenides
to selenones, 7, 773
to selenenoxides, 7, 770
selenium compounds, 7, 757–779
selenols, 7, 769
solid-supported reagents, 7, 839–847
alumina, 7, 841
clay, 7, 845
silica, 7, 842
spores, 7, 80
sulfoxides

to sulfones, 7, 766
sulfur compounds, 7, 757–779
tellurium compounds, 7, 757–779
tertiary nitrogen compounds, 7, 748
γ-trialkylstannyl alcohols, 7, 621
trigonal nitrogen compounds, 7, 749
unactivated C—H bonds, 7, 1–17
microbial methods, 7, 53–80
vinylstannanes, 7, 620
zirconium compounds
to alcohols, 8, 691
Oxidation potentials
definition
electrosynthesis, 8, 129
electron donors, 7, 853
electron-transfer oxidation
driving force, 7, 852
organic compounds, 7, 852
Oxidative cleavage
alkenes, 7, 541
nitrogen and sulfur functionalization, 7, 588
phase transfer catalysis, 7, 559
Oxidative coupling
copper–polymer complex catalysts, 3, 559
organometallic acetylenes, 3, 554
phenols, 3, 659–700
terminal alkynes, 3, 552
Oxidative cyclization
dienyliron complexes
stereococontrol, 4, 686
Oxidative decarboxylation
aliphatic carboxylic acids, 7, 722
1,4-dihydrobenzoic acids, 8, 500
Oxidative demercuration
alkoxymercuration, 7, 631
Oxidative demethylation
methoxyarenes, 7, 346
Oxidative desilylation
CEt to C-O, 8, 788
Oxidative halogenation
halometallic reagents, 7, 527
Oxidative homocoupling reactions
terminal alkynes, 3, 552
Oxidative phosphorylation, 6, 614
Oxidative rearrangements, 7, 815–836
skeletal, 7, 827
Oxides
oxidation
thiols, 7, 761
N-Oxides
oxidation with, 7, 661
reactions with arynes, 4, 508
synthesis
via oxidation of tertiary amines, 7, 748
2-Oxidallyl, 1-hydroxy-
[4 + 3] cycloaddition reactions, 5, 597
Oxidobenzopyrylium ylides
cycloadDITIONS, 4, 1163
1-Oxido-2-pyrydylmethyl group
phosphoric acid protecting group, 6, 624
Oxidopyrylium ylides
cycloadDITIONS, 4, 1163
Oxidoreductases
dehydrogenation
carbonyl compounds, 7, 145
sources, 8, 184
Cumulative Subject Index

2,3-Oxidosqualene

synthesis, 3, 99
Oxime acetates
\(\alpha\)-hydroxylation, 7, 186
photoisomerization, 5, 202
Oxime esters
reduction
hydrides, 8, 60
to amines, 8, 64
to hydroxylamine esters, 8, 60
Oxime ether anions
structure, 6, 727
Oxime ethers
asymmetric reduction
Lewis acid coordination, 1, 317
O-benzyl
reactions with silyl ketene acetalis, 2, 940
boron trifluoride activated
reactions with organometallic compounds, 1, 385
nucleophilic radical addition
tin pinacolate, 4, 765
reactions with allyl organometallic compounds, 2, 994
reactions with enolates, 2, 939
reactions with organometallic compounds, 1, 385
reduction
hydrides, 8, 60
to amines, 8, 64
to hydroxylamine ethers, 8, 60
Oximes
addition reactions
carbon-centred radicals, 4, 765
alkenic mesylates
intramolecular cyclization, 6, 771
anions
acyclic, 2, 386
cyclic, 2, 386
stabilized, 2, 486
aromatic
oxidation, 7, 276
aziridine synthesis, 1, 835
Beckmann rearrangement, 6, 404, 763
carbamates
Neber reaction, 6, 787
carbonyl group derivatization, 6, 726
carbonyl group protection, 6, 682
cleavage
trimethylsilyl chlorochromate, 7, 285
cyclic
stereoselective reduction, 8, 64
cyclization, 4, 1120
deoxygenation
titanium(III) chloride, 8, 371
dianions
structure, 6, 727
Diels–Alder reactions, 5, 412
electroreduction, 8, 135, 137
hydrogenation
asymmetric, 8, 145
catalytic, 8, 143
homogeneous, 8, 155
infrared spectra, 6, 727
isomerization
Beckmann rearrangement, 7, 691
metallated
addition reactions, 2, 486
metal enolate equivalents, 3, 30
methanesulfonates
Beckmann rearrangement, 7, 693
\(N\)-nitroso synthesis of \(N\)-nitrimines, 7, 751
NMR
carbon 6, 13, 727
proton, 6, 727
oxidation, 7, 751
pinacol coupling reactions
with ketones, 3, 596
properties
chemical, 6, 727
radical additions
alkoxy radicals, 4, 815
reactions, 6, 727
reactions with allyl organometallic compounds, 2, 994
diastereoselective, 2, 32
reactions with crotyl boronates
\(\text{syn} – \text{anti}\) selectivity, 2, 997
reactions with organometallic compounds, 1, 385
reduction, 8, 176
dissolving metals, 8, 124
hydrides, 8, 60
stereoselectivity, 8, 64
synthesis of imines, 8, 392
to amines, 8, 64
to hydroxylamines, 8, 60
spectra, 6, 727
stereochemistry, 6, 728
structure, 6, 727
synthesis, 6, 726
via trimethylsilylamines, 7, 737
tosylates
Beckmann rearrangement, 1, 387
ultraviolet spectra, 6, 727
Vilsmeier–Haack reaction, 2, 792
Oximes, \(O\)-acyl-
carboxyl radicals from, 7, 719
Oximes, azido
synthesis, 6, 252
Oximes, \(\alpha\)-hydroxyamino
synthesis, 6, 114
Oximes, \(O\)-methyl-
reduction, 8, 176
Oximes, \(\beta\)-stannyl
oxidation, 7, 628
Oximes, 2-sulfato-
synthesis, 7, 493
Oxime sulfonates
rearrangement, 6, 542
Oxindole, 3-alkylidene-
synthesis
via \(S_{\text{N}}\)1 reaction, 4, 477
Oxindoles
synthesis
via \(S_{\text{N}}\)1 reaction, 4, 477
Sommelet–Hauser rearrangement, 3, 969
Oxiranemethanol, 2-methyl-
synthesis
via asymmetric epoxidation, 7, 398
via 4-nitrobenzoate derivative, 7, 398
Oxiranes (see also Epoxides)
alkyne
isomerization, 5, 929
alkynylation
use of boron trifluoride, 1, 343
Cumulative Subject Index

Oxygen

- dienyl isomerization, 5, 929
- in alkene oxidation
 - hydrogen peroxide, 7, 446
 - neighboring group
 - epoxide opening, 3, 735
 - oxidative cleavage, 7, 709
 - ring opening
 - carbon nucleophiles, 6, 4
 - carbonyl ylide generation, 4, 1089
 - Lewis acids, 1, 345
- Oxiranes, 2-acyl-preparation, 2, 423
- Oxiranes, 1,2-diaryl-preparation
 - carbonyl ylide generation, 4, 1090
- Oxiranes, 1,2-di-n-propyl-reactions with boryl compounds, 1, 497
- Oxiranes, divinyl-
 - flash vacuum pyrolysis
 - product control, 5, 930
 - synthesis
 - via [2 + 3] annulation, 5, 930
- Oxiranes, trans-divinyl-rearrangement, 5, 929
- Oxiranes, 2-imidoyl-preparation, 2, 423
- Oxiranes, 1-methyl-2-pentyl-reaction with boryl compounds, 1, 496
- Oxiranes, phenyl-
 - cleavage
 - pyridinium chlorochromate, 7, 267
- Oxiranes, (p-tolylsulfinyl)-synthesis
 - via chloromethyl p-tolyl sulfoxide, 1, 524
- Oxiranes, vinyl-
 - cyclic
 - nucleophilic opening, 5, 931
 - nucleophilic opening, 5, 931
 - optically pure
 - racemization, 5, 929
 - radical addition reactions
 - alkenes, 5, 931
 - radical polymerization, 5, 931
 - reaction with aryl Grignard reagents, 3, 265
 - reaction with organocopper reagents, 6, 848
 - reaction with sodium phenoxide
 - ring opening reaction, 5, 936
 - rearrangements, 5, 909, 928
 - synthesis, 1, 510, 712
 - from allylic ethers, 2, 70
 - via photoisomerization, 5, 200
 - thermal isomerization, 5, 929
- Oxiranes, vinylalkynyl-rearrangement
 - to vinylcyclopropyl aldehydes, 5, 931
- Oxocane
 - 2,8-disubstituted
 - synthesis, 7, 679
- Oxocarbenium ions
 - cyclization, 6, 750
 - heterocyclic synthesis, 6, 749
 - synthesis, 6, 749
- Δ^2-Oxocene, 2,8-disubstituted
 - synthesis
 - via cyclization of oxonium ions, 1, 591
- Oxocenes
 - synthesis, 6, 752
 - type III ene reaction, 2, 555
 - via cyclization of acetals, 1, 589
- Oxocenone
 - synthesis
 - via activated alkynes, 4, 53
- Oxocineole
 - enzymic reduction
 - diastereotopic face distinction, 8, 192
- 2H-Oxocins, 3,6,7,8-tetrahydro-
 - synthesis
 - via cyclization of acetals, 1, 589
- Oxocorine synthsis, 3, 683
- Oxone — see Potassium hydrogen persulfate
- Oxonium hexachloroantimonate, O-acetyldiethyl-Friedel–Crafts reaction, 2, 737
- Oxonium ions
 - chiral
 - reaction with enol silanes, 2, 650
 - initiators
 - polyene cyclization, 3, 343, 354
- Oxonium ylides
 - rearrangements, 3, 942; 6, 874, 881
 - Wittig rearrangement, 3, 1008
- Oxo process
 - hydroformylation of alkenes, 4, 914
- Oxosulfonylation
 - alkenes, 4, 355, 337
- Oxosulphonium ylides
 - addition reactions, 4, 115
 - 2-Oxallyl, 1-phenyl-
 - [4 + 3] cycloaddition with 3-methylfuran, 5, 601
- Oxallyl cations
 - [4 + 3] cycloaddition reactions, 5, 594
 - polyene cyclization, 3, 354
- 2-Oxallyl synthons
 - [3 + 2] cycloaddition reactions, 5, 282–287
 - [4 + 3] cycloaddition reactions, 5, 603
- Oxamidation
 - alkenes, 7, 488
- Oxanion-accelerated rearrangements
 - small rings, 5, 1000–1004
- Oxy-Cope reactions
 - palladium(II) catalysis, 4, 563–565
- Oxy-Cope rearrangements, 1, 880; 5, 785–822
 - allylic systems, 6, 834, 863
 - anionic, 5, 785–822
 - following Wittig rearrangement, 3, 994
 - 3-hydroxy-1,5-hexadienes, 5, 1000
 - irreversibility, 5, 795
 - oxanion-accelerated, 5, 1000
 - product aromatization, 5, 791
 - trienes, 5, 889
- Oxygen
 - epoxidations using, 7, 384
 - molecular
 - amide α-hydroxylation, 7, 183
 - enone α-hydroxylation, 7, 175
 - ester α-hydroxylation, 7, 180
 - ketone α-hydroxylation, 7, 156, 159
 - oxidation
 - ethers, 7, 247
 - singlet
Cumulative Subject Index

Oxygenase

- allylic oxidation, 7, 96, 110
- ester α-hydroxylation, 7, 182
- ketone α-hydroxylation, 7, 165, 169
- oxidative rearrangements, 7, 816
- reaction with bis-silyl ketene acetals, 7, 185
- reaction with silyl dienol ethers, 7, 177
- triplet radical reactions, 4, 720

Oxygenase

- aromatic hydroxylation catalyst, 7, 80
- Oxygen-centered radicals cyclizations, 4, 811–814
- Oxygen heterocycles ring opening, 8, 957

Oxygen nucleophiles

- addition reactions alkenes, 4, 552–559
- aromatic nucleophilic substitution, 4, 437–440
- nucleophilic addition to π-allylpalladium complexes, 4, 596–598
- regioselectivity, 4, 637
- stereochemistry, 4, 621

Oxymercuration alkenes, 4, 741

- synthesis of ketones, 7, 451
- humulene, 3, 400
- oxidative demercuration, 7, 632

13-Oxyprostanoids

- synthesis via conjugate addition of aryl cyanohydrin, 1, 552

Oxy radicals

- cyclizations, 4, 811
- α-Oxy radicals

addition reactions tin hydride catalysis, 4, 739
Oxytelluration alkenes, 4, 343
terminal alkenes enol ether preparation, 2, 598

Oxythallation alkenes

- synthesis of ketones, 7, 451

Ozone

- alkane oxidation, 7, 14
- silica support, 7, 842
- oxidation ethers, 7, 247
- primary amines, 7, 737
- selenides, 7, 771
- oxidative cleavage of alkenes catalysts, 7, 542
- synthesis of alcohols, 7, 543
- synthesis of carbonyl compounds, 7, 544
- synthesis of carboxylic acids, 7, 574
- reactions with alkenes
 1,3-dipolar cycloadditions, 4, 1098

Ozonization ethers, 7, 247
methylene groups solid support, 7, 842

Ozonolysis cyclic alkenes in ammonia, 7, 507
hydrazones regeneration of carbonyl groups, 2, 524
silyl enol ethers, 7, 166
vinyl silane generation of α-hydroxy ketones, 7, 172
Paliclavine synthesis, via nitrile oxide cyclization, 4, 1131

Palladation
alkenes, 7, 490
vinyl substitutions, 4, 835

Palladium
allylic oxidation, 7, 94
catalyst, 7, 107
barium sulfate
epoxide hydrogenolysis, 8, 882
carbon
catalyst, allyl halide hydrogenolysis, 8, 794
catalyst
acyl chloride reduction, 8, 286
carbonation alkylations, 3, 227
Cope rearrangement, 5, 799
cross-coupling reactions, 3, 523
cycloaddition reactions, methylenecyclopropanes, 5, 1188
synthesis of enynes, 3, 217
charcoal
epoxide hydrogenation, 8, 882
dehydrogenation, 7, 139
mechanism, 7, 141
hydrogenation catalyst
pyridines, 8, 597
hydrogenolysis
allyl halides, 8, 956
oxidative rearrangement, 7, 828
polymer-bound
catalyst, hydrogenation, 8, 418
reduction
transfer hydrogenation, 8, 366
Palladium, \(\eta^2 \)-allyl-[3 + 2] cycloaddition reactions, 5, 300
Palladium, \(\pi \)-allyl-
reactions with nucleophiles, 6, 20
Palladium, allylchloro-
catalyst
TASF reaction with organic halides, 3, 233
Palladium, \(\eta^2 \)-allylcyclopentadienyl-[3 + 2] cycloaddition reactions
methylenecyclopropane, 5, 289
Palladium, benzyl(chloro)bis(triphenylphosphine)-catalyst
acylation, 1, 440
Palladium, bis(acetonitrile)dichloro-
catalyst
vinyl iodide reaction with organotin compounds, 3, 232
Palladium, bis(dibenzylideneacetone)-catalyst
vinyl substitutions, 4, 835
[3 + 2] cycloaddition reactions
methylenecyclopropane, 5, 289
Palladium, bis(phenylphosphine)pentakis-
hydrogenation
alkenes, 8, 447
Palladium, dichlorobis(triphenylphosphine)-catalysis
halide carbonylation, 3, 1021

vinyl iodide reaction with organotin compounds, 3, 232
Palladium, dichloro(DPPP)-
desulfurizations
allyl sulfones, 8, 840
Palladium, phenylbis(triphenylphosphine)-
catalysis
arylmagnesium halide reaction with alkyl halides, 3, 244
Palladium, tetrakis(triphenylphosphine)-
catalyst
acyl halide reduction, 8, 265
aryl halide reaction with organotin compounds, 3, 232
coupling reactions between organolithium and
vinyl halides, 3, 485
[3 + 2] cycloaddition reactions, 5, 299
halide carbonylation, 3, 1021
vinyl Grignard coupling, 3, 485
vinyl substitutions, 4, 835
desulfurizations
allyl sulfones, 8, 840
nitrile synthesis, 6, 232
Palladium, \(\eta^1 \)-trimethylenemethane-, 5, 244
[3 + 2] cycloaddition reactions, 5, 300
Palladium acetate
allylic oxidation, 7, 94
catalyst
[3 + 2] cycloaddition reactions, 5, 299
diazo compound decomposition catalyst, 4, 1033
oxidation
diols, 7, 314
Palladium bis(trifluoroacetate)
allylic oxidation, 7, 94
Palladium chloride
allylic oxidation, 7, 95
catalysts
alkene dimerization, 3, 482
alkenyl halide dimerization, 3, 484
alkyne trimerization, 5, 1147
metal hydride reduction
carbonyl compounds, 8, 315
Palladium chloride, bis(benzonitrile)-
diazo compound decomposition catalyst, 4, 1033
Palladium complexes
acylation
catalysis, 1, 436
catalysts
hydroisilylation, 8, 764
ferrocene
catalyst, Grignard reagent alkylation, 3, 244
Palladium complexes, \(\pi \)-allyl-
addition of carbon nucleophiles
functional group effects, 4, 629
ligand effects, 4, 631
regioselectivity, 4, 627–632
stereochemistry, 4, 615–621
substituent effects, 4, 627–629
addition of enolates
regioselectivity, 4, 632
chemoselectivity, 4, 587–614
diastereoselectivity, 4, 614–627

693
Cumulative Subject Index

694

Palladium complexes

mechanism, 4, 614
in synthesis, 4, 585–654
nucleophilic addition reactions, 4, 610
chirality transfer, 4, 649–651
enantioselectivity, 4, 649–654
regioselectivity, 4, 627–649
oxidation, 4, 603; 7, 629
regioselectivity, 4, 645
stereosexchemistry, 4, 625
photochemistry, 4, 610
precursors, 4, 587–590
reactions, 3, 423; 4, 600–614
regioselectivity, 4, 643–649
reduction, 4, 604–606
regioselectivity, 4, 646
stereochemistry, 4, 626
transformation to dienes, 4, 608–610
umpolung, 4, 606–608
regioselectivity, 4, 647–649
stereochemistry, 4, 626
Palladium complexes, montmorillonitesilyl-
reduction
nitroaromatics, 8, 372
Palladium complexes, nitro-
alkene oxidation, 7, 452
Palladium complexes, oxa-π-allyl-
reactions, 4, 611–614
Palladium-ene reactions, 5, 35–37
intramolecular, 5, 46–56
stereoselectivity, 5, 60
Palladium enolates
allylation, 4, 592
Palladium homoenolates
β-elimination
α,β-unsaturated carbonyl compounds, 2, 443
substitution reactions, 2, 450
Palladium salts
catalysts
alkene addition reactions, 4, 551
oxidative addition to allyl acetate, 4, 614
Ritter reaction, 6, 284
Palustric ester
Palygorskite
solid support
oxidants, 7, 845
Palytoxin
synthesis
use of protecting groups, 6, 632
via alkynylchromium reagents, 1, 197
β-Panapinsene
synthesis
via Johnson methylation, 1, 739
via ketone methylation, optical resolution, 1, 533
Panuccilide A
synthesis
via Diels–Alder reaction of alkyne ketone, 1, 406
via retro Diels–Alder reactions, 5, 579
β-Panisene
synthesis
via copper-catalyzed photocycloaddition, 5, 147
Pantolactone
Diels–Alder reactions, 5, 365
Pantolactone, keto-
asymmetric hydrogenation, 8, 152
Pantoyllactone
synthesis
via enzymic reduction, 8, 190
Parabanic acid
O,N-acetals
synthesis, 6, 576
aminals
synthesis, 6, 581
Paraconic ester
synthesis
via oxidation of lactol, 6, 357
via Stobbe reaction, 6, 356
[8] Paracyclophane, 4-carboxy-
synthesis, 3, 905
[3.3] Paracyclophanediene
synthesis, 3, 877
Paracyclophanes
hydrogenation, 8, 437
synthesis
via intramolecular acyloin coupling reaction, 3, 628
[10] Paracyclophanes
synthesis
via ene reaction with methyl propiolate, 5, 8
Paraffins
dehydrogenation
nitrile oxides from, 4, 1078
Paralol
synthesis, 2, 138
Parham cyclization
bromoaromatic carboxylic acids, 1, 412
Parham-type cyclization
benzocyclobutanes, 3, 251
Parinaric acid
synthesis, 3, 116
(±)-Parthenin
synthesis, 2, 161
Passerini reaction, 2, 1083–1106
amide synthesis, 6, 405
isocyanides, 6, 295
mechanism, 2, 1085
Patchoulol
microbial hydroxylation, 7, 64
Paterno–Büchi photocycloaddition reaction, 5, 151–188
diethyl systems, 5, 165–168
excited-state asymmetric synthesis, 5, 183
heterocyclic synthesis, 6, 759
intramolecular, 5, 178–183
imides with alkynes, 5, 181
mechanism, 5, 152–157
spectroscopy, 5, 153
transannular, 5, 179
Pauson–Khand reaction, 5, 1037–1062
alkene regioselectivity
electronic effects, 5, 1042
bicyclization–carbonylation of enynes, 5, 1165
intermolecular, 5, 1043–1053
intramolecular, 5, 1053–1062
mechanism, 5, 1039–1043
scope, 5, 1038
Payne rearrangement
epoxides
hydroxy neighboring group, 3, 735
epoxy alcohols, 7, 402
2,3-epoxy alcohols, 6, 89
PDE-I
synthesis
via Eschenmoser coupling reaction, 2, 885
Cumulative Subject Index

Pentalene

di-π-methane rearrangement, 5, 195
1,4-hydrogenation
homogeneous catalysis, 8, 451
phenylation, 4, 472
photoaddition reactions
with acetaldehyde, 5, 165
selective reduction, 8, 568
zirconocene complex
reactions with carbonyl compounds, 1, 163

1,4-Pentadiene
hydroboration, 8, 707
hydrocarboxylation, 4, 941

2,4-Pentadiene
Diels–Alder reactions
Lewis acid promoted, 5, 339

1,3-Pentadiene, 5-amino-
synthesis
via palladium catalysis, 4, 598

1,3-Pentadiene, 2,4-dimethyl-
photocycloaddition reactions
benzene, 5, 636

1,4-Pentadiene, 2,4-dimethyl-
hydroboration, 8, 707

1,4-Pentadiene, 3,3-dimethyl-
photoisomerization, 5, 195

1,3-Pentadiene, 1-ethoxy-4-methyl-
Diels–Alder reactions, 5, 329

1,2-Pentadiene, 3-ethyl-
hydrogenation
homogeneous catalysis, 8, 450

1,3-Pentadiene, 2-methyl-
hydrobromination, 4, 283

1,3-Pentadiene, 3-methyl-
zirconocene complex
reactions with carbonyl compounds, 1, 163

1,3-Pentadiene, 4-methyl-
cycloaddition reactions, 5, 71
selective reduction, 8, 568

2,4-Pentadienoic acid
lactones
synthesis via [2 + 2 + 2] cycloaddition, 5, 1138
methyl ester
[3 + 2] cycloaddition reactions, 5, 297
Diels–Alder reactions with imines, 5, 409

2,4-Pentadienoic acid, trichloro-
esters
reduction, 8, 267

1,4-Pentadien-3-ol
asymmetric epoxidation, 7, 416

1,4-Pentadien-3-ol, 1,1,3,5,5-pentaphenyl-
phénylméthylsilyl éthers
photoisomerization, 5, 195

photoisomerization, 5, 195

2,4-Pentadieno-4-lactone
synthesis
via carbonylation of alkynes, 3, 1032

Pentadienylcation
carbonyl compounds
regioselective reaction, 2, 59

Pentaene
synthesis
via Horner reaction, 1, 779

Pentalenane
synthesis, 3, 389

Pentalene
Pauson–Khand reaction, 5, 1047

PDE-II
synthesis
via Eschenmoser coupling reaction, 2, 885

Pederine
asymmetric synthesis, 2, 846
synthesis
via [4 + 3] cycloaddition, 5, 612
via reduction of imidates, 2, 1050

(−)-Peduncularine
synthesis
via (S)-malic acid, 2, 1065

Penicillin G
Curtius reaction, 6, 812
synthesis
via Ugi reaction, 2, 1103

Penicillin acylase
phenylacetyl group removal, 6, 643

Penicillinate, diazo-
decomposition
rhodium(II) catalyzed, 4, 1053

Penicillium
Currie reaction, 6, 812
synthesis
via Ugi reaction, 2, 1103

Penicillins
reaction with dichlorine monoxide, 7, 537
synthesis
via cycloadditions of acid chlorides and imines, 5, 92
via Dieckmann reaction, 2, 824
via oxazolones, 2, 396

Penicillins, diazo-
rearrangement, 3, 934

Penicillins, semisynthetic
synthesis
via 2-arylglycines, 3, 303

Penicillin sulfoxide
methyl ester
Pummerer rearrangement, 7, 205

Penicillium concavo-rugulosum
hydrocarbon hydroxylation, 7, 59

Penicillium decumbens
reduction
unsaturated carbonyl compounds, 8, 558

Penicillium spinulosum
epoxidation, 7, 429
2,4,6,8,10,12,14-Pentadecaneheptaone
aldol cyclization, 2, 171

Pentadienal, 2-methyl-5-phenyl-
biochemical reduction, 8, 560

1,3-Pentadiene
Pentalene

synthesis
via conjugate addition, 4, 226
via pinacol rearrangement, 3, 726
via vinylcyclopropane thermolysis, 4, 1048

Pentalene, hexahydro-
synthesis
via palladium-ene reaction, 5, 50

Pentalene
synthesis, 3, 20, 384, 400
via ene reaction, 2, 546
via Pauson–Khand reaction, 5, 1061, 1062
via stereoselective cuprate reaction, 1, 133
via Wacker oxidation, 7, 455

Pentalenene, hydroxy-
synthesis, 3, 400

Pentalenic acid
synthesis, 3, 400, 7, 109

Pentalenolactone E
synthesis, 3, 400
via C—H insertion reactions, 3, 1059, 1060

Pentalenolactone E methyl ester
synthesis
via Pauson–Khand reaction, 5, 1061

Pentalenolactone F
synthesis, 3, 400

Pentalenolactone G
synthesis, 3, 766
via photoisomerization, 5, 234

Pentalenolactones
synthesis, 3, 400
via Prins reaction, 2, 553

1-Pentanol, 4-phenyl-
synthesis
via Friedel–Crafts reaction, 3, 315

2,2,5,7,8-Pentamethylchroman-6-sulfonyl group

1,5-Pentanedioic acid
dimethyl ester
acyloin coupling reaction, 3, 615

2,4-Pentanediol
chiral acetals
reduction, 8, 222

2,4-Pentanediol, 2,4-dimethyl-
reduction, 8, 283

alcohol oxidation, 7, 278

2,4-Pentanedione, 3,3-dimethyl-
crystal structure, 1, 303

2,4-Pentanedione, 1-phenyl-
dianion
reduction, 8, 190

Pentenitrile
hydrogenation, 8, 232

Pentanoic acid, 3-diazo-2,4-dioxo-
Wolff rearrangement, 3, 897

methyl ester

Pentane, 1-bromo-
effect of counterion on rate, 6, 2

Pentane, 1-hydroxy-
equilibrium constant, 6, 752

Pentane, 2-iodo-
equilibrium constant, 6, 289

Pentane, 2,2,4-trimethyl-
benzene alkylation with
Friedel–Crafts reaction, 3, 322

1,5-Pentanediol acid
dimethyl ester
spectra, 2, 280
ethylzinc enolates
spectra, 2, 280
2-Pentanone, 3-methyl-
lithium enolate
aldol reaction, 2, 223
Pentaprismane
synthesis
via Baeyer–Villiger reaction, 7, 683
Pentatetraene
synthesis
via retro Diels–Alder reaction, 5, 589
Pentazocine
synthesis, 8, 314
4-Pentenal, 2,2-dimethyl-
hydrogenation
catalytic, 8, 140
4-Pentenal, 3-phenyl-
synthesis
via Claisen rearrangement, oxidation, 7, 456
4-Pentenal, 2-p-tolyl-2-methyl-
synthesis
via Wacker oxidation, 7, 455
3-Pentene, 1-bromo-
synthesis
via vinylcyclopropane, 5, 903
1-Pentene, 3,3,4,4,5,5,5-heptafluoro-
hydrobromination, 4, 280
1-Pentene, 2-methyl-
hydroformylation, 4, 922
1-Pentene, 3-methyl-
hydroformylation, 4, 922
1-Pentene, 4-methyl-
oxidation
Wacker process, 7, 451
2-Pentene, 3-methyl-
hydroesterification, 4, 936
1-Pentene, 1,1,5-trichloro-
hydrogenation, 8, 898
1-Pentene, 3,4,4-trimethyl-
reaction with p-nitrobenzonitrile oxide, 5, 262
4-Pentene-1,3-diol
synthesis
via formation of lactones on oxycarbonylation, 3, 1033
3-Pentenoic acid
hydrobromination, 4, 282
4-Pentenoic acid
hydrobromination, 4, 282
Pentenoic acid, 2-alkyl-3-methyl-
iodolactonization, 4, 380
2-Pentenoic acid, 5-amino-
synthesis
via Mannich reaction, 2, 930
4-Pentenoic acid, 2-amino-
iodolactonization
stereoselectivity, 4, 382
4-Pentenoic acid, 2,4-dimethyl-3-hydroxy-
cyclofunctionalization
stereoselectivity, 4, 379
4-Pentenoic acid, 3-hydroxy-
palladium-catalyzed carbonylation
formation of dilactones, 3, 1032
3-Pentenoic acid, 4-methyl-
hydrobromination, 4, 282
4-Penten-2-ol, 2,3-dimethyl-
synthesis
via trihaptotitanium compound, 1, 159
4-Penten-2-ol, 2-methyl-
dicarboxylation, 4, 948
4-Penten-2-ol, 4-phenyl-
hydrogenation
homogeneous catalysis, 8, 447
Pentenomycin
synthesis
via retro Diels–Alder reactions, 5, 561
2-Pentenone
Lewis acid complexes
NMR, 1, 294
3-Pentenone
addition reaction
with organomagnesium compounds, 4, 89
Lewis acid complexes
NMR, 1, 294
3-Penten-2-one
conjugate addition reactions, 4, 169
e reactions
Lewis acid catalysis, 5, 6
Robinson annulation, 4, 18
3-Penten-2-one, 3-methyl-
[3 + 2] cycloaddition reactions, 5, 278
3-Penten-2-one, 4-methyl-
addition reactions
with organomanganese compounds, 4, 98
5,5-Pentenones
fused
synthesis, 1, 585
3-Pentenonitrile, 4-methyl-
Ritter reaction, 6, 279
Pentenyl radicals
cyclizations, 4, 785
Pentyl nitrate
nitrization with, 5, 105
Pentyl nitrite
diazotization, 7, 740
nitrization with, 6, 106
1-Pentyne
hydrogenation to 1-pentene
homogeneous catalysis, 8, 457
hydrobromination, 8, 898
reaction with borane, 1, 489
2-Pentyne
hydrogenation to cis-2-pentene
homogeneous catalysis, 8, 457
reaction with carbene complexes
regiochemistry, 5, 1093
4-Pentynoic acid
hydroiodination, 4, 289
3-Pentyn-2-one
photolysis
with tetramethylethylene, 5, 164
Peptides
asymmetric synthesis
Ugi reaction, 2, 1098
carboxylic acids
Lossen reaction, 6, 822
conformationally constrained mimics
synthesis via Claisen rearrangement, 5, 832
coupling
Ugi reaction, 2, 1094
sterically hindered
synthesis, 6, 276
Peptides

Cumulative Subject Index

Peptides, dehydro-
asymmetric hydrogenation synthesis of dipeptides and oligopeptides, 8, 460

Peptidoglycan synthesis, 6, 52

Peracetic acid

anti hydroxylation
alkenes, 7, 446
Baeyer–Villiger reaction, 7, 674
chromium oxide cooxidant alcohol oxidation, 7, 279
epoxidizing agent, 7, 372
oxidation selenides, 7, 771
sulfides, 7, 766

Peracetic acid, trifluoro-
anti hydroxylation
alkenes, 7, 446
Baeyer–Villiger reaction, 7, 674
boron trifluoride mixture oxidant, 3, 753
epoxidizing agent, 7, 373
oxidation organoboranes, 7, 599
sulfides, 7, 766

Perbenzoic acid

oxidation organoboranes, 7, 599
sulfides, 7, 766

Perbenzoic acid, m-chloro-
Baeyer–Villiger reaction, 7, 674
epoxidations, 7, 359
oxidation allylstannanes, 7, 616
primary amines, 7, 737
selenides, 7, 771
sulfides to sulfoxides, 7, 194
oxidative halogenation alkoxyl radicals from, 7, 535

Perbenzoic acid, 3,5-dinitro-
epoxidizing agent, 7, 373

Perbenzoic acid, 4-nitro-
epoxidizing agent, 7, 373
oxidation ethers, 7, 247

Perbenzoic acid, 2-sulfo-
anti hydroxylation
alkenes, 7, 446

Perchlorates, 1,2-nitro-
synthesis via electrophilic nitration, 4, 356

Perchloric acid catalyst Friedel–Crafts reaction, 2, 736

Perchlorocarbonyl compounds radical cyclizations, 4, 802

Peroxide

alkene oxygenation, 7, 96

Peroxone, 6,15-hydroxy-
synthesis, 8, 537

Performic acid

anti hydroxylation
alkenes, 7, 446
epoxidizing agent, 7, 372

Perhelo-substituted radicals
radical cyclizations, 4, 802

Pericyclic reactions

[4 + 4] and [6 + 4] cycloadditions, 5, 617
Claisen rearrangement, 5, 856

Perillaketone synthesis

via photocycloaddition, 5, 168

Perillene synthesis

via tandem Claisen-Cope rearrangement, 5, 879

Perinaphthenones synthesis

via Friedel–Crafts cycloalkylation, 3, 325

1,3-Perinaphthindanediene
Knoevenagel reaction, 2, 358

Periodates glycol cleavage, 7, 708
oxidants silica support, 7, 843
oxidative cleavage of alkenes with permanganate, 7, 586

Periodic acid glycol cleavage, 7, 708
mechanism, 7, 709
oxidant solid-supported, 7, 841

Periodinane oxidation primary alcohols, 7, 311
secondary alcohols, 7, 324

Periplanone B synthesis, 1, 553; 7, 619
via Cope rearrangement, 5, 809
Periselectivity cycloaddition reactions control, 5, 617
tropones, 5, 620
cyclopentadiene reaction with fulvenes, 5, 626

Perkin reaction, 2, 395-407
Fittig extension, 2, 401
mechanism, 2, 396
scope, 2, 399

Perlidine synthesis via arynes, 4, 505

Permutit Q catalyst Friedel–Crafts reaction, 3, 297

Peroxide, allyl tert-butyl reaction with methyl propionate radical addition, 4, 753

Peroxides alkoxy radicals from, 4, 812
allylic oxidation, 7, 95
catalysts
Cumulative Subject Index

Peroxides, arylsulfonyl
reaction with enol esters, 7, 169
Peroxides, bis(trimethylsilyl)
hydroxylation
aryl lithium, 7, 330
oxidation
allylic alcohols, 7, 308
reaction with lithium phenolate, 7, 334
Peroxides, t-butyloxir-2-norbomyl
synthesis, 8, 855
Peroxides, hexamethyldisilyl
reaction with enol acetates, 7, 169
Peroxy acids
alkane oxidation, 7, 13
allylic oxidation, 7, 96
anti hydroxylation
alkenes, 7, 446
decomposition
alcohols, 7, 727
epoxidations, 7, 358
intramolecular, 7, 375
α-hydroxylation
esters, 7, 182
ketones, 7, 158
silyl ketene acetics, 7, 185
oxidation
ethers, 7, 247
organoboranes, 7, 599
selenides, 7, 771
sulfides, 7, 762
sulfioxides, 7, 766
thiols, 7, 760
reaction with enol acetate, 7, 167
reaction with silyl dienol ethers, 7, 177
reaction with silyl enol ethers
ketone α-hydroxylation, 7, 163
Peroxysalicylic acid
polymer bound
oxidation, 7, 674
Peroxycamphoric acid
asymmetric epoxidation, 7, 390
Peroxycarboxylic acid, α-trichloroethyl-
cyclobutanones
chemoselective epoxidation, 7, 385
Peroxycarboximidic acids
epoxidizing agents, 7, 373
Peroxycarboxylic acids
anti hydroxylation
alkenes, 7, 438
Peroxycarboxylic acid
oxidation
sulfoxides, 7, 766
Perox esters
allylic oxidation, 7, 95

Peroxides, arylsulfonyl
reaction with enol esters, 7, 169
Peroxides, bis(trimethylsilyl)
hydroxylation
aryl lithium, 7, 330
oxidation
allylic alcohols, 7, 308
reaction with lithium phenolate, 7, 334
Peroxides, t-butyloxir-2-norbomyl
synthesis, 8, 855
Peroxides, hexamethyldisilyl
reaction with enol acetates, 7, 169
Peroxy acids
alkane oxidation, 7, 13
allylic oxidation, 7, 96
anti hydroxylation
alkenes, 7, 446
decomposition
alcohols, 7, 727
epoxidations, 7, 358
intramolecular, 7, 375
α-hydroxylation
esters, 7, 182
ketones, 7, 158
silyl ketene acetics, 7, 185
oxidation
ethers, 7, 247
organoboranes, 7, 599
selenides, 7, 771
sulfides, 7, 762
sulfioxides, 7, 766
thiols, 7, 760
reaction with enol acetate, 7, 167
reaction with silyl dienol ethers, 7, 177
reaction with silyl enol ethers
ketone α-hydroxylation, 7, 163
Peroxysalicylic acid
polymer bound
oxidation, 7, 674
Peroxycamphoric acid
asymmetric epoxidation, 7, 390
Peroxycarboxylic acid, α-trichloroethyl-
cyclobutanones
chemoselective epoxidation, 7, 385
Peroxycarboximidic acids
epoxidizing agents, 7, 373
Peroxycarboxylic acids
anti hydroxylation
alkenes, 7, 438
Peroxycarboxylic acid
oxidation
sulfoxides, 7, 766
Perox esters
allylic oxidation, 7, 95

Peroxides, arylsulfonyl
reaction with enol esters, 7, 169
Peroxides, bis(trimethylsilyl)
hydroxylation
aryl lithium, 7, 330
oxidation
allylic alcohols, 7, 308
reaction with lithium phenolate, 7, 334
Peroxides, t-butyloxir-2-norbomyl
synthesis, 8, 855
Peroxides, hexamethyldisilyl
reaction with enol acetates, 7, 169
Peroxy acids
alkane oxidation, 7, 13
allylic oxidation, 7, 96
anti hydroxylation
alkenes, 7, 446
decomposition
alcohols, 7, 727
epoxidations, 7, 358
intramolecular, 7, 375
α-hydroxylation
esters, 7, 182
ketones, 7, 158
silyl ketene acetics, 7, 185
oxidation
ethers, 7, 247
organoboranes, 7, 599
selenides, 7, 771
sulfides, 7, 762
sulfioxides, 7, 766
thiols, 7, 760
reaction with enol acetate, 7, 167
reaction with silyl dienol ethers, 7, 177
reaction with silyl enol ethers
ketone α-hydroxylation, 7, 163
Peroxysalicylic acid
polymer bound
oxidation, 7, 674
Peroxycamphoric acid
asymmetric epoxidation, 7, 390
Peroxycarboxylic acid, α-trichloroethyl-
cyclobutanones
chemoselective epoxidation, 7, 385
Peroxycarboximidic acids
epoxidizing agents, 7, 373
Peroxycarboxylic acids
anti hydroxylation
alkenes, 7, 438
Peroxycarboxylic acid
oxidation
sulfoxides, 7, 766
Perox esters
allylic oxidation, 7, 95
Peterson reagent

Peterson reagent
- Addition to aldehydes and ketones, 1, 238
- Aromatic nucleophilic substitution, 4, 429

Pethidine
- Synthesis, 3, 845

[2.2]Phanes
- Synthesis, 3, 414

Phase transfer catalysis
- Alkene oxidation
 - Palladium(II) catalysis, 4, 553
- Diyne synthesis, 3, 559
- Nitrile synthesis, 6, 233
- Nucleophilic substitution, 4, 426
- Oxidative cleavage of alkenes, 7, 542
- Synthesis of carbonyl compounds, 7, 559
- Synthesis of carboxylic acids, 7, 578
- Sulfur ylide reactions, 1, 821

a-Phellandrene
- Photochemical isomerization, 5, 738

Phellandric acid
- Synthesis
 - Via Birch reduction, 8, 500
- Phenacyl azide
- Synthesis, 7, 506
- Phenacyl bromide
- Oxidation
 - N,N-Dialkylhydroxy amines, 7, 663
- Phenacyl esters
 - Carboxy-protecting groups, 6, 666
- Phenacyl sulfides
 - Photoysis
 - Thioaldehyde generation, 5, 436
- Phenanthraquinone
 - Photoysis
 - With benzophenone, 5, 156
 - Synthesis
 - Via acyloin coupling reaction, 3, 619
- Phenanthrene, 9-acetoxyhydrolysis, 8, 911
- Phenanthrene, 4,5-bis(dimethylamino)-synthesis
 - Via Ramberg–Bäcklund rearrangement, 3, 876
- Phenanthrene, 9-bromo-SnI reaction, 4, 461
- Phenanthrene, 9-diazo-10-oxo-Wolff rearrangement, 3, 903
- Phenanthrene, 9,10-dihydro-Birch reduction
 - Dissolving metals, 8, 497
- Phenanthrene, 9-ethoxy-hydrogenolysis, 8, 911
- Phenanthrene, hydro-synthesis
 - Via epoxide ring opening, 3, 753
- Phenanthrene, 9-methoxy-hydrogenolysis, 8, 911
- Phenanthrene, octahydro-synthesis
 - Via Friedel–Crafts cycloalkylation, 3, 325
- Phenanthrene, perhydro-synthesis, 3, 578, 640
- Phenanthrene, 4-styryl-photochemical irradiation, 5, 729
- Phenanthrene, 4-vinyl-photochemistry, 5, 726
- Phenanthrene amide, trimethoxy-
- Metallation, 1, 466
- Phenanthrene-4,5-dicarboxylic acid
- Schmidt reaction, 6, 819

Phenanthrenes
- Automerization
 - Friedel–Crafts reaction, 3, 331
 - Birch reduction
 - Dissolving metals, 8, 497
 - Carbollithiation, 4, 871
 - Epoxidation, 7, 374
 - Hydrogenation, 8, 438
 - Heterogeneous catalysis, 8, 439
 - Oxidative rearrangement, 7, 833
 - Synthesis, 3, 507
 - Via benzene Diels–Alder reactions, 5, 381
 - Via electrocyclization, 5, 720
 - Via Ramberg–Bäcklund rearrangement, 3, 876
 - Via regiospecific alkylation, 3, 11
 - Thermal osmylation, 7, 863
- Phenanthrenes, dihydro-
 - Synthesis
 - Via electrocyclization, 5, 718
 - Via retro Diels–Alder reaction, 5, 572
- Phenanthrenes, 9,10-dihydro-
 - Synthesis
 - Via photolyis, 5, 723
 - 1(2H)-Phenanthrenone, 3,4-dihydro-
 - Rearrangement, 2, 766
 - 4(1H)-Phenanthrenone, dihydro-
 - Birch reduction
 - Dissolving metals, 8, 511
 - 2(3H)-Phenanthrenone, 4a-methyl-4,4a,9,10-tetrahydro-
 - Photolysis, 8, 563
 - Phenanthrenones, hydro-
 - Birch reduction
 - Dissolving metals, 8, 510
 - 3(2H)-Phenanthrenones, 1,9,10,10a-tetrahydro-
 - Electrocyclization, 8, 135
- Phenanthride
 - Synthesis
 - Via directed metallation, 1, 463
- Phenanthridines
 - Hydrogenation
 - Homogeneous catalysis, 8, 456
 - Reduction
 - Dihydropyridine, 8, 589
 - Reissert compounds, 8, 295
 - Synthesis
 - Via arynes, 4, 505
 - Via organopalladium catalysts, 3, 231
 - 5-Phenanthroic acid, 4,formyl-
 - Lactol
 - Schmidt reaction, 6, 819
- Phenanthrol
 - Synthesis
 - Via ketocarbenoids, 4, 1056
 - 1,10-Phenanthroline
 - Reduction
 - Metal hydrides, 8, 580
- Phenanthrols
 - Synthesis
 - Via organopalladium catalysts, 3, 231
- Phenanthroquinones
 - Benzilic acid rearrangement, 3, 821
 - Synthesis, 3, 828
<table>
<thead>
<tr>
<th>Phenol, 4-nitroesters</th>
<th>amidation, 6, 394</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hydrogenolysis, 8, 912</td>
</tr>
<tr>
<td></td>
<td>reaction with formaldehyde</td>
</tr>
<tr>
<td></td>
<td>Mannich reaction, 2, 956</td>
</tr>
<tr>
<td>Phenol, 4-t-octyl-synthesis</td>
<td>via Friedel–Crafts reaction, 3, 307</td>
</tr>
<tr>
<td>Phenol, 3-pentafluorophenol, reaction with formaldehyde</td>
<td>Mannich reaction, 2, 956</td>
</tr>
<tr>
<td>Phenol, pentfluoroesters</td>
<td>amidation, 6, 394</td>
</tr>
<tr>
<td>Phenol, phenyl-biphenyls from</td>
<td>hydrogenation, 8, 912</td>
</tr>
<tr>
<td>Phenol, 2,4,6-tribromo-phenol</td>
<td>reduction, 8, 908</td>
</tr>
<tr>
<td>Phenolates</td>
<td>reaction with π-allylpalladium complexes</td>
</tr>
<tr>
<td></td>
<td>stereochemistry, 4, 622</td>
</tr>
<tr>
<td>Phenolates, cyano-irradiation, 8, 300</td>
<td></td>
</tr>
<tr>
<td>Phenol ethers</td>
<td>oxidative coupling, 3, 659–700</td>
</tr>
<tr>
<td></td>
<td>biaryl, 3, 668</td>
</tr>
<tr>
<td></td>
<td>mechanism, 3, 660</td>
</tr>
<tr>
<td></td>
<td>trimerization, 3, 669</td>
</tr>
<tr>
<td>Phenolphthalein formylation</td>
<td>Reimer–Tiemann reaction, 2, 770</td>
</tr>
<tr>
<td>Phenols</td>
<td>alkylation</td>
</tr>
<tr>
<td></td>
<td>branched alkenes, 3, 304</td>
</tr>
<tr>
<td>4-alkylation, 4, 430</td>
<td></td>
</tr>
<tr>
<td>4-alkylation by 1-hexene</td>
<td>Friedel–Crafts reaction, 3, 306</td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 306</td>
<td>alkylation with isobutene</td>
</tr>
<tr>
<td>Friedel–Crafts reaction, 3, 306</td>
<td>aminoalkylation</td>
</tr>
<tr>
<td>Mannich reaction, 2, 956</td>
<td>binding to titanium(IV) compounds</td>
</tr>
<tr>
<td></td>
<td>asymmetric epoxidation, 7, 409</td>
</tr>
<tr>
<td>Birch reduction</td>
<td>dissolving metals, 8, 497</td>
</tr>
<tr>
<td></td>
<td>cycloalkylation</td>
</tr>
<tr>
<td></td>
<td>Friedel–Crafts reaction, 3, 304</td>
</tr>
<tr>
<td>deoxygenation</td>
<td>Birch reduction, 8, 514</td>
</tr>
<tr>
<td></td>
<td>electrochemical reduction, 4, 439</td>
</tr>
<tr>
<td></td>
<td>hydrogenation</td>
</tr>
<tr>
<td></td>
<td>homogeneous catalysis, 8, 454</td>
</tr>
<tr>
<td></td>
<td>hydrogenolysis, 8, 910</td>
</tr>
<tr>
<td>Mannich reaction</td>
<td>with preformed iminium salts, 2, 960</td>
</tr>
<tr>
<td></td>
<td>with primary amines, 2, 968</td>
</tr>
<tr>
<td>4-fluoromethylation</td>
<td>reduction of Mannich bases, 2, 953</td>
</tr>
<tr>
<td>4-fluoro-metallation, 7, 333</td>
<td>nitration, 6, 110, 111</td>
</tr>
<tr>
<td>Phenol, 4-fluoro-methylation</td>
<td>oxidative coupling, 3, 659–700</td>
</tr>
<tr>
<td></td>
<td>electron transfer, 3, 661</td>
</tr>
<tr>
<td></td>
<td>mechanism, 3, 660</td>
</tr>
<tr>
<td></td>
<td>radical substitution, 3, 661</td>
</tr>
<tr>
<td>3,5-dimethyllithium aluminum hydride modification</td>
<td>phenol coupling, 3, 663</td>
</tr>
</tbody>
</table>
Phenol triflate

postoxidative coupling, 3, 662
reaction with formaldehyde
Mannich reaction, 2, 956
reduction
dissolving metals, 8, 493
Reimer–Tiemann reaction
normal, 2, 769
synthesis, 7, 131, 800
via Diels–Alder reactions, 5, 329
via nitroarenes, 4, 438
via radical cyclizations, 4, 807
thioacetylation
anhydrides, thioketenes, thioesters and
dithioesters, 6, 449
thioacetyl halides, 6, 448
Vilsmeier–Haack reaction, 2, 790
Phenol triflate
reduction by hydride transfer
selectivity, 8, 84
Phenothiazine, N-acyl-
aldol reactions
stereoselectivity, 2, 211
Phenothiazines
lithiation
addition reactions, 1, 469
reduction, 8, 659
Phenothiazine sulfoxide
Pummerer rearrangement, 7, 202
Phenoxazines
reduction, 8, 653
Phenoxide, bis(2,6-di-tert-butyl-4-methyl-
methylaluminum complex
reactions of organolithium compounds, 1, 333
Phenoxide, bis(2,4,6-tri-tert-butyl-
methylaluminum complex
reactions of organolithium compounds, 1, 333
Phenoxides
arylation, 4, 495
reactions with arynes, 4, 492
Phenoxothiocarbonyl compounds
deoxygenation, 8, 819
Phenylacetyl group
removal
peptides, 6, 643
Phenylalanine
asymmetric synthesis, 8, 146
deamination
stereochimistry, 6, 3
ethyl ester
deamination–substitution, 6, 4
synthesis, 8, 149
via Mannich reaction, 2, 916
via reductive amination, 8, 144
L-Phenylalanine
enantioselective aldol cyclizations, 2, 167
α-Phenylaldehydine
reaction with allyl organometallic compounds
Cram selectivity, 2, 984
2-Phenylcarboxitrile, 2'-azido-
1,3-dipolar cycloaddition, 4, 1101
Phenyl chloroformate
nitrile synthesis, 6, 234
Phenyl dichlorophosphate
activator
DMSO oxidation of alcohols, 7, 299
adducts
dimethylformamide, 6, 490
S-Phenylthiobis(carbonyl) compounds
deoxygenation, 8, 820
2-Phenylethoxy carbonyl group
protecting group
hydrogenolysis, 6, 638
Phenylidonium chloride
alkane chlorination, 7, 16
Phenyl isocyanate
(3 + 2) cycloaddition reactions
palladium-catalyzed, 5, 281
(--) -Phenylmethyl esters, α-bromo-N-Boc-glycine
reactions with Grignard reagents, 1, 376
3-Phenylpropionyl esters
removal
chymotrypsin, 6, 643
Phenyl radicals
addition reactions
tin hydride catalysis, 4, 739
Phenyliodine etherification
intramolecular
lactones, 5, 833
α-Phenylsulfonyl esters
enolates
reaction with allylic acetate, 3, 56
Phenyl sulfonyl groups
radical addition reactions
alkenes, 4, 771
Phenythroalkylation
silyl enol ethers, 3, 25
Phenythioalkylation
silyl enol ethers, 3, 26
β-Phenylothio radicals
radical cyclization, 4, 825
Phenyl thiovinyl compounds
deoxysulfurization, 8, 840
Pheromones
synthesis, 3, 643, 644
carbonyl protection, 6, 677
via alkene metathesis, 5, 1117
via ene reaction, 5, 8
via photocycloaddition, 5, 165
Phillips Triolefin Process
alkene metathesis, 5, 1117
Phorocantholide
synthesis, 7, 627
via Cope rearrangement, 5, 808
Phorone
acetone self-condensation, 2, 141
Phosgene
activator
DMSO oxidation of alcohols, 7, 299
adducts
amides, 6, 491
chloromethyl iminium salt preparation, 2, 779
imidoyl halide synthesis, 6, 523
reaction with amides, 6, 495
Phosgene iminium salts
amide halide synthesis, 6, 498
Phosinimides
synthesis
via reaction of phosphines with azides, 7, 752
Phosphaalkenes
synthesis
via retro Diels–Alder reactions, 5, 577
Phosphacumulene ylides
Phosphines, reactions with acidic compounds, 6, 192, 193
Phosphanamide, triphenylamid adducts
 in carbon tetrachloride, 6, 489
Phosphanions
 arylation, 4, 473
Phosphate extension
 3,4-epoxy alcohol synthesis, 6, 26
Phosphates, bromo-phosphorylation, 6, 601
Phosphates, chloro-phosphorylation, 6, 601
Phosphates, cyclic
 alkene protection, 6, 687
Phosphates, O,O-diethyl reduction
 catalytic hydrogenation, 8, 817
Phosphates, halo-phosphorylation, 6, 601
Phosphates, α-keto-synthesis, 7, 155
Phosphazenes
 diazo-coupling reactions, 3, 893
Phosphimides
 oxidation
 ozone, 7, 752
Phosphinates
 O-glycosylation, 6, 51
Phosphorine, α-anisilyclohexylmethylasymmetric hydrogenation
 alkenes, 8, 460
Phosphorine, p-anisylidiphenyl-synthesis
 via SN1 reaction, 4, 473
Phosphorine, bis(N,N-dimethyl-3-aminopropy1)phenyl-Eschenmoser coupling reaction, 2, 870
Phosphorine, dichloroarylphosphorine adducts
 dimethylformamide, 6, 490
Phosphorine, diphenyl-p-styryl-acid chloride synthesis, 6, 304
Phosphorine, ferrocenyl-enantioselective aldol reaction
 catalysis, 2, 317
Phosphorine, isopropenyl-synthesis
 via retro Diels–Alder reactions, 5, 560
Phosphorine, phenyl-reduction
 ultrasonics, 8, 859
Phosphorine, prop-1-enyl-synthesis
 via retro Diels–Alder reactions, 5, 560
Phosphorine, trialkyl-reaction with alkynes, 4, 51
Phosphorine, triaryl-synthesis
 via SN1 reaction, 4, 473
 vinyl substitutions
 palladium complexes, 4, 841
Phosphorine, triphenyl-
 Beckmann rearrangement reagent, 7, 692
 catalyst
 acid chloride synthesis, 6, 302, 303
deoxybenzylation
 epoxides, 8, 885
hydrogenolysis
 transition metals, 8, 859
imidoyl halide synthesis, 6, 524
Mitsunobu reaction
 ester synthesis, 6, 333
 palladium complexes
 vinyl substitution reactions, 4, 835
 reactions with dienyliron complexes, 4, 672
 synthesis
 via SN1 reaction, 4, 473
Phosphorine, tri-o-tolyl-palladium complexes
 vinyl substitution reactions, 4, 835
Phosphorine dichloride, triphenyl-
 reaction with lithium carboxylates, 1, 424
Phosphorine dihalide, triphenyl-
Phosphorine dihalide, triphenyl-
Phosphorine dihalide, triphenyl-
Phosphorine hydriodide, triphenyl-
reaction with lithium carboxylates, 1, 424
Phosphorine oxide, alkyl-
 alkylation, 3, 201
Phosphorine oxide, a-diazo-
 Wolff rearrangement, 3, 909
Phosphorine oxide, ethyl[(menthoxycarbonyl)-methyl]phenyl-
 deprotonation
 alkylation, decarboxylation, 3, 201
Phosphorine oxide, tri-n-butyl-catalyst
 Pauson–Khand reaction, 5, 1048
Phosphorine oxides
 C–P bond cleavage, 8, 864
 Horner reaction, 1, 773
 perfluorinated
 hydrolysis, 8, 864
 ylide synthesis, 6, 173
Phosphorine oxides, alkylidiphenyl-
 synthesis, 8, 860
Phosphorine oxides, β-keto reduction, 8, 12
Phosphines
 α-allylpalladium complexes, 4, 588
 amination
 reaction with O-diphenylphosphinyl-
 hydroxylamine, 7, 752
 dehalogenation
 α-halocarbonyl compounds, 8, 990
 halogenation, 7, 752
 α-lithiated tertiary
 phosphonium ylide synthesis, 6, 172
 oxidation
 phosphine oxides, 7, 752
 reactions with α-allylpalladium complexes
 enantioselectivity, 4, 651–654
 reactions with arynes, 4, 508
 reduction
 nitro compounds, 8, 366
 tertiary
 alkylidenephosphorane synthesis, 6, 171
Phosphines, alkylbis(phenylthio)-
 synthesis, 7, 727
Phosphines, β-(dimethylamino)alkyl-
 nickel compounds
 Grignard reagent catalysts, 3, 228
Phosphines, ferrocenyl-
Phosphines

Cumulative Subject Index

704

Phosphines

chiral catalysts
asymmetric hydrogenation of alkenes, 8, 459
nickel compounds
Grignard reagent catalysts, 3, 228
Phosphines, tris(dialkylamino) adducts
amides, 6, 489
Phosphines, vinyl-
synthesis via retro Diels–Alder reactions, 5, 560
Phosphine selenides synthesis via oxidation of phosphines, 7, 752
Phosphine sulfides synthesis via oxidation of phosphines, 7, 752
Phosphinic anhydride, diphenyl-
synthesis via oxidation with perbenzoic acid, 7, 753
Phosphinimides synthesis via phosphines and azides, 8, 385
Phosphinite, chlorodiphenyl-
acylation, 1, 424
Phosphinodithioic acid thiolysis, 6, 432
Phosphinothioic amide, phenyl-
reductive elimination, 1, 742
Phosphinotrinic synthesis via intramolecular ester enolate addition reactions, 4, 111
Phosphate diiodide iodination alkyl alcohols, 6, 213
Phosphites oxidation synthesis of phosphates, 7, 753
reactions with \(\pi\)-allylpalladium complexes, 4, 599
Phosphites, trialkyl reaction with acyl halides, 8, 278
Phosphites, trimethylsilyl-
diethyl ester reaction with aldehydes, 3, 199
Phosphites, triphenyl ozonide oxidative rearrangements, 7, 8, 19
reaction with dienyliron complexes, 4, 673
Phosphites, tris(\(\alpha\)-phenylethynyl) co-catalyst alkyne co-dimerization, 5, 296
Phosphodiesterases analogs synthesis, 2, 885
Phospholipase, 1-phenyl-3,4-dimethyl-
thermolysis, 8, 865
Phospholen reaction with aroyl chloride, 8, 290
Phospholipid synthesis, 6, 620
Phosphonate carbamions \(\alpha\)-heterosubstituted acyl anion equivalents, 1, 562
Phosphonates \(\alpha\)-glycosylation, 6, 51
Horner–Wadsworth–Emmons reaction, 1, 761 Knoevenagel reaction, 2, 363
synthesis, 2, 103
\(\alpha,\beta\)-unsaturated addition reaction with enolates, 4, 102
Phosphonates, \(\alpha\)-acetoxy allyl transposition reactions, 6, 845
Phosphonates, acylamino-
synthesis, 1, 373
Phosphonates, acylimino-
reactions with organometallic compounds, 1, 373
Phosphonates, alkoxy carbonyl-
anion Knoevenagel reaction, 2, 363
Phosphonates, alkyl bis(phenylthio)- synthesis, 7, 727
Phosphonates, allenic reaction with allylic alcohols, 6, 856
Phosphonates, cyano-
anion Knoevenagel reaction, 2, 363
Phosphonates, diazoaldehyde Horner–Wittig reaction, 2, 597
Phosphonates, \(\alpha,\alpha\)-dihaloalkyl alkylation, 3, 202
Phosphonates, \(\alpha\)-fluoro alkylation, 3, 202
Phosphonates, \(\beta\)-keto-
3-lithiated reaction with electrophiles, 2, 442
synthesis via propargylic alcohols, 6, 845
synthesis, 2, 103
Phosphonates, phenylselenomethyl metallation, 1, 641
Phosphonates, \(\alpha\)-silyl-
addition reactions carbonyl compounds, 1, 622
Phosphonates, (trimethylsilyl)alkyl lidio anion Peterson alkenation, 1, 788
Phosphonates, vinyl-
dialkyl esters tandem vicinal difunctionalization, 4, 252
Michael addition, 4, 15
Phosphonic acid hydroxylation nitriles, 8, 298
Phosphonic acid, bis(dimethylamido)-
allyl ester deprotonation, 3, 199
Phosphonic acid, ethoxymethyl(2-trimethylsilyl)diethyl ester alkylation, 3, 199
Phosphonic acid, 2-methyl-1-vinyl-
microbial epoxidation, 7, 429
Phosphonic acid, \(\P\)-nitrophenylmethyl-
\(\P\)–C bond cleavage, 8, 855
Phosphonic acids synthesis via phosphines, 7, 753
Phosphonic diamides, \(N,N',N'\)-tetramethyl-
orho metallation, 1, 464
2-Phosphonoethoxy carbonate alcohol protection cleavage, 6, 659
Phosphonium 1,2-bisylides
synthesis via alkynes, 6, 172
Phosphonium 1,3-bisylides
boron-bridged
synthesis, 6, 181
Phosphonium bromide, vinyltriphenyl-
Diels–Alder reactions, 5, 328
Michael addition, 4, 18
phosphonium ylide synthesis, 6, 176
Phosphonium fluorides
phosphonium ylide synthesis, 6, 175
Phosphonium hydriodide
reduction
indoles, 8, 624
Phosphonium iodide, methyltriphenoxy-
deoxygenation
epoxides, 8, 886
Phosphonium perchlorate, chlorotris(dimethyl-
aminoo)cyclopropyl-
cycloaddition reactions, 4, 115
alkene synthesis, 1, 755
conversions, 6, 177
cyclopropanation, 4, 987
erester substituted
synthesis, 6, 186
four membered
synthesis, 6, 194
synthesis, 6, 171–198
tandem vicinal difunctionalization, 4, 259
Phosphonium ylides, acyl-
synthesis, 6, 185
Phosphonium ylides, (alkylthio)thiocarbonyl-
synthesis, 6, 187
Phosphonium ylides, allylic tributyl-
synthesis
via palladium(0) catalysis, 1, 759
Phosphonium ylides, allyoxytrihexylphenyl-
Claisen rearrangement, 5, 830
Phosphonium ylides, dialkylboryl-
synthesis, 6, 181
Phosphonium ylides, germanyl-
synthesis, 6, 180
Phosphonium ylides, P-halo-
synthesis, 6, 172
Phosphonium ylides, mercury-substituted
synthesis, 6, 181
Phosphonium ylides, stannyl-
synthesis, 6, 180
Phosphonium ylides, trimethylstibino-
synthesis, 6, 179
Phosphonoacetic acid, triethyl-
Knoevenagel reaction
(E) product, 2, 363
titanated
Knoevenagel reaction, (Z) product, 2, 363
Phosphonoamidate, N-t-butyl oxo-
rearrangement, 8, 864
Phosphonoamidates, O-allyl
rearrangements, 4, 642
Phosphonyl chloride, alkyl-
phosphorylation, 6, 614
Phosphoramides
alkene protection, 6, 687
phosphorylation, 6, 614
Phosphoramidate, N,N-dibromo-
dibromomethylation, 6, 311
dissolving metals
reduction, 8, 524
reaction with thionyl chloride, 6, 302
reductions
aromatic rings, 8, 490
Phosphoramidic acid, N-(t-butoxycarbonyl)-diethyl ester
reaction with alkyl halides, 6, 82
Phosphoramidites

Cumulative Subject Index
706

Phosphoramidite, N-phenyl-

Phosphoramidoazidic acid, phosphorylation, 6, 618
phenyl ester
Curtius reaction, 6, 816
Phosphorane, acetylmethylenetriphenyl-
reactions with organolithium compounds, 6, 189
Phosphorane, acylalkoxycarbonylmethylenephosphorylation, 6, 863
Phosphorane, α-acylmethylene-
alkylation, 6, 182
Phosphorane, acylmethyleneetriphenyl-
alkylation, 6, 182
Phosphorane, 1,2-alkadienylidene-
synthesis, 6, 197
Phosphorane, 2,4-alkadienylidene-
synthesis, 6, 184
Phosphorane, alkoxycarbonylhalomethylenetriphenyl-
synthesis, 6, 172
Phosphorane, alkylidenetrialkyl-
lithium salt complexes, 6, 175
Phosphorane, alkylidenetriphenyl-
alkylation
intramolecular, 6, 183
alkynyl-substituted
synthesis, 6, 185
formylation, 6, 186
Phosphorane, alkylthiocarbonylalkylidene-
synthesis, 6, 187
Phosphorane, allylidenetriphenyl-
synthesis, 6, 177
Phosphorane, allylidene triphenyl-
reactions with chloro compounds, 6, 189
synthesis, 6, 194
Phosphorane, aryloxymethylene-
synthesis, 6, 178
Phosphorane, N-aryliminovinylidene
dimerization, 6, 195
Phosphorane, bisalkylidenecyclo-
synthesis, 6, 191
Phosphorane, bis(ethyldiene)vinylidene-
reactions with heteroallenes, 6, 195
Phosphorane, bis(phenylseleno)methylenetriphenyl-
synthesis via carbenoid method, 6, 171
Phosphorane, bis(phenylthio)methylenetriphenyl-
synthesis via carbenoid method, 6, 171
Phosphorane, carbamoylmethylene-
synthesis, 6, 187
Phosphorane, cyanomethylene
dimerization, 6, 182
Phosphorane, cycloalkylidene
synthesis, 6, 184
Phosphorane, cycloolymethylene
dimerization, 6, 189
Phosphorane, diacetylmethylene
deprotonation
selectivity, 6, 189
Phosphorane, dialkylborylalkylidene
dimerization, 6, 188
Phosphorane, dibromomethylene
dimerization, 6, 172
Phosphorane, dibromotriphenyl-
acid halide synthesis, 6, 302
bromination
alkyl alcohols, 6, 209
Phosphorane, dichloromethylene-
synthesis, 6, 172
Phosphorane, dichlorotriphenyl-
acid halide synthesis, 6, 302
reaction with neopentyl alcohol, 6, 205
Phosphorane, diethoxyphosphinomethylene
dimerization, 6, 179
Phosphorane, diethoxynitrophenylidene
dimerization, 6, 179
reactions with heteroallenes, 6, 195
Phosphorane, diethoxytri phenyl-
reactions with 2-amino alcohols, 6, 74
Phosphorane, dioxyvinylidene
dimerization, 6, 193
Phosphorane, difluoromethylene-
synthesis, 6, 172
Phosphorane, difluoromethylenetriphenyl-
synthesis, 6, 172
Phosphorane, dихalomethylene-
synthesis, 6, 172
Phosphorane, dихalotriorganophosphorane-
reactions with activated methylene compounds, 6, 173
Phosphorane, diiodotriphenyl-
synthesis, 6, 172
Phosphorane, 1-dimethylaminomethylene
dimerization, 6, 179
Phosphorane, diphenoxophosphinomethylene
dimerization, 6, 179
Phosphorane, 1-diphenylphosphinoalkylidene-
synthesis, 6, 179
Phosphorane, ethoximinocarbonylmethylene
dimerization, 6, 193
Phosphorane, ethoxy vinylidene
dimerization, 6, 193
Phosphorane, ethylidene
dimerization, 6, 193
Phosphorane, formyl-
Michael addition, 4, 16
Phosphorane, formylalkylidene-
synthesis, 6, 186
Phosphorane, formylalkylidene-
aldehyde, 6, 182
Phosphorane, ω-haloalkylidene
dimerization, 6, 183
Phosphorane, 2-iminoalkylidene
dimerization, 6, 186
Phosphorane, 2-iminoalkylidene
dimerization, 6, 197
Phosphorane, iminovinylidene-
dimerization, 6, 193
Phosphorane, iminovinylidene-
synthesis, 6, 197
Phosphorane, iminovinylidene-
phosphonium ylide synthesis, 6, 191
reactions with alkyl halides, 6, 191
reactions with heteroallenes
cycloadition, 6, 194
synthesis, 6, 196
Phosphorane, 4-oxo-2-alkenylidene
dimerization, 6, 184
Phosphorane, oxovinylidene-
phosphonium ylide synthesis, 6, 191
reactions with acidic compounds, 6, 193
Phosphorus, {\textit{N}-phenyliminovinylidenetriphenyl-}
cycloaddition, 6, 194
reactions with carboxylic acids, 6, 193
synthesis, 6, 178
synthesis, 6, 190
synthesis, 6, 197
synthesis, 6, 179
synthesis, 6, 197, 198
Phosphoranes, alkylidene-
alkenylation, 6, 184
Phosphoranes, imino-
 ammonia synthesis, 6, 546
Phosphorazidate, diphenyl-
amide synthesis, 6, 389
Phosphorazidic acid
diethyl ester
Curtius reaction, 6, 816
di-\textit{p}-nitrophenyl ester
Curtius reaction, 6, 816
diphenyl ester
Curtius reaction, 6, 797, 811
Phosphoric acid
arenesulfonic anhydrides
phosphorylation, 6, 603
catalyst
Friedel–Crafts reaction, 2, 736
protecting groups, 6, 621
Phosphoric acid, dichloro-
Friedel–Crafts reaction, 2, 754
Phosphoric acid esters
triphenylphosphonium salts
phosphorylation, 6, 615
Phosphoric acids, dialkyldithio-
reactions with alkynes, 4, 317
Phosphorin, 2-(2’-pyridy1)-
synthesis, 8, 865
Phosphorochloridates
phosphorylation, 6, 601
Phosphorochloridites
phosphorylation, 6, 616
Phosphorodiamidates, \(N,N',N'-\text{tetramethyl-
}deoxygenation, 8, 817
Phosphorodiamidates, vinyl \(N,N',N'-\text{tetramethyl-
}ketone reduction, 8, 932
Phosphorodiamidic acid, tetramethyl-
allyl ester
deprotonation, 2, 64
Phosphorodiiodides
phosphorylation, 6, 601
Phosphorfluoridates
phosphorylation, 6, 601
Phosphoroguanidate
stability, 6, 614
Phosphorohydrazone
phosphorylation, 6, 614
Phosphoroselenoic acid, \(O,O\)-dialkyl
deoxygenation
epoxides, 8, 887
Phosphorothioates
phosphorylation, 6, 614
Phosphorothioites
phosphorylation, 6, 618
Phosphorous acid, bis(dimethylamino)-
butyllithium
deoxygenation, 8, 885
Phosphorus
yellow
reduction, nitro compounds, 8, 366
Phosphorus, tris(phenylthio)-
reaction with \(O\)-acyl thiohydroxamates, 7, 727
Phosphorus acid halides
acid anhydride synthesis, 6, 310
Phosphorus chlorides
acid chloride synthesis, 6, 302
Phosphorus compounds
Diels–Alder reactions, 5, 444
oxidation, 7, 735–753
pentavalent
phosphorylation, 6, 601
reactions with amides, 6, 495
trivalent
phosphorylation, 6, 616
Phosphorus halides
polymer-bound
acid halide synthesis, 6, 303
Phosphorus iodide
metal hydride reduction
Phosphorus nitrile chloride

carbonyl compounds, 8, 315
Phosphorus nitrile chloride
adducts

dimethylformamide, 6, 490
Phosphorus nucleophiles
aromatic nucleophilic substitution, 4, 446
Phosphorus oxychloride
adducts

amides, 6, 487
phosphorylation, 6, 601
reaction with amides, 8, 301
Phosphorus pentabromide
adducts

phosphorylation, 6, 495
Phosphorus pentachloride
adducts

acid chloride synthesis, 6, 303
chlorination

alkyl alcohols, 6, 204
Phosphorus pentahalides
imidoxyld halide synthesis, 6, 524
Phosphorus pentasulfide
Eschenmoser coupling reaction, 2, 867
thiocarboxylic ester synthesis, 6, 437
Phosphorus pentoxide
activator

DMSO oxidation of alcohols, 7, 299
Phosphorus sulfur trichloride
Phosphorus tribromide
bromination

alkyl alcohols, 6, 209
Phosphorus trichloride
chlorination

alkyl alcohols, 6, 204
Phosphorus trihalides
adducts

amides, 6, 490
imidoyl halide synthesis, 6, 524
Phosphorus triiodide
iodination

alkyl halides, 6, 213
Phosphorus ylides
alkylation

formation of phosphonium salts, 3, 200
solubilizer

thiophenolates, 3, 760
Phosphorylating agents

bifunctional

unsymmetrical phosphoryl esters, 6, 618
Phosphorylation
decarboxylative chalcone generation, 7, 727
in synthesis, 6, 601
Phosphoryl 4-nitrophenoxyd
phosphorylation, 6, 608
Phosphoryl phenoxide
phosphorylation, 6, 608
Phosphoryl trichloride
chloromethyleniminium salt preparation, 2, 779
Phosphoryl 2,4,6-trinitrophenoxyd
phosphorylation, 6, 608
Phosphotriesters

unsymmetrical

synthesis, 6, 618
Photochemical electron transfer
charge transfer, 7, 830
Photochemical pinacolization
aromatic compounds, 3, 567
Photochemical reactions
Ritter reaction, 6, 280
Photochemical reduction
allylic compounds, 8, 978
aromatic rings, 8, 517
Phochlorination
alkanes, 7, 15
Photocyclizations
electron transfer induced

Mannich reactions, 2, 1037
Photocyclodaddition reactions
1,3-dienes, 5, 635–638
enantioselectivity, 5, 132
intermolecular, 5, 125–132
intraconversion, 5, 125–127
intramolecular, 5, 133–145
regioselectivity, 5, 133–137
stereoelectivity, 5, 137–145
stereochimistry, 5, 128–132
[2 + 2] Photocyclodaddition reactions
copper catalysis, 5, 147
[3 + 2] Photocyclodaddition reactions
arenne–alkene, 5, 645–671
[5 + 2] Photocyclodaddition reactions
arenne–alkene, 5, 645–671
Photocatalytic oxidation
halide salts, 7, 539
Photoelectron spectra
ionization potentials, 7, 852
Photoisomerizations
di-π-methane, 5, 193–213
fragmentations, 5, 209
radical-type rearrangement, 5, 208
1,3-sigmatropic shift, 5, 207
Photolithography
diazo ketones, 3, 887
Photo Reimer–Tiemann reaction, 2, 772
o-Phthalaldehyde
reaction with organometallic reagents, 1, 154
Phthalazines
reaction, 8, 640
ring opening

cathodic reduction, 8, 641
Phthalic acid

dimethyl ester

synthesis via retro Diels–Alder reaction, 5, 571
Schmidt reaction, 6, 819
Phthalic anhydride
hydrogenation, 8, 239
phthalic acid dichloride synthesis, 6, 307
reduction

electrochemical, 8, 240
Schmidt reaction, 6, 819
Phthalide, 1,2-dihydrophtalaldehyde
photoisomerization, 5, 739
Phthalide enolates
reaction with 3,4-dihydrophtalaldehydes
synthesis of protoberberine alkaloids, 2, 946
reaction with Schiff bases

Mannich reaction, 2, 927
Phthalide isoquinoline alkaloids
synthesis

via Mannich reaction, 2, 912
Phthalide isoquinolines
Phthalides
 synthesis, 1, 60
 reactions with arynes, 4, 497
 synthesis
 via carbonylation of halides, 3, 1033
Phthalimide, N-amino-
 oxidation, 7, 742
 reaction with alkenes, 7, 481
Phthalimide, N-bromo-
 addition reactions
 alkenes, 7, 500
Phthalimide, N-hydroxy-
 catalyst
 thiol ester synthesis, 6, 437
Phthalimide, N-hydroxymethyl-
 amidoalkylation with, 2, 971
Phthalimide, N-phenylseleno-
 ether synthesis, 7, 523
 selenol ester synthesis, 6, 466
Phthalimide, N-vinyl-
Phthalimides, N-alkyl-
 reduction, 8, 254
Phthalimidine-3-carboxylic acid, 3-hydroxy-
 synthesis, 3, 835
Phthalimidines, 3-hydroxy-
 synthesis, 8, 274
Phthalimidoketo aldehyde
 synthesis, 7, 657
Phthalonimides
 rearrangements, 3, 835
Phthaloyl chloride
 acid chloride synthesis, 6, 304
 reaction with aluminum chloride, 2, 754
Phthaloyl group
 protecting group
 amines, 6, 643
 trisaccharides, 6, 634
Phyllanthocin
 synthesis
 diastereoselectivity, 1, 822
 via [3 + 2] cycloaddition reactions, 5, 311
Phyllanthoside
 synthesis
 via ene reaction, 2, 541
Phyllolcladane
 synthesis
 via [3 + 2] cycloaddition reactions, 5, 311
Phyllolcladene
 synthesis
 via Birch reduction, 8, 500
Phyllostine
 synthesis
 via retro Diels–Alder reactions, 5, 564
Phyltetralin
 synthesis
 via conjugate addition to oxazolines, 4, 206
Phytol
 synthesis, 7, 109
 Piceatannol, dihydro-
 oxidative coupling, 3, 666
2-Picoline
 nitration
 nitronium tetrafluoroborate, 7, 750
Picoline N-oxide
 oxidation with, 7, 661
Picolyl anions
 phenylation, 4, 472
4-Picolyl esters
 carboxy-protecting groups
 cleavage, 6, 668
Picric acid
 chlorination, 6, 208
Picrollenic acid
 synthesis
 via manganese dioxide oxidation, 3, 679
Picropodophyllone
 synthesis, 3, 696
Picrotoxinin
 synthesis, 7, 162, 243
 via cyclofunctionalization of cycloalkenes, 4, 373
 via hydrazones, 2, 509
 via Johnson methylation, 1, 738
 via regiospecific alkylation of hydrazine anions, 2, 518
Pictet–Gams isoquinoline synthesis
 Ritter reaction, 6, 291
Pictet–Hubert (Morgan–Walls) phenanthridine synthesis
 Ritter reaction, 6, 291
Pictet–Spengler condensation
 iminium ions
 heterocyclic synthesis, 6, 736
 mechanism, 2, 1020
 synthesis of aromatic alkaloids, 2, 1016
Pikronolide
 synthesis, 7, 246
Pilocerine
 synthesis, 3, 687
Pimaranes
 synthesis
 via biomimetic conversion of comminic acids, 7, 634
Pimelate, 4-hydroxy-
 enantioselective lactonization, 6, 337
Pimelate dehydrogenase
 reduction
 catalyst, 8, 205
Pimelic acid, 4-keto-
 from siloxycyclopropanes, 2, 451
Pinacol coupling reactions, 3, 563–605
 intermolecular, 3, 564
 intramolecular, 3, 572
 mixed, 3, 595
organosamarium compounds, 1, 270
Pinacolones
 enolates, 2, 264
 Kishner–Leonard elimination, 8, 341
 label redistribution
 pinacol rearrangement, mechanism of, 3, 723
 lithium enolates
 α-chiral aldehydes, 2, 218
Pinacol rearrangement

- crystal structure, 1, 26
- X-ray diffraction analysis, 1, 3
- potassium enolate
- crystal structure, 1, 26
- reduction
- chloroborane, 7, 603
- sodium enolate
- crystal structure, 1, 26
- synthesis
- via pinacol rearrangement, 3, 721

Pinacol rearrangement, 3, 721-730
- applications, 3, 726
- definition, 3, 721
- mechanism, 3, 722
- migratory aptitudes, 3, 726

Pinacols
- oxidative cleavage, 7, 707
- synthesis
- via dissolving metals, 8, 109
- via organoytterbium compounds, 1, 279
- unsymmetrical
- synthesis, using ytterbium, 1, 279

Pinacol-type reactions
- β-hydroxy sulfides, 1, 861
- 3-Pinanecarbaldehyde
- synthesis
- via hydroformylation, 4, 919

Pinanediol
- boronic esters, 3, 796
- 3-Pinanone, 2-hydroxy-
- glycinate esters, enolates
- alkylation, 3, 46

α-Pinene
- allylboranes from
- reactions with aldehydes, 2, 33
- allylic oxidation, 7, 99
- hydroboronation, 8, 704, 709
- hydroformylation, 4, 919
- hydrostilbene, 8, 777
- metallation
- oxidation, 7, 99
- oxide
- rearrangement, 3, 771
- photooxidation, 7, 111
- rearrangement, 3, 705
- reduction
- diimide, 8, 475
- Ritter reaction, 6, 289

β-Pinene
- ene reactions, 5, 2
- hydride donor
- reduction of carbonyls, 8, 100
- hydroalumination, 8, 739
- hydrozirconation, 8, 689
- hydrostilbene, 7, 111
- reduction
- 9-borobicyclo[3.3.1]nonane, 8, 102
- synthesis
- via stereospecific Ritter reaction, 6, 278

δ-Pinene
- synthesis
- via methyl lithium Ritter reaction, 6, 278

α-Pinene, 7-trimethylsilyl-
- acylation
- Friedel–Crafts reaction, 2, 717

Pinenes
- fragmentation, 3, 708
- Pinidine, dihydro-
- synthesis, 1, 559
- Pinocarveol
- synthesis, 7, 92, 99
- Pinosylvin
- synthesis, 2, 170
- Picolic acid
- synthesis, 2, 1074
- via N-acyliminium ions, 2, 1078
- via Ireland rearrangement, 5, 843

Piperazine, 2,5-diketo-
- bislactam ethers
- regiochemistry of deprotonation, 2, 499
- bislactam ethers
- metallated, reactions, 2, 498
- 1,4-Piperazine-2,5-dione, N,N-dibenzyl-
- reduction, 8, 249

Piperazines
- metallated
- diastereoselective reactions, 2, 499

Piperazines, diketo-
- synthesis, 6, 392

Piperide, dehydro-
- synthesis
- via palladium-catalyzed coupling reactions, 3, 545

Δ1-Piperidone
- reactions with organometallic compounds, 1, 364
- synthesis
- via allylboration, 2, 982

Piperidides
- reduction
- aluminates, 8, 272

Piperidine, 2-alkenyl-
- synthesis
- via cyclization of 8-allylamines, 4, 412

Piperidine, 3-alkylidene-
- synthesis
- via Mannich reaction, 2, 1030

Piperidine, N-allyl-
- heat of hydrogenation, 6, 707

Piperidine, 3-amino-
- synthesis, 8, 598

Piperidine, N-benzoxy-
- hydrogenation, 8, 248

Piperidine, N-benzyl-2-cyano-6-methyl-
- alkylation, 1, 557

Piperidine, 1-benzyl-2,6-dicyano-
- alkylation, 1, 557

Piperidine, N-chloro-
- addition reactions, 7, 499

Piperidine, dehydro-
- asymmetric alkylation, 3, 77

Piperidine, N-formyl-
- Vilsmeier–Haack reaction, 2, 779

Piperidine, 4-hydroxy-
- synthesis, 2, 1002
- via Mannich reaction, 2, 1027, 1029

Piperidine, N-methyl-
- deprotonation, 1, 476; 3, 65

Piperidine, N-nitroso-
- photoaddition to alkenes, 7, 490
- synthesis
- via nitrosation of 1-methylpiperidine, 7, 749

Piperidine, pentyllidene-
- synthesis
Cumulative Subject Index

<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>via Mannich reaction</td>
<td>2, 1027</td>
<td></td>
</tr>
<tr>
<td>Piperidine, N-propenyl-heat of hydrogenation</td>
<td>6, 707</td>
<td></td>
</tr>
<tr>
<td>Piperidine, α-propyl-synthesis</td>
<td>1, 558</td>
<td></td>
</tr>
<tr>
<td>Piperidine, N-thiocarbamoyl-amine-protecting group</td>
<td>6, 642</td>
<td></td>
</tr>
<tr>
<td>Piperidine alkaloids synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>via enol ethers</td>
<td>2, 613</td>
<td></td>
</tr>
<tr>
<td>Piperidine amides</td>
<td>3, 69</td>
<td></td>
</tr>
<tr>
<td>lithiation carbonyl addition reactions</td>
<td>1, 483</td>
<td></td>
</tr>
<tr>
<td>Piperidinediones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tebbe reaction</td>
<td>1, 745</td>
<td></td>
</tr>
<tr>
<td>Piperidine formamidine, α-allylic metalation</td>
<td>3, 70</td>
<td></td>
</tr>
<tr>
<td>Piperidine formamidines</td>
<td>3, 69</td>
<td></td>
</tr>
<tr>
<td>Piperidines N-alkylation</td>
<td>6, 66</td>
<td></td>
</tr>
<tr>
<td>anodic oxidation</td>
<td>7, 804</td>
<td></td>
</tr>
<tr>
<td>lithiated formamidines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reaction with benzaldehyde</td>
<td>1, 482</td>
<td></td>
</tr>
<tr>
<td>reaction with 2-naphthol and benzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannich reaction</td>
<td>2, 960</td>
<td></td>
</tr>
<tr>
<td>synthesis via N-acyliminium ions</td>
<td>2, 1066</td>
<td></td>
</tr>
<tr>
<td>via 6-exo-cyclization</td>
<td>4, 404</td>
<td></td>
</tr>
<tr>
<td>via Mannich reactions</td>
<td>2, 1023</td>
<td></td>
</tr>
<tr>
<td>via palladium-ene reactions</td>
<td>5, 51</td>
<td></td>
</tr>
<tr>
<td>via solvomercuration of amines</td>
<td>4, 290</td>
<td></td>
</tr>
<tr>
<td>trimer synthesis</td>
<td>2, 970</td>
<td></td>
</tr>
<tr>
<td>Piperidinium, N-(2-nitroalkyl)-synthesis</td>
<td>7, 490</td>
<td></td>
</tr>
<tr>
<td>Piperidinium acetate catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knoevenagel reaction</td>
<td>2, 343</td>
<td></td>
</tr>
<tr>
<td>regioselective aldol cyclization</td>
<td>2, 159</td>
<td></td>
</tr>
<tr>
<td>Piperidinium selenocarboxylates synthesis</td>
<td>6, 465</td>
<td></td>
</tr>
<tr>
<td>Piperidinol synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>via nitrene cyclization</td>
<td>4, 1116</td>
<td></td>
</tr>
<tr>
<td>Piperidinyl-1-oxyl, 2, 6, 6-tetramethyl-oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary alcohols</td>
<td>7, 308</td>
<td></td>
</tr>
<tr>
<td>2-Piperidone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bridged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microbial hydroxylation</td>
<td>7, 60</td>
<td></td>
</tr>
<tr>
<td>2-Piperidone, 1-methyl-reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lithium aluminum hydride</td>
<td>8, 273</td>
<td></td>
</tr>
<tr>
<td>2-Piperidone, 5-phenyl-reduction</td>
<td>8, 249</td>
<td></td>
</tr>
<tr>
<td>Piperidones synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>via Knoevenagel reaction</td>
<td>2, 361</td>
<td></td>
</tr>
<tr>
<td>Piperine synthesis</td>
<td>2, 153</td>
<td></td>
</tr>
<tr>
<td>Piperitone oxiranes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rearrangement</td>
<td>3, 771</td>
<td></td>
</tr>
<tr>
<td>Piperonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aldol reaction N-crotonylpiperidine</td>
<td>2, 153</td>
<td></td>
</tr>
<tr>
<td>Piperylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anodic oxidation</td>
<td>7, 795</td>
<td></td>
</tr>
<tr>
<td>Pipitzol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthesis via organocuprate conjugate addition</td>
<td>4, 191</td>
<td></td>
</tr>
<tr>
<td>via photocycloaddition</td>
<td>5, 660</td>
<td></td>
</tr>
<tr>
<td>Pirprofen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemoselective epoxidation</td>
<td>7, 384</td>
<td></td>
</tr>
<tr>
<td>Pivalaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthesis via epoxide ring opening</td>
<td>3, 742</td>
<td></td>
</tr>
<tr>
<td>Pivalate, 2-nitropropenyl-Michael addition</td>
<td>4, 14</td>
<td></td>
</tr>
<tr>
<td>Pivalates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>photochemical deoxygenation</td>
<td>8, 817</td>
<td></td>
</tr>
<tr>
<td>Pivalic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diethylboryl ester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aldol reactions</td>
<td>2, 244</td>
<td></td>
</tr>
<tr>
<td>2-nitroallyl ester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>addition reactions with organolithium compounds</td>
<td>4, 78</td>
<td></td>
</tr>
<tr>
<td>synthesis via Friedel-Crafts dealkylation</td>
<td>3, 330</td>
<td></td>
</tr>
<tr>
<td>Pivalic acid dimethylamide</td>
<td>6, 501</td>
<td></td>
</tr>
<tr>
<td>Pivaloyl azide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrenes from</td>
<td>7, 477</td>
<td></td>
</tr>
<tr>
<td>Pivaloyl chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedel-Crafts reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bimolecular aromatic</td>
<td>2, 740</td>
<td></td>
</tr>
<tr>
<td>Pivaloyl group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alcohol protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycosylation</td>
<td>6, 657</td>
<td></td>
</tr>
<tr>
<td>Pivaloyl thioamide</td>
<td>2, 868</td>
<td></td>
</tr>
<tr>
<td>Platelet activating factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antagonist ligands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthesis via Paterno–Büchi reaction</td>
<td>5, 152</td>
<td></td>
</tr>
<tr>
<td>Platinic acid, hexachlorocatalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydroisilylation</td>
<td>8, 556, 764</td>
<td></td>
</tr>
<tr>
<td>Platinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>catalysts, hydroisilylation</td>
<td>8, 764</td>
<td></td>
</tr>
<tr>
<td>catalyst hydrogenation</td>
<td>8, 418</td>
<td></td>
</tr>
<tr>
<td>hydrogenation of pyridines</td>
<td>8, 597</td>
<td></td>
</tr>
<tr>
<td>hydrogenolysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzylic alcohols</td>
<td>8, 963</td>
<td></td>
</tr>
<tr>
<td>Platinum, carbonylhydrido(trichlorostannate)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis(triphenylphosphine)-catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydroformylation</td>
<td>4, 915</td>
<td></td>
</tr>
<tr>
<td>Platinum, dichlorobis(triphenylphosphine)-catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acyl halide reduction</td>
<td>8, 265</td>
<td></td>
</tr>
<tr>
<td>Platinum, trichloromethylbis(triphenylphosphine)-synthesis</td>
<td>7, 4</td>
<td></td>
</tr>
<tr>
<td>Platinum complexes, η1-allyl-[3 + 2] cycloaddition reactions tetracyanoethylene</td>
<td>5, 275</td>
<td></td>
</tr>
<tr>
<td>Platinum complexes, halomethyl(arylphosphine)-metalloylization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedel-Crafts reaction</td>
<td>3, 323</td>
<td></td>
</tr>
</tbody>
</table>
Platinum dimers

Cumulative Subject Index

Platinum dimers
catalysts
hydroisilylation, 8, 557
Platinum-ene cyclizations, 5, 56–59
Platinum oxide
catalyst
carbonyl compound hydrogenolysis, 8, 319
Pleraplysillin, 3, 1
synthesis, 3, 487
Pleurotin
synthesis, 7, 350
Plumbagin
synthesis
via retro Diels–Alder reaction, 5, 564
Plumbanes, alkyl-
reactions with aldehydes
Lewis acid promotion, 1, 329
Plumbemycin
synthesis
via Ugi reaction, 2, 1097
Plysatoxin, debromo-
synthesis, 3, 168
Podocarpic acid, dimethoxy-
synthesis
via Baeyer–Villiger reaction, 7, 678
Podophylotoxin
synthesis
via arynes, 4, 501
via benzyne cyclization, 5, 692
via Knoevenagel reaction, 2, 381
Podophyllolignans
synthesis
via aldol reaction, 2, 201
Podorhizol
synthesis, 1, 566
via aldol reaction, 2, 204
Podorhizon
synthesis
via conjugate addition, 4, 215
Podototarin
synthesis
via alkaline potassium ferricyanide, 3, 665
Poison-dart frog alkaloids
synthesis
via Eschenmoser coupling reaction, 2, 876
Poiediol
synthesis
via alkynylvinylcyclobutanol rearrangement, 5, 1026
via Cope rearrangement, 5, 806
Polarity
inversion
electrochemical oxidation, 7, 790
Polarography
electrosynthesis, 8, 131
Polonovski reaction
fragmentation, 6, 1067
Polonovski–Potier cyclization
diastereoselection, 2, 1021
Polyacylations
Friedel–Crafts reaction, 2, 712
Polyalkylation
enolates
equilibration, 3, 4
Polyamides
carboxy-protecting groups, 6, 670
Polyamines
reduction
aluminum hydrides, 8, 541
Polyarylenealkenylenes
synthesis
via Knoevenagel reaction, 2, 388
Polybenzimidazole
palladium chloride complex
reduction, 8, 372
Polybutadiene
hydrogenation
homogeneous catalysis, 8, 449
Polycyclic aromatic hydrocarbons
hydrogenation
chocoselectivity, 8, 439
heterogeneous catalysis, 8, 438
regioselectivity, 8, 438
stereoselectivity, 8, 439
S_{2222} reaction, 4, 461
Polycyclic hydrocarbons
fused
Birch reduction, dissolving metals, 8, 496
Polycyclopentanoids
synthesis
via magnesium-ene reaction, 5, 40
Polydithioesters
synthesis
via polyacrylonitrile, 6, 456
Polypepulynolines
cyclic
synthesis, 3, 556
Polyenes
addition reactions, 7, 504
alkoxymercuration, 4, 311
bicyclizations, 3, 359
conjugated
synthesis, 3, 878
cyclic
hydroisilylation, 8, 780
cyclization, 2, 714; 3, 341–375
mechanism, 3, 374
with iminium ion initiators, 2, 1026
hydrogenation
regioselectivity, 8, 433
stereoselectivity, 8, 433
hydrogenation to saturated hydrocarbons
homogeneous catalysis, 8, 449
hydroisilylation, 8, 778
monocyclization, 3, 347
reactions with carbon electrophiles
transition metal catalysis, 4, 695–712
synthesis
via hydroalumination, 8, 757
via Julia coupling, 1, 802
tetracyclization, 3, 362
tricyclization, 3, 362
Vilsmeier–Haack reaction, 2, 782
Polyenes, ω,ω′-biazulenyl-
synthesis, 3, 586
Polyenes, bis-2-thienyl-
synthesis, 3, 586
Polyether antibiotics
occurrence, 2, 1
synthesis
via Ireland silyl ester enolate rearrangement, 5, 840
Polyethers
dissolving metals
 reductions, 8, 524
Poly(ethylene glycol)
 carboxy-protecting group
 polymer support, 6, 670
 reductions in
 acyl halides, 8, 240
Reimer–Tiemann reaction, 2, 772
 solvent
 Wacker oxidation, 7, 451
Polyglymes
 aromatic nucleophilic substitution
 sulfur nucletophiles, 4, 443
Polygodial
 synthesis, 7, 91, 307
Polyheteroarylenealkenylenes
 synthesis
 via Knoevenagel reaction, 2, 388
Polyhexamethylene thioterephthalates
 synthesis
 via phenyl carboxylates, 6, 443
cis-1,4-Polyisoprene
 photolysis
 with benzophenone, 5, 161
Polyketide aromatic compounds
 synthesis
 via Michael addition, 4, 14
Polyketides
 aldol condensation
 biomimetic synthesis, 2, 619
 cyclization to aromatic rings, 2, 170–176
 synthesis, 2, 248
Polymer esters
 anchoring groups
 carboxylic acids, 6, 670
Polymers
 chromium(VI) oxidants support
 alcohol oxidation, 7, 280
 monodispersed
 synthesis, 5, 1121
 synthesis
 via alkene metathesis, 5, 1120–1122
 via α,ω-diethynyl monomers, 3, 557
 via Knoevenagel reaction, 2, 387
Poly(methacrylonitrile)
 Knoevenagel reaction, 2, 358
Poly(methylhydroxiloxane)
 hydroxilylation
 unsaturated hydrocarbons, 8, 765
 reduction
 allylic amines, 8, 961
Poly(monomethacrylate)
 synthesis
 via ring opening metathesis polymerization, 5, 1121
Polynuclear aromatic halides
 vinyl substitution
 palladium complexes, 4, 845
Polynuclear aromatic halides
 vinyl substitution
 palladium complexes, 4, 845
Polynuclear aromatic halides
 vinyl substitution
 palladium complexes, 4, 845
Polyols
 monodeoxygenation, 8, 820
 regioselective substitution
 hydroxy group, 6, 79
 selective monoacylation, 6, 337
 synthesis
 via epoxides, 6, 8
1,3-Polynols
 synthesis, 1, 569
Polyoxins
 synthesis
 via Ugi reaction, 2, 1097
Polyoxochromium dichloride
 oxidative halogenation, 7, 530
Polypentenamer
 synthesis
 via ring opening metathesis polymerization, 5, 1120
Polypentylacetylene
 synthesis
 via benzophenone, 5, 551
Polypentynylacetylene
 synthesis
 via benzophenone, 5, 551
Polyporphyrins
 linear
 synthesis, 3, 555
 platinum polymer, 3, 558
 synthesis, 3, 551
Pomeranz–Fritsch synthesis
 isoquinolines, 6, 751
Ponzo reaction
 oxidation of oximes
Porphyrones

- dinitrogen tetroxide, 7, 751
- synthesis, 3, 594
- Forphyrin, 5-formyloctaethyl-
 Knoevenagel reactions, 2, 354
- Forphyrin, octamethyl-
 synthesis via Diels–Alder reaction, 5, 492

Porphyrrins
- aziridination catalysts, 7, 477
- Knoevenagel reaction, 2, 357
- manganese complexes
 aziridination catalysts, 7, 484
 catalyst for radical-based processes, 7, 8
- pinacol rearrangement, 3, 729
- Vössmeier–Haack reaction, 2, 780
- Forphyrins, 2-alkoxy-5,10,15,20-tetraphenyl-
 synthesis, 4, 437
- Forphyrins, tetraphenyl-
 synthesis via Knoevenagel reaction, 2, 387

Potassium
- alcohols as solvents
 reduction, 8, 111
- Birch reduction, 8, 492
- crown ethers
 alkyl fluoride reduction, 8, 795
- reduction
 ammonia, 8, 113
 carbonyl compounds, 8, 109
 enones, 8, 524
 reductive dimerization
 unsaturated carbonyl compounds, 8, 532
- Potassium, crotyl-crotylboronates from, 2, 13
 crotyl organometallics from, 2, 5
 structure, 2, 977
- Potassium, methyl-
 synthesis
 crystal structure, 1, 12
- Potassium, phenylthioallyl-
 methylation
 selectivity, 3, 99
- Potassium, phenylthiopropenyl-
 methylation
 selectivity, 3, 99
- Potassium, trimethylsilyl-
 deoxygenation
 epoxides, 8, 886
- Potassium, triphenylmethyl-
 ketone deprotonation, 2, 183
- Potassium borohydride
 reduction
 epoxides, 8, 875
 imines, 8, 36
 nitro compounds, 8, 366
- Potassium t-butoxide
 xonotlite
 catalyst, Knoevenagel reaction, 2, 345, 359
- Potassium carboranylferrate
 halide carboxylation
 formation of aldehydes, 3, 1021
- Potassium dichromate
 oxidant
 solid support, 7, 841, 845
- Potassium disopropylamide
 reaction with N,N-dimethylhydrazones, 2, 506

Potassium enolates
- α,α-disubstituted aldehydes
 alkylation, 3, 20
 nitrination, 6, 105
 synthesis, 2, 100
- Potassium fluoride
 catalyst
 allylisilane reactions with aldehydes, 2, 571
 Knoevenagel reaction, 2, 343, 359
- Potassium hexamethyldisilazane
 enolate formation, 2, 182
- Potassium hydrogen persulfate (oxone)
 oxidation
 sulfides, 7, 765
 sulfoxides, 7, 769
- Potassium iodate
 hydroxylation
 alkenes, 7, 445
- Potassium nitrodisulfonate — see Fremy’s salt
- Potassium nitosodisulfonate
 quinone synthesis, 7, 143
- Potassium pentacyanocobaltate
 hydrogenation
 alkenes, 7, 449
- Potassium pentacyanozirconocobaltate
 catalyst
 hydrogenation, 8, 535
- Potassium permanganate
 aqueous
 oxidative cleavage of alkenes, 7, 558
 basic
 alkane oxidation, 7, 12
 catalytic oxidative cleavage
 alkenes, 7, 542
 heterogeneous oxidation
 alkenes, 7, 586
 hydroxylation
 alkenes, 7, 444
 mixed solvent systems
 oxidative cleavage of alkenes, 7, 558
 oxidation
 diols, 7, 313
 sulfoxides, 7, 768
 oxidative cleavage of alkenes, 7, 542
 phase transfer assisted, 7, 559
 synthesis of carbonyl compounds, 7, 558
 synthesis of carboxylic acids, 7, 578
 with periodate, 7, 586
 reaction with vinyl cyanide, 7, 172
 solid support
 clay, 7, 845
 silica, 7, 844
- Potassium selenocyanate
 deoxygenation
 epoxides, 8, 887
- Potassium superoxide
 ketone α-hydroxylation, 7, 157
 oxidation
 hydrazines, 7, 744
 primary amines, 7, 738
- Potassium tetracarbonylhydridocobaltate
 reductive amination
 carbonyl compounds, 8, 54
- Potassium tri-s-butyliborohydride
 reduction
acyl halides, 8, 242
benzyloxy yrones, 8, 7
nitroalkanes, 8, 377
unsaturated carbonyl compounds, 8, 536

Potassium triethylborohydride
amide reduction, 8, 11

Potassium tripropoxyborohydride
alkene reduction, 3, 797
selective ketone reduction, 8, 18

Potassium triphenylborohydride
reduction

Potassium triisopropoxyborohydride
alkene reduction, 3, 797
selective ketone reduction, 8, 18

Potassium triphenylborohydride
reduction
cyclohexanones, 8, 14

Preclavulone A
biosynthesis
via Nazarov cyclization, 5, 780

Precocene, 7-ethoxy-
synthesis, 5, 1096, 1098

Prefulvene
formation
via benzene irradiation, 5, 649

Pregna-14,16-dien-20-one
reduction
hydroisilylation, 8, 557

Pregna-5,16-dien-20-one, 3P-acetyloxy-
dienyltricarbonyliron complexes
asymmetric synthesis, 4, 688

5α-Pregnane
allylic oxidation, 7, 100

5β-Pregnan-12-one
reduction
dissolving metals, 8, 119

5α-Pregnan-6-one, 3β,20α-diacetoxy-
Mannich reaction
with iminium salts, 2, 901

5α-Pregn-1-en-2-ol-3,20-dione
rearrangement, 3, 833

Pregnenolene
oxidation
Bornstein’s reagent, 7, 533
Pregnenolone, 17α-bromo-
rearrangements, 3, 846

Preisolacalmendiol
cyclization
transannular ene reaction, 2, 553

Prelog-Djerassi lactone
synthesis, 8, 857
anti-Cram selectivity, 2, 573
via [4 + 3] cycloaddition, 5, 611
via cycloheptadienyliron complexes, 4, 686
via dichlorocarbene, 4, 1005
via Diels–Alder reaction, 2, 700
via ene reaction, 2, 534
via hydroformylation, 4, 923

Prelog-Djerassi lactonic acid
synthesis, 2, 251, 259; 7, 300
via aldol reaction, γ-position, 2, 189
via chiral reagent, 2, 224

via dihalocyclopropyl compounds, 4, 1018

Premonensin
asymmetric synthesis, 2, 846
synthesis, 1, 429

Prephenic acid
synthesis
via Diels–Alder reactions, 5, 324

Prepetramid
synthesis, 2, 173

Previtamin D
synthesis
via photolysis, 5, 737

Prévost reaction
hydroxylation
alkenes, 7, 438, 447

Prezizaene
synthesis
via Cope rearrangement, 5, 989

Prezizanol
synthesis
via Cope rearrangement, 5, 989

Primetin
synthesis, 7, 341

Prins reaction, 2, 527–558
control, 2, 563
formaldehyde
addition to alkenes, 2, 528
intermolecular, 2, 528
intramolecular, 2, 540
type I, 2, 540
type II, 2, 547
mechanism, 2, 564

Pristane
microbial hydroxylation, 7, 62

Prodigiosin
synthesis
via Diels–Alder reaction, 5, 492

Progesterone
allylic oxidation, 7, 96
enone
reduction, 8, 549
hydrogenation
homogeneous catalysis, 8, 452
microbial hydroxylation, 7, 68, 70, 73
reduction–alkylation, 8, 527

Progesterone, 9α-bromo-11β-hydroxy-
reaction with chromium(II) acetate, 1, 175

Progesterone, 11α-hydroxy-
enantiospecific synthesis, 3, 371
oxidation
DMSO, 7, 295
synthesis, 3, 126

Progesterone, 11-keto-
synthesis
via Cope rearrangement, 5, 790

Progesterone, 21-methyl-
synthesis
via acylation of organocadmiums, 1, 447

Progesterone
synthesis, 3, 846

Proline
borane modifier
asymmetric reduction, 8, 170
chiral catalysts
nucleophilic addition reactions, 1, 72
enantioselcetive aldol cyclization, 2, 167
lithium aluminum hydride modifiers, 8, 168
peptides
 synthesis, 2, 1097
Proline, N-acryloyl-
 benzyl ester
 Diels–Alder reaction, 5, 365
 Diels–Alder reactions, 5, 366
Proline, N-benzyloxycarbonyl-
 Curtius reaction, 6, 813
Proline, 3,4-dehydro-
 synthesis, 8, 606
Proline, N-hydroxy-
 synthesis
 via oxidation of pyrrolidine, 7, 745
Proline, N-pynvoyl-
 Prolinol
 catalytic hydrogenation, 8, 145
 reaction with 2,2'-bis(bromomethyl)-1,1'-binaphthyl
 N-alkylation, 6, 71
 Prolinolamides
 addition reactions
 with organometallic reagents, 4, 35
 reductive alkylation, 3, 45
 Birch reduction, 8, 508
 Prolol chloride, N-(trifluoroacety1)-
 Friedel-Crafts reaction
 bimolecular aromatic, 2, 740
Propacin
 synthesis, 3, 691
1,2-Propadiene
 hydrochlorination, 4, 276
1,2-Propadiene, 1-phenyl-
 hydrochlorination, 4, 276
Propadienethione
 synthesis
 via retro Diels–Alder reactions, 5, 575
Propanal
 borane complexes
 rotational barriers, 1, 290
 Propanal, 2-acetoxy-
 synthesis
 via hydroformylation, 4, 932
 Propanal, 2-cyclohexyl-
 aldon reaction
 simple diastereoselection, 2, 214
 Propanal, 2-hydroxy-
 synthesis
 via hydroformylation, 4, 932
 Propanal, 2'- (2-methoxy-6-naphthyl)-
 synthesis
 via rhodium-catalyzed hydroformylation, 3, 1022
 Propanal, 2-methyl-
 synthesis, 8, 297
 Propanal, 2-methyl-3-phenyl-
 lithiation
 with tributylstannyllithium, 3, 195
 Propanal, 2-phenyl-
 acetal
 synthesis via hydroformylation of styrene, 3, 1022
 addition reactions with bromomethylmagnesium, 1, 317
 aldol reaction
 simple diastereoselection, 2, 214
 reaction with lithium enolates
 stereoselection, 2, 217
reaction with methyl pyrrolidine complex anions, 5, 1080
reaction with methyltrimanium triisopropoxide, 1, 141
reaction with organometallic reagents
diastereoselectivity, 1, 151
Lewiss acids, 1, 334
Propanal, 3-phenyl-
 acetal
 synthesis via hydroformylation of styrene, 3, 1022
 synthesis, 8, 297
Propane
 propylation
 Friedel–Crafts reaction, 3, 333
 reaction with rhodium
 metal vapor synthesis, 7, 4
Propane, 1,3-bis(methylthio)-2-methoxy-
 synthesis, 6, 139
Propane, 2,2-bis(phenylseleno)-
 stability, 1, 632
Propane, 3-chloro-1,1-bis(phenylseleno)-
 metallation, 1, 638
Propane, 3-chloro-1,1-bis(phenylseleno)-
 metallation, 1, 638
Propane, 1-chloro-2,3-diamino-
 synthesis, 6, 94
Propane, 3-chloro-2-methyl-1-phenylthio-
 metallation, 3, 89
Propane, 1-chloro-2-phenyl-
 benzene alkylation
 Friedel–Crafts reaction, 3, 300, 302
Propane, 2-chloro-1-phenyl-
 benzene alkylation
 Friedel–Crafts reaction, 3, 300, 302
Propane, 1,3-diiodo-
 [3 + 2] cycloaddition reactions
 copper-catalyzed, 5, 282
Propane, 1-(2,5-dimethoxy-4-methylphenyl)-2-amine-
 synthesis, 8, 375
Propane, 1-dimethylamino-3-lithio-
 intramolecular solvated tetramer, 1, 10
Propane, 1,1-diphenyl-
 synthesis
 via Friedel–Crafts reaction, 3, 311
Propane, 1,2-diphenyl-
 synthesis
 via Friedel–Crafts reaction, 3, 300
Propane, 1,3-disubstituted 2-methylene-
 bifunctional conjunctive reagent, 5, 298
Propane, 2-lithio-2-phenylseleno-
 synthesis, 1, 634
Propane, 2-methyl-2-nitro-
 synthesis
 via oxidation of r-butyramine, 7, 737
Propane, 2-nitro-
 aromatic nucleophilic substitution, 4, 429
Propane, 1-phenyl-2,2-dialkoxyno-
 synthesis
 via Wacker oxidation, 7, 452
Propane, 2-phenylseleno-2-phenylthio-
 stability, 1, 632
Propane, 1,1,2-tetrachloro-2-methyl-
 nitrile synthesis, 6, 229
1,2-Propanediol
 pinacol rearrangement, 3, 725
1,3-Propanediol, 2-adi-nitro-
 synthesis, 2, 323
1.2-Propanediol, 1-phenyl-
synthesis, 7, 442
1.3-Propanediol, 1-phenyl-
oxidation
solid support, 7, 841
1.3-Propanediol, DL-threo-1-phenyl-2-nitro-
synthesis
via Henry reaction, 2, 325
1,3-Propanediol, 1,3-diphenyl-
Knoevenagel reaction, 2, 357
Propanediolithiates, 2-aryl-
methyl ester
synthesis, 6, 455
Propanediolithiates, 3,3,3-trialkyl-
alkyl esters
synthesis, 6, 455
1,3-Propanediol

demercurations, 8, 857
Propanetriol acid
3-(3-ethyl)pentyl ester
reaction with boron triflate, 2, 259
S-phenyl ester
reaction with 9-borabicyclo[3.3.1]non-9-yl triflate, 2, 245
Propanoic acid, β-(3-acenaphthoyl)-
Friedel–Crafts reaction, 2, 763
Propanoic acid, 3-aryloxy-
synthesis, 2, 744
Propanoic acid, 2,2-dimethyl-
protonolysis
organoboranes, 8, 724
Propanoic acid, 3'-((2-naphthyl)-
Friedel–Crafts reaction
cyclization, 2, 754
Propanoic acid, β-phenyl-
Friedel–Crafts reaction, 2, 756
Propanoic acids, 2-aryl-
chiral synthesis
microbial oxidation, 7, 57
1-Propanol, 2,3-diamino-
synthesis, 6, 94
2-Propanol, 1,3-diamino-
vinil diamine synthesis, 6, 94
1-Propanol, 2,3-epoxy-
opening
Payne rearrangement, 3, 735
2-Propanol, 2-hydroperoxyhexafluoro-
oxidation
sulfides, 7, 763
1-Propanol, 2-methyl-
synthesis
via hydrogenation, 8, 236
1-Propanol, 2-methyl-3-ethoxy-
synthesis
via hydroformylation, 4, 923
1-Propanol, 1-phenyl-
perdeuterated
synthesis, 1, 223
1-Propanol, 2-phenyl-
benzene alkylation with
Friedel–Crafts reaction, 3, 311
synthesis
via Friedel–Crafts reaction, 3, 313
2-Propanol, 1-phenyl-
benzene alkylation with
Friedel–Crafts reaction, 3, 311
Propargylic rearrangements

allenic esters, 6, 836
Propargylic rearrangements
functional group transformation, 6, 830
Propargyl organometallic compounds
diasteroselective reactions, 2, 91–96
enantioselective reactions, 2, 96
heteroatom substituted, 2, 88
nonheteroatom substituted
regioselective reactions, 2, 82–88
reactions with gem-amino ethers
dependence of product type on metal, 2, 1005
reactions with imines, 2, 97–1004
variation of yield with metal, 2, 993
reactions with iminium salts,
dependence of product type on metal, 2, 1001
regioselective reactions, 2, 82–91
synthesis, 2, 81
Propargyl sulfenate
allene sulfoxide
Propargyl systems
isomerization
1,3-hydrogen–hydrogen transpositions, 6, 866
[1.3.4]Propellane
synthesis
via Diels–Alder reaction, 5, 372
[3.3.1]Propellane
solvolysis, 4, 1021
[4.4.1]Propellane
solvolysis, 4, 1021
[4.4.4]Propellane
synthesis
via cyclopropanation, 4, 1041
Propellanes
synthesis, 3, 573
via Cope rearrangement, 5, 814
via [3 + 2] cycloaddition reactions, 5, 310
via cyclopropane ring opening, 5, 924
via dihalocyclopropanes, 4, 1009
via photocycloaddition, 5, 666
[3.3.3]Propellanes
synthesis
via intramolecular ene reactions, 5, 11, 21
via photoisomerization, 5, 233
[4.3.2]Propellanes
rearrangement, 8, 931
[4.3.2]Propellanois
rearrangement, 3, 709
[4.2.2]Propella-2,4,7,9-tetraene
isomerization
via retro Diels–Alder reactions, 5, 585
Propene
disproportionation, 5, 1116
Propene, 3-ace...
reactions with carbonyl compounds, 1, 510
Propenoic acid, 2-(6-methoxy-2-naphthyl)-
hydrogenation
homogeneous catalysis, 8, 461
2-Propenoic acid, 3-(3-methylene cyclopentyl)-
methy1 ester
synthesis via metal-catalyzed cycloaddition, 5,
1192
2-Propen-1-ol, 2-methyl-
asymmetric epoxidation, 7, 398
2-Propen-1-ol, 2-nitro-
pivalate
multiple coupling reagent, 2, 325
2-Propen-1-ol, 2-(trimethylsilyl)methyl-
ester
[3 + 2] cycloaddition reactions, 5, 298
β-Propiolactone
enolates
diastereofacial selectivity, 2, 205
reaction with phenyl Grignard reagents, 3, 466
synthesis
via carbonylation of ethylene, 3, 1031
β-Propiolactone, 2-ethynyl-
reaction with organocopper compounds, 3, 227
Propiolamidines, 3-amino-
synthesis, 6, 550
Propionic acid
addition of hydrogen halides, 4, 51
hydrobromination, 4, 285
Propionic acid, phenyl-
hydrobromination, 4, 286
Propionaldehyde, 2-(methoxy)methoxy-
reactions with allyl organometallic compounds, 2,
984
α-alkoxyaldimines derivatives
reaction with allyl organometallic compounds, 2,
987
Propionaldehyde, 2-phenyl-
reactions with allylsilanes
diastereofacial selectivity, 2, 570
Propionaldehyde, 3-phenyl-
acetal
reaction with isopropenyl acetate, 2, 612
Propionaldehyde diethyl acetal
carbocupration, 4, 900
Propionaldehydes
anion equivalent
addition reactions, 4, 117
3-substituted
synthesis, 6, 849
Propionamide, β-ary1-V-alkyl-
addition reactions
with organomagnesium compounds, 4, 84
Propionamide, N,N-dimethyl-
dimethyl acetal
rearrangement, stereochemistry, 5, 837
lithium enolate
crystal structure, 1, 31
Propionamide, 2-phenyl-
Hofmann rearrangement, 6, 804
Propionamide, N-phenyl-3-chloro-
synthesis, 7, 696
Propionamides, 3-stannyl-
limination
dianionic homoenolate, 2, 447
Propionamides, 3-phenylsulfanyl-
Pummerer rearrangement, 7, 201
formation of sulfenylated β-lactam, 7, 202
Propionamidine, α-arylaminoo-
synthesis, 6, 555
Propionate enolate
eantioselective aldol reaction
acyliron complexes, 2, 316
Propionates
esters, from carbohydrates
aldol reaction, stereoselection, 2, 226
Propionic acid, 2-aryl-
synthesis
via hydroformylation, 4, 932
Propionic acid, 2-alkoxy-
esters
aldol reaction, 2, 205
Propionic acid, 2-amino-2,2-dimethyl-3-phenyl-
synthesis
via Mannich reaction, 2, 922
Propionic acid, 2-aryl-
synthesis, 3, 244
Propionic acid, 2-azido-3-(benzyloxy)-
benzyl ester
serine synthesis, 6, 77
Propionic acid, 2-bromo-
t-butyl ester
catalyst, Grignard reagent alkylation, 3, 244
ethyl ester
Reformatsky reaction, stereoselectivity, 2, 291
hydrolysis, 6, 342
methyl ester
reaction with zinc, 2, 279
Reformatsky reaction, 2, 293
reaction with 1-phenylethylamine, 6, 67
Propionic acid, 3-bromo-
methyl ester
reaction with samarium, 1, 254
Propionic acid, 2-chloro-2-methyl-
methyl ester
nitrile synthesis, 6, 229
Propionic acid, 2-cyano-2-methyl-3-phenyl-
rearrangements, 6, 799
Propionic acid, 3-(cyclopent-2-enyl)-
methyl ester
synthesis via cycloaddition of
bicyclo[2.1.0]pentane, 5, 1186
Propionic acid, 3,3-dialkyl-
optically active
synthesis via conjugate addition to oxazolines, 4,
204
Propionic acid, 3-(3,4-dimethoxyphenyl)-
oxidation, 7, 336
Propionic acid, 2-halo-
aryl esters
cycloalkylation, 3, 324
Propionic acid, 3-lithio-
synthesis and reaction, 2, 447
Propionic acid, 2-(mesyloxy)-
benzene alkylation with
Friedel-Crafts reaction, 3, 312
Propionic acid, 3-methoxy-1,2-diaryl-
Propionic acid
Cumulative Subject Index 720

- synthesis, 7, 829
- Propionic acid, methyl-2-(chlorosulfonfyl)oxy)-benzene alkylation with Friedel–Crafts reaction, 3, 312
- Propionic acid, methyl-2-phenyl-synthesis via Friedel–Crafts reaction, 3, 312
- Propionic acid, 2-phenyl-rearrangements, 6, 799
- Propionic acid, 3-phenyl-ethyl ester acyloin coupling reaction, 3, 619
- Schmidt reaction, 6, 817
- Propionic acid, 2-phenyl-2-(t-butylthio)-via arene–metal complex, 4, 527
- Propionic acid, 3-thienyl-ethyl ester acyloin coupling reaction, 3, 619
- Propionic acid, 3-(p-tolylsulfinyl)-di anion reactions with carbonyl compounds, 1, 513
- Propionic acid, 3-(2,3,4-trimethoxyphenyl)-oxidation, 7, 337
- Propionic acid, 3-trimethylsilyl-ethyl ester acyloin coupling reaction, 3, 619
- Propionic acids synthesis, 4, 429
- Propionitrile, 2,2-bis(dimethylamino)-synthesis, 6, 577
- Propionitrile, 2,2-dimethoxy-synthesis via Wacker oxidation, 7, 451, 452
- Propionitrile, 3-hydroxy-synthesis via ethylene oxide, 6, 236
- Propionitrile, 3-oxo-3-phenyl-synthesis via phenacyl bromide, 6, 231
- Propionyl chloride Friedel–Crafts reaction bimolecular aromatic, 2, 740
- Propiophenone aldol reactions diastereoselective, 2, 244 oxidative rearrangement solid support, 7, 845 reduction lithium aluminum hydride, 8, 166 tin enolates, 2, 610
- Propranolol synthesis, 6, 341
- Propylure synthesis, 3, 799
- 2-Propynal, trimethylsilyl-Knoevenagel reaction, 2, 365
- Propyne hydroiodination, 4, 288 trimerization potassium chromate catalysis, 5, 1148
- Propyne, 1,3-bis(trisopropylsilyl)-anion enynes from, 2, 91
- Propyne, 1,3-bis(trimethylsilyl)-dilithium anion reaction with aliphatic carbonyl compounds, 2, 91
- Peterson alkenation, 1, 790 reaction with chloral Lewis acid promotion, 1, 328
- Propyne, 3-(t-butylidemethylsilyl)-1-(trimethylsilyl)-anion 1,3-enynes from, 2, 91
- Propyne, 1-t-butylthiophotolysis with benzil, 5, 163
- Propyne, dilithio-alkylation, 3, 281
- Propyne, 1-methyliophotolysis with acetone, 5, 163
- Propyne, 1-phenyl-hydroalumination, 8, 737
- Propyne, 3,3,3-trifluoro-hydrobromination, 4, 285 hydroiodination, 4, 288 synthesis, 4, 271
- Propynoate esters conjugate additions Lewis acid catalyzed, 4, 164
- Prostacyclin analogs synthesis via Knoevenagel reaction, 2, 381 synthesis via cyclofunctionalization of propargylcyclopentanol, 4, 393 via rearrangement of epoxides, 3, 767
- Prostacyclins synthesis via Pauson–Khand reaction, 5, 1051
- Prostaglandin, 11-deoxy-synthesis via enolate alkylation, 3, 9
- Prostaglandin, 9-fluoromethylene-synthesis via Johnson methylenation, halogen incorporation, 1, 741
- Prostaglandin, 5-oxo-synthesis via hydration of alkynes, 4, 300
- Prostaglandin A2 synthesis via Johnson rearrangement, 5, 839
- Prostaglandin D1 methyl ester synthesis, 1, 570
- Prostaglandin E1 synthesis via Diels–Alder reaction, 5, 492 via Michael addition, 4, 13
- Prostaglandin E2 synthesis via Diels–Alder reaction, 5, 492
- Prostaglandin endoperoxide synthesis via palladium-ene reaction, 5, 35
- Prostaglandin F2 synthesis, 3, 290, 781; 6, 139; 8, 163 via cyclopropane ring opening, 4, 1045
- Δ^5-Prostaglandin F1α, 11-deoxy-6,11-α-epoxy-synthesis, 7, 633
- Prostaglandin I2, 5-hydroxy-
Prostaglandins

hydroxy group

protection, 6, 653
microbial hydroxylation, 7, 66
precursors

synthesis, 3, 139
reduction

hydride transfer, 8, 100
stereoselective synthesis

via cyclopropane ring opening, 4, 1046
synthesis, 1, 569; 3, 103, 126, 279, 289, 649; 7, 59, 180, 824; 8, 163, 171, 269, 560, 561, 695
via addition reactions with organozincates, 4, 97
via asymmetric reduction, 8, 546
via Baeyer-Villiger reaction, 7, 682, 686
via borohydride reduction, 8, 537
via carbomercuration, 4, 904
via catalytic hydrogenation, 8, 567
via 1,4-chirality transfer, 6, 9
via conjugate addition, 2, 330
via conjugate addition—enolate alkylation, 3, 9
via conjugate addition to α,β-enones, 4, 141, 142
via copper catalyzed Grignard additions, 4, 91
via cyclopropane ring opening, 4, 1045
via Dieckmann reaction, 2, 823
via Diels—Alder reaction, 5, 353
via dihydropyrans, 7, 831
via DMSO, 7, 302
via enol stannyl ether, 2, 609
via enone reduction, 8, 545
via intramolecular ene reactions, 5, 16
via Michael addition, 4, 10
via microbial oxidation, 7, 54
via Nazarov cyclization, 5, 780
via organoborane Michael addition, 4, 145
via organocuprate conjugate addition, 4, 187
via Paterno—Büchi reaction, 5, 157
via Prins reaction, 2, 529
via protected cyanohydrons, 1, 553; 3, 198
via tandem vicinal difunctionalization, 4, 245
via vinylic sulfones, 4, 251
via vinyliczirconium(IV) complexes, 1, 155
via Wacker oxidation, 7, 454

Prostaglandins, 5, 6-didehydro-
synthesis

via enolate alkylation, 3, 10
Prostanoid acid

synthesis

via 1,4-addition of allylic sulfoxides to enones, 1, 520

Prostanoids

synthesis, 1, 566
via cyclopropane ring opening, 5, 924
via 1,3-dipolar cycloadditions, 4, 1077
via electrolycylization, 5, 771
via organoaluminium reagents, 1, 103
via Pauson—Khand reaction, 5, 1051

Proteases

peptide synthesis, 6, 395
phthaloyl group removal
amine protection, 6, 643
Protecting groups, 6, 631–693

N-acyl, 6, 642

alcohols, 6, 646
N-alkyl, 6, 644
N-alkylidene, 6, 644
amines, 6, 635
carbonyl compounds, 6, 675
carboxy, 6, 665
interdependence, 6, 633
orthogonal stability, 6, 633
photosensitive, 6, 668
polymer esters

carboxylic acids, 6, 670
principal demands, 6, 631
silyl

alcohol protection, 6, 652
thiols, 6, 664
two-step

amines, 6, 639

Protoprotonova

synthesis

via Mannich reaction, 2, 894, 912
via photoinduced iminium ion—benzylsilane

cyclization, 2, 1040

Protoprotonova alkaloids

synthesis

via phthalide enolates, 2, 946
Protoprotonova alkaloids

synthesis

via magnesium—ene reaction, 5, 40
Protolactone

synthesis, 6, 354
Protonation

acceptor radical anions, 7, 884
radical anions

bimolecular reaction, 7, 861
Protonolysis

demercuration, 8, 850
hydroalumination adducts, 8, 753
zirconium compounds, 8, 690
Protons

formaldehyde complexes

theoretical studies, 1, 286
Protoporphirins

reaction with tetracyanoethylene, 5, 71
Protophosphorine

enantioselective synthesis, 3, 685
synthesis, 3, 685
Provitamin D

photochemical ring opening, 5, 700
photolysis, 5, 737
Proxicromil

synthesis, 7, 338
PS-5

synthesis, 6, 759
via Mannich reaction, 2, 922, 924
via reactions of enol silanes, 2, 648
via silyl enol ethers, 2, 637
PS-5, 1-β-methyl-
synthesis
via diastereoselective reaction, 2, 652
Pschorr reaction
diastereoselective reaction, 2, 652
radical cyclizations, 4, 811
ring closure, 3, 507
Pseudocumene
radical cations
oxidation, 7, 870
Pseudocumene, iodo-
reaction with amides, 4, 452
Pseudocytidine
synthesis
via Baeyer-Villiger reaction, 7, 682
via [4 + 3] cycloaddition, 5, 611
Pseudoguianolides
synthesis
via Pauson-Khand reaction, 5, 1052
Pseudohalides
synthesis, 6, 225–255
Pseudohalogens
reactons with alkenes, 4, 348–356
Pseudoisocytidine
synthesis
via [4 + 3] cycloaddition, 5, 611
Pseudomonas oleovorans
epoxidation, 7, 429
Pseudomonas ovalis
reduction
unsaturated carbonyl compounds, 8, 559
Pseudomonate B, methyl deoxy-
synthesis
via Julia coupling, 1, 795
Pseudomononic acid
synthesis
via Claisen–Claisen rearrangement, 5, 888
via ene reaction, 2, 531
Pseudomononic acid A
synthesis
via Diels–Alder reaction, 5, 435
Pseudomononic acid C
synthesis
via alkoxyselenation, 4, 339
via Julia coupling, 1, 794, 795
Pseudomononic acid esters
synthesis
via Peterson alkenation, 1, 791
Pseudopericyclic reactions
hetero electrocyclization, 5, 741
(−)-Pseudopterosin A
synthesis
via cycloaromatization reaction, 2, 622
Pseudopyranoses
synthesis
via Knoevenagel reaction, 2, 386
Pseudo sugars
synthesis
via Knoevenagel reaction, 2, 386
Pseudouridine
synthesis
via [4 + 3] cycloaddition, 5, 611
Pseudouridine, 2-thio-
synthesis
via [4 + 3] cycloaddition, 5, 611
Psoralen
tritation, 8, 626
Pteridines, substituted
synthesis
via organocopper compounds, 3, 219
Pterins, substituted
synthesis
via organocopper compounds, 3, 219
Pterocarps
synthesis
via isoflavonones, 7, 831
Pterodactyladiene
synthesis, 3, 572
Pterorhodanines
synthesis, 3, 572
Pterostilbene
synthesis, 8, 307
Pulegone
dienyliccarbonyliron complexes
asymmetric synthesis, 4, 688
oxidation
peroxy acid, 7, 684
oxiranes
rearrangement, 3, 771
reduction, 8, 563
molybdenum complex catalyst, 8, 554
synthesis
via ene reaction, 2, 540
Pulo’upone
synthesis
via Diels–Alder reactions, 5, 564
via intramolecular Diels–Alder reaction, 5, 545
Pumiliotoxin A
synthesis, 6, 742
enantioselective, 2, 1028
via ene reaction, 2, 550
via Mannich reaction, 2, 1030
Pumiliotoxin C
synthesis, 6, 756, 769
via Diels–Alder reactions, 5, 333, 360
via Eschenmoser coupling reaction, 2, 876
via nitrene cyclization, 4, 1117
Pumiliotoxin 251D
synthesis
via Mannich reaction, 2, 1031
Pumiliotoxins
synthesis
via iminium ion–vinylsilane cyclization, 1, 593
Pummerer rearrangement, 7, 194
abnormal reactions, 7, 203
α-alkylation
preparation of α-alkylated sulfides, 7, 199
α-arylation
preparation of α-arylated sulfides, 7, 199
asymmetric reaction
α-acetoxylation, 7, 199
β-elimination, 7, 204
examples, 7, 196
hydroxylic solvents, 7, 202
intramolecular
α-acetoxylation, 7, 196
participation by hydroxy groups, 7, 202
preparation of α-alkylated and α-arylated sulfides, 7, 199
mechanism, 7, 195
(methylthio)methyl ethers, 7, 292
nitrogen participation, 7, 201
oxidation
halides, 7, 667
oxidative rearrangement, 7, 826
α-phenylsulfanylacetates, 2,363
sulfoxides
formation of α-functionalized sulfides, 7, 193
transannular reactions, 7, 205
trimethylsilyl triflate, 7, 202
vinylic sulfoxides, 6, 151
vinylogous, 7, 204
Pummerer’s ketone
synthesis
use of silver carbonate, 3, 664
Punaglandins
synthesis
via retro Diels–Alder reactions, 5, 562
Punctatin A
synthesis
via photochemical C—H insertion reactions, 3, 1058
Pupukeanane, isocyanono-
synthesis, 7, 318
Purine, 9-alkyl-6-iodo-
SN1 reaction, 4, 462
Purine, 6-chloro-
coupling reactions
with primary alkyl Grignard reagents, 3, 462
Purine, 6-methylthio-
coupling reactions
with primary alkyl Grignard reagents, 3, 462
Purines
analogs
synthesis via Eschenmoser coupling reaction, 2, 889
synthesis
via Eschenmoser coupling reaction, 2, 889
Push–pull alkenes
addition reactions, 4, 122–128
Pyllodulcin
synthesis
via directed lithiation, 1, 477
Pyran
synthesis
via palladium(II) catalysis, 4, 557
Pyran, 2-alkenylidihydro-
synthesis
via cyclization of 8-allenic ketones, 4, 397
Pyran, 2-alkenyltetrahydro-
synthesis
via cyclization of 8-allenic alcohols, 4, 396
Pyran, 3-alkyl-4-chlorotetrahydro-
synthesis from 1-alkenes
Prins reaction, 2, 528
Pyran, 2-alkenyltetrahydro-
synthesis
via Lewis acid promoted reaction, 1, 346, 347
Pyran, 4-chlorotetrahydro-
formation
type III ene reaction, 2, 553
Pyran, cis-2,6-dialkyl-4-chlorotetrahydro-
synthesis
via ene reaction, 2, 554
Pyran, dihydro-
allylic oxidation, 7, 103
oxidation
pyridinium chlorochromate, 7, 267
reaction with dichlorocarbene, 4, 1005
ring contraction, 7, 831
synthesis
via allylic anions and epoxides, 2, 60
Pyran, tetrahydro-
arene alkylation by
Friedel–Crafts reaction, 3, 315
synthesis
stereoselectivity, 4, 381, 384
via electrophile cyclization, 7, 523
2H-Pyran-3,5-diol, 3,4,5,6-tetrahydro-4-nitro-
synthesis
via Henry reaction, 2, 327
2H-Pyran-3-ol, tetrahydro-2,2,6-trimethyl-
synthesis
via sulcatol, 7, 634
Pyranonaphthyridine
synthesis
via Knoevenagel reaction, 2, 380
Pyranones see Pyrones
Pyranoxide
synthesis
via Friedel–Crafts reaction, 2, 675
Pyranon(2,3-b)pyridine
synthesis
via Knoevenagel reaction, 2, 380
Pyranopyrone
aldol cyclization, 2, 170
Pyronoquinoline
synthesis
via Perkin reaction, 2, 401
Pyranose
synthesis, 6, 35
Diels–Alder reaction, 2, 690
Pyranoside, 2,3-anhydr0-4-O-tosyl-
reaction with sodium azide, 6, 91
Pyranosides
methylation, 1, 737
reductive ring cleavage, 8, 218
C-Pyranosides
synthesis
via cuprate 1,2-addition, 1, 126
Pyranosides, methyl-
2,3-unsaturated
reduction, 8, 219
Pyrans
synthesis
via Knoevenagel reaction, 2, 379, 380
via photolysis, 5, 741
Pyrans, dihydro-
coupling reactions
with alkyl Grignard reagents, 3, 444
[2 + 2] cycloaddition reactions
methyl tetrolate, 5, 1067
metallation, 3, 252
Pauson–Khand reaction, 5, 45, 1048
reaction with Grignard reagents
nickel catalysts, 3, 229
reaction with organocopper compounds, 3, 218
synthesis, 1, 589
via Diels–Alder reaction, 5, 435
Pyrans

Cumulative Subject Index

Pyrans, 3,4-dihydro-
reaction with dimethyl acetylenedicarboxylate
dihydrooxacine synthesis, 5, 687
reaction with isocyanates
glycal synthesis, 5, 108
synthesis
via Diels–Alder reaction, 5, 453
Pyrans, 5,6-dihydro-
synthesis
via Diels–Alder reactions, 5, 430
via vinylsilane acetals, 1, 589
Pyranulose acetate
synthesis, 4, 1092
Pyrylamines, tetrahydro-

Pyranyl sulfides, tetrahydro-
reduction, 8, 228
Pyrazine, chloro-
synthesis, 4, 1092
reduction, 8, 228
reduction, 8, 230
Swl reaction, 4, 462
synthesis via
dichlorocarbene insertion, 4, 1021
Pyrazine, 2,5-dibenzyl-
hydrogenation, 8, 643
Pyrazine, 2,5-diboradihydro-
oxidation
use of chromyl trichloroacetate, 7, 601
Pyrazine, tetrachloro-
oxidation
hydrogen peroxide, 7, 750
Pyrazines
amination, 4, 436
Diels–Alder reactions, 5, 491
reduction, 8, 643
Vilsmeier–Haack reaction, 2, 789
Pyrazines, 2-acetyl-
acyclating agent, 1, 422
Pyrazinethiol
synthesis, 7, 667
Pyrazinum chlorochromate
oxidation
alcohols, 7, 271
Pyrazino[1,2-alindole, 1,2,3,4-tetrahydro-
synthesis via Ritter reaction, palladium, 6, 284
Pyrazino[1,2-alquinoline, hexahydro-
synthesis via Knoevenagel reaction, 2, 379
Pyrazinyl sulfide
Pummerer rearrangement, 7, 667
Pyrazole, 1-acetyl-
Friedel–Crafts reaction, 2, 744
5H-Pyrazole, 5-acetyl-3,4-diethoxycarbonyl-5-methyl-
synthesis via cycloaddition, 3, 893
Pyrazole, 4-acetyl-
synthesis via hydrazone anions, 2, 523
Pyrazole, amin-
synthesis via activated allene, 4, 56
1,2-Pyrazole, 4-(3-butenyl)-
synthesis via retro Diels–Alder reactions, 5, 582
Pyrazole, 3,5-dimethyl-
chromium trioxide complex alcohol oxidation, 7, 260
allylic oxidation, 7, 104
pyridinium chlorochromate
allylic alcohol oxidation, 7, 264
Pyrazole, 3,5-dimethyl-N-acyl-
reduction
metal hydrides, 8, 271
Pyrazole, nitro-
reduction, 8, 636
Pyrazole, 4-(2'-styryl)-
synthesis via retro Diels–Alder reactions, 5, 584
Pyrazole, tetrachloro-
synthesis via amination, 7, 741
Pyrazole, triaryl-
synthesis via hydrazine anions, 2, 522
Pyrazole-4-carbaldehyde
synthesis via Vilsmeier–Haack reaction, 2, 791
Pyrazoles
reduction, 8, 636
synthesis, 3, 905; 5, 1070; 6, 117
via dihalocyclopropyl compounds, 4, 1023
via hydrazine anions, 2, 522
via Knoevenagel reaction, 2, 362, 379
via retro Diels–Alder reactions, 5, 582
Vilsmeier–Haack reaction, 2, 780
Pyrazoles, N-acyl-
reduction, 8, 636, 965
metal hydrides, 8, 271
Pyrazoles, N-alkyl
lithiation, 1, 477
Pyrazoles, 3,5-dialky-
synthesis, 1, 557
3,5-Pyrazolidinedione, 4-diazo-
decomposition, 3, 902
3,5-Pyrazolidinedione, 1,2-dimethyl-
Knoevenagel reaction, 2, 357
Pyrazolidines
reduction, 8, 636
Pyrazoline, tosyl-
reaction with trimethylaluminum
pyrazolol synthesis, 1, 98
Pyrazolines
nitrogen extrusion
cyclopropane formation, 4, 954
reduction, 8, 636
synthesis via azacyclopropanes, 7, 628
1-Pyrazolines
synthesis via diazo compounds, 4, 953
2-Pyrazolines
5-substituted
synthesis via nitrilimine cycloaddition, 4, 1084
1-Pyrazolines, 3-substituted
synthesis via diazoalkane cycloaddition, 4, 1102
Pyrazolinone
stereochemistry
epoxidation, 7, 372
2-Pyrazolin-5-one
synthesis via hydrazone anions, 2, 523
via intermolecular addition, 4, 51
Cumulative Subject Index

Pyridine

4-Pyrazolinone, N-sulfonyl-reduction
L-selectride, 8, 637

5-Pyrazolinones
catalytic hydrogenation, 8, 637
Pyrazoloimidazolidinone
reduction, 8, 636

Pyrazolols
synthesis
via tosylpyrazolines, 1, 98

Pyrazolone, benzylidene-
Knoevenagel reaction
stereoselectivity, 2, 351
Pyrazolones
Knoevenagel reaction, 2, 364
stereoselectivity, 2, 351
5-Pyrazolones, 4-arylidene-
Diels–Alder reactions, 5, 454
Pyrazolopyridines
synthesis
via Vilsmeier–Haack reaction, 2, 787
Pyrene, 15,16-dimethylidydro-
electrocyclization, 5, 705
Pyrene, tetrahydro-
synthesis
via photolysis, 5, 728
Pyrene-3-aldehyde
Wolff–Kishner reduction, 8, 338
Pyrenes
synthesis
via electrolycyclization, 5, 720
Pyreneochoatic acid A
synthesis
via retro Diels–Alder reaction, 5, 571
Pyrenophorin
synthesis, 1, 569; 3, 126
via macrolactonization, 6, 375
via organostannane acylation, 1, 446
Pyrethrin
esters, 6, 324
Pyrethrin-I
pyrolysis, 5, 717
Pyrethroids
enantioselective synthesis
via cyclopropanation, 4, 1039
synthesis, 3, 848
via chiral cyanohydrins, 1, 546
Pyrethroleone
synthesis
via Wacker oxidation, 7, 455
Pyrethroleone, tetrahydro-
methyl ether
synthesis via cyclopropane ring opening, 4, 1046
Pyridazine, chloro-
alkylation
with primary alkyl Grignard reagents, 3, 461
Pyridazine, N,N-diacetylhexahydro-
ring scission, 8, 640
Pyridazine, 4,5-dibenzoyl-
synthesis, 7, 777
Pyridazine, 4-nitro-, 1-oxide
ammonia adducts
oxidation, 4, 434
Pyridazine N-oxides
deoxegenation, 8, 390, 640
reaction with aryl Grignard regents, 3, 494

Pyridazines
ammonia adducts
oxidation, 4, 434
Diels–Alder reactions, 5, 491
reduction, 8, 640
synthesis
via Knoevenagel reaction, 2, 362, 379
Pyridazines, dihydro-
reduction, 8, 640
Pyridazines, tetrahydro-
reduction, 8, 640
Pyrazidinium salts
reduction, 8, 640
3-Pyrazadinone
reduction
zinc, 8, 563
6-Pyrazadionone, 1-alkyl-
reduction
LAH, 8, 641
6-Pyrazidinone, 4,5-dihydro-
reduction
excess LAH, 8, 641
Pyridazines
synthesis
via hydrazone anions, 2, 522
2,2'-Pyridil
rearrangement, 3, 826
2,2'-Pyridilic acid
synthesis, 3, 826
Pyridine, 2-acetyl-
reduction
hydride transfer, 8, 94
Pyridine, 3-acyetyl-
hydrogenation
catalytic, 8, 141
Pyridine, 4-acyetyl-
hydrogenation
catalytic, 8, 141
Pyridine, 1-acyl-4-benzylidene-1,4-dihydro-
synthesis
use in mixed anhydride synthesis, 6, 310
Pyridine, 6-alkoxy-2-hydroxy-
synthesis
via Knoevenagel reaction, 2, 378
Pyridine, 2-alkylthio-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1154
Pyridine, amino-
hydrogenation, 8, 598
Pyridine, 2-amino-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1154
Pyridine, 2-benzoyle-
reduction
hydride transfer, 8, 94
Pyridine, 4-benzoyle-
reduction
dissolving metals, 8, 115
Pyridine, 4-benzyl-
acid anhydride synthesis, 6, 310
Pyridine, bis(alkylsulfonyl)-
synthesis, 4, 443
Pyridine, bis(alkylthio)-
synthesis, 4, 443
Pyridine, bis(5-hexenyl)methyl-
synthesis
Pyridine

Pyridine, 2-bromo-
coupling reactions
with primary alkyl Grignard reagents, 3, 460

Pyridine, 3-bromo-
dehydrohalogenation
pyridyne generation, 4, 489

Pyridine, 4-bromo-
S_N1 reaction, 4, 462

Pyridine, 2-chloro-
coupling reactions
with primary alkyl Grignard reagents, 3, 460

Pyridine, 3-chloro-
synthesis
via dichlorocarbene insertion, 4, 1021
via dihalocarbene, 4, 1004

Pyridine, 2-chloro-3,5-dinitro-
glycoside synthesis, 6, 54

Pyridine, chlorofluoro-
hydrogenolysis, 8, 901

Pyridine, 2-cinnamoyl-
reduction
dihydropyridines, 8, 561

Pyridine, 3-cyano-
reduction
borohydrides, 8, 580

Pyridine, cyanodihydro-
dimerization, 5, 64

Pyridine, 3-cyano-1,4,5,6-tetrahydro-
synthesis, 8, 580

Pyridine, 2,3-dehydro-
generation, 4, 489

Pyridine, 2,6-dibromo-
oxidation
hydrogen peroxide in trifluoroacetic acid, 7, 750
reaction with carbanions
via S_N1 reaction, 4, 468

Pyridine, 2,6-dichloro-
coupling reactions
with primary alkyl Grignard reagents, 3, 460

Pyridine, 3,5-dichlorotrifluoro-
hydrogenation, 8, 905

Pyridine, 3,5-dicyano-
reduction
aluminum hydrides, 8, 583
borohydrides, 8, 580

Pyridine, 3,5-diethoxycarbonyl-
reduction
borohydrides, 8, 580

Pyridine, 3,5-diethoxycarbonyl-2,6-dimethyl-
1,4-dihydro-
reduction
unsaturated carbonyl compounds, 8, 561

Pyridine, 2,6-dihydroxy-
synthesis
via Knoevenagel reaction, 2, 378

Pyridine, 2,6-dimethyl-
hydrogenation
nickel catalysts, 8, 597
α-lithiated
crystal structure, 1, 12
Rosenmund reduction, 8, 287

Pyridine, 4-dimethylamino-
catalyst
thiol ester synthesis, 6, 437

Pyridine, 2-bromo-5, 1154
coupling reactions

Pyridine, 3-bromo-
dehydrohalogenation

Pyridine, 4-bromo-
S_N1 reaction, 4, 462

Pyridine, 2-chloro-
coupling reactions
with primary alkyl Grignard reagents, 3, 460

Pyridine, 3-chloro-
synthesis

Pyridine, 2-chloro-3,5-dinitro-
glycoside synthesis, 6, 54

Pyridine, chlorofluoro-
hydrogenolysis, 8, 901

Pyridine, 2-cinnamoyl-
reduction
dihydropyridines, 8, 561

Pyridine, 3-cyano-
reduction
borohydrides, 8, 580

Pyridine, cyanodihydro-
dimerization, 5, 64

Pyridine, 3-cyano-1,4,5,6-tetrahydro-
synthesis, 8, 580

Pyridine, 2,3-dehydro-
generation, 4, 489

Pyridine, 2,6-dibromo-
oxidation
hydrogen peroxide in trifluoroacetic acid, 7, 750
reaction with carbanions
via S_N1 reaction, 4, 468

Pyridine, 2,6-dichloro-
coupling reactions
with primary alkyl Grignard reagents, 3, 460

Pyridine, 3,5-dichlorotrifluoro-
hydrogenation, 8, 905

Pyridine, 3,5-dicyano-
reduction
aluminum hydrides, 8, 583
borohydrides, 8, 580

Pyridine, 3,5-diethoxycarbonyl-
reduction
borohydrides, 8, 580

Pyridine, 3,5-diethoxycarbonyl-2,6-dimethyl-
1,4-dihydro-
reduction
unsaturated carbonyl compounds, 8, 561

Pyridine, 2,6-dihydroxy-
synthesis
via Knoevenagel reaction, 2, 378

Pyridine, 2,6-dimethyl-
hydrogenation
nickel catalysts, 8, 597
α-lithiated
crystal structure, 1, 12
Rosenmund reduction, 8, 287

Pyridine, 4-dimethylamino-
catalyst
thiol ester synthesis, 6, 437

Pyridine, N,N-dimethylamino-
catalyst
acylation, 6, 327

Pyridine, 2,6-disubstituted-1,2,5,6-tetrahydro-
synthesis
via Mannich reaction, 2, 1035

Pyridine, hydroxy-
Reimer–Tiemann reaction
normal, 2, 770

Pyridine, 3-hydroxy-
electroreduction, 8, 593
hydrogenation, 8, 598

Pyridine, 3-hydroxy-N-phenyl-
betaine
reaction with alkynes, 4, 48

Pyridine, iodo-
coupling reactions
with alkylzinc reagents, 3, 460

Pyridine, 3-iodo-
S_N1 reaction, 4, 462

Pyridine, mercapto-
synthesis, 4, 441

Pyridine, 2-mercaptopo-
N-oxide
O-acyl thiohydroxamates from, 7, 719
polymer-bonded
synthesis via Friedel–Crafts reaction, 3, 302

Pyridine, 2-methoxy-
ortho mettallation, 1, 474

Pyridine, 3-methoxy-
reduction
borohydrides, 8, 584

Pyridine, β-methoxyvinyl-
synthesis, 2, 598

Pyridine, methyl-
microbial oxidation, 7, 75

Pyridine, 2-methyl-
hydrogenation
nickel catalysts, 8, 597

Pyridine, 4-methyl-
Vilsmeier–Haack reaction, 2, 789

Pyridine, 2-methyl-3-acetyl-
synthesis, 1, 560

Pyridine, 2-methyl-3-formyl-
synthesis, 1, 560

Pyridine, 6-methyl-2,3,4,5-tetrahydro-
N-oxide
reaction with allylmagnesium bromide, 1, 393

Pyridine, N-methyltetrahydro-
hydroformylation, 4, 927

Pyridine, 3-methylthio-
reduction
borohydrides, 8, 584

Pyridine, 6-methyl-2-vinyl-
Michael addition, 4, 10

Pyridine, 3-nitro-
electroreduction, 8, 593
reduction
borohydrides, 8, 580

Pyridine, 4-nitro-
aro mhatic nucleophilic substitution, 4, 432
N-oxide
<table>
<thead>
<tr>
<th>Subject</th>
<th>Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridine, 2-nitroso-</td>
<td>synthesis, 4, 432</td>
</tr>
<tr>
<td>Pyridine, aromatic nucleophilic substitution</td>
<td>4, 432</td>
</tr>
<tr>
<td>Pyridine, pentachloro-</td>
<td>dehalogenation, 4, 439</td>
</tr>
<tr>
<td>Pyridine, pentfluoro-</td>
<td>synthesis, 7, 752</td>
</tr>
<tr>
<td>Pyridine, 2-phenyl-</td>
<td>hydrogenation, 8, 598</td>
</tr>
<tr>
<td>Pyridine, 4-phenyl-</td>
<td>synthesis, 3, 513</td>
</tr>
<tr>
<td>Pyridine, 4-pyrrolidino-</td>
<td>catalyst, 6, 327</td>
</tr>
<tr>
<td>Pyridine, 4-acetamido-</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinecarbaldehyde</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinecarboxylic acid</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridine-3-carbaldehyde</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridine-3-carboxaldehyde</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridine-3-carboxylic acid</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridine-2-carboxaldehyde</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinecarboxylic acid, 2,6-diphenyl-</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinedicarboxylic acid</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinedicarboxylic acid, 2,6-diphenyl-</td>
<td>synthesis, 7, 656</td>
</tr>
<tr>
<td>Pyridinedicarboxylic acid, O,O'-dimethyl</td>
<td>reaction with glycols, 7, 449</td>
</tr>
<tr>
<td>Pyridine-3,5-dicarboxylic acid</td>
<td>hydrid transfer, 8, 82</td>
</tr>
<tr>
<td>Pyridine-3,5-dicarboxylic acid, 1,4-dihydro-</td>
<td>hydride donors, 8, 92</td>
</tr>
<tr>
<td>Pyridine N-oxides</td>
<td>dehydrogenation, 7, 144</td>
</tr>
<tr>
<td>Pyridine, 2-aryl-</td>
<td>synthesis, 3, 512; 4, 446</td>
</tr>
<tr>
<td>Pyridines, 2-aryl-</td>
<td>synthesis, 3, 512; 4, 430</td>
</tr>
<tr>
<td>Pyridines, 2-(o-cyanoaryl)-</td>
<td>synthesis, 3, 512; 4, 428</td>
</tr>
<tr>
<td>Pyridines, dihydro-</td>
<td>analysis of aldehydes, 2, 354</td>
</tr>
</tbody>
</table>
Pyridines

Cumulative Subject Index

Pyridines

- aromatization
 - solid support, 7, 846
- Hantzsch synthesis
 - Knoevenagel reaction, 2, 376
- optically active
 - synthesis, 2, 521
- oxamination, 7, 489
- oxidation, 4, 428
- reaction with singlet oxygen, 2, 1068

Pyridines, 1,2-dihydro-
- Diels–Alder reactions
 - acyl nitroso compounds, 5, 420
 - nitrosobenzene, 5, 418
 - reduction
 - borohydrides, 8, 585
 - synthesis via hetero electrocyclization, 5, 741

Pyridines, 1,4-dihydro-
- acid stability, 8, 95
- chiral
 - intramolecular reductions by, 8, 95
 - chiral macrocyclic
 - reduction, model, 8, 95
 - enantioselective reductions, 8, 93
 - hydride donor, 8, 92
 - macrocyclic
 - enantioselective reductions, 8, 95
 - redox potentials, 8, 93
 - reduction
 - pyridinium salts, 8, 589
 - reduction potential
 - thermodynamic activation, 8, 82
 - synthesis via retro Diels–Alder reactions, 5, 583

Pyridines, 5,6-dihydro-
- synthesis via intramolecular Ritter reaction, 6, 273
- via retro Diels–Alder reactions, 5, 583

Pyridines, halo-
coupling reactions, 3, 509
- oxide
 - reduction, 8, 392
 - reaction with magnesium dialkylcuprates, 3, 219

Pyridines, 2-halo-
- [2 + 2 + 2] cycloaddition, 5, 1156

Pyridines, substituted
- synthesis via organocopper compounds, 3, 219

Pyridines, tetrahydro-
carben complexes
- reactions with diphenylacetylene, 5, 1105
- Schopf reaction, 2, 943
- synthesis via N-acyliminium ions, 2, 1072
- via Diels–Alder reactions, 5, 404, 406
- via Mannich reaction, 2, 1034

Pyridines, 1,2,3,6-tetrahydro-
- oxamination, 7, 489

Pyridines, vinyl-
- Michael addition, 4, 10
- synthesis, 3, 498
2(1H)-Pyridinethione, 3-formyl-
- alkylation, 2, 150
2-Pyridinethione, N-hydroxy-
- carbamates
 - radical cyclization, 4, 812
- Pyridinethiones
 - synthesis via [2 + 2 + 2] cycloaddition, 5, 1156
- Pyridinethiones, N-alkoxy-
 - alkoxy radicals from, 4, 812
- Pyridinium bromide, 1-methyl-4-carbamoyl-
 - reduction
dithionite, 8, 589
- Pyridinium chloride, 2-benzoylthio-1-methyl-
 - acid anhydride synthesis, 6, 310
- Pyridinium chlorochromate
 - allylic oxidation, 7, 103
 - organoborane oxidation, 7, 601
 - oxidation
 - alcohols, 7, 260
 - 2-nitro alcohols, 2, 323
 - solid-supported, 7, 841
 - oxidative halogenation reagent, 7, 530
- Pyridinium chlorochromate, 4-(dime thylamino)-
 - oxidation
 - alcohols, 7, 269
- Pyridinium chromate
 - inert inorganic support
 - alcohol oxidation, 7, 279
 - oxidation
 - solid support, 7, 845
- Pyridinium dichromate
 - allylic oxidation, 7, 103
 - oxidation
 - alcohols, 7, 272
- Pyridinium dichromate, 3-carboxy-
 - oxidation
 - alcohols, 7, 277
- Pyridinium dichromate, 4-carboxy-
 - oxidation
 - alcohols, 7, 277
- Pyridinium fluorochromate
 - oxidation
 - alcohols, 7, 267
- Pyridinium iodide, 1-methyl-4-cyan-
 - reduction
 - borohydrides, 8, 587
- Pyridinium salts
 - arene substitution reactions, 4, 425
 - oxidation
 - of primary and secondary alcohols, 8, 96
 - reactions with alkyl radicals, 4, 768
 - reduction
 - aluminum hydrides, 8, 587
 - borohydrides, 8, 584
dihydropyridine, 8, 589
 - regioselectivity, 8, 92
- Pyridinium salts, 2-acyloxy-
- acylation
 - alcohols, 6, 331
- Pyridinium salts, 2-acetylthio-N-alkyl-
 - acylating agents, 6, 442
- Pyridinium salts, alkox y-
reduction
aluminum hydrides, 8, 587
Pyrimidinium salts, N-alkyl-reductive deamination, 8, 827
Pyrimidinium salts, 1-alkyl-3-carbamoyl-partial reduction, 8, 600
Pyrimidinium salts, 1-amino-reduction
borohydrides, 8, 587
Pyridinium salts, N-(aryloxy)-rearrangement, 4, 430
Pyridinium salts, azo-arene substitution reactions, 4, 425
Pyridinium salts, 4-cyano-1-methyl-polarographic reduction, 8, 595
Pyridinium salts, 5,6-dihydro-reactions with organometallic compounds, 1, 367
Pyridinium salts, 1,3-dimethyl-reduction
borohydrides, 8, 587
Pyridinium salts, N-(2,6-dimethyl-4-oxopyridin-1-yl)-aromatic nucleophilic substitution, 4, 430
Pyridinium salts, fluoro-reaction with alcohols
iodination, 6, 214
Pyridinium salts, 2-halo-carbothioate synthesis, 6, 438
Pyridinium salts, 4-nitroaryl-electroreduction, 8, 595
Pyridinium sulfonate, 2-fluoro-1-methyl-activator
DMSO oxidation of alcohols, 7, 299
Pyridinium p-toluenesulfonate catalyst
Diels–Alder reaction, 2, 683
Pyridinium tosylate, 2-fluoro-1-methyl-
Pyridinotropolone rearrangements, 3, 818
Pyridin-1-yl, 2,6-dimethyl-4-oxoarene substitution reactions, 4, 425
Pyrido[2,3-d]benzopyran, 10-hydroxy-10-methyl-6-nitro-synthesis, 4, 430
Pyrido[4,3-b]carbazole synthesis
via Knoevenagel reaction, 2, 379
Pyrido[3,2-d]coumarins synthesis, 4, 430
Pyridodipyrimidine alcohol oxidation, 8, 97
2-Pyridone, 1-alkyl-reduction
aluminum hydrides, 8, 583
2-Pyridone, 5,6-dihydro-synthesis
via Mannich reaction, 2, 930
Pyridone, N-hydroxy-oxidation with, 7, 662
2-Pyridone, N-methyl-photodimerization, 5, 637
4-Pyridone, 1-methyl-reduction
dissolving metals, 8, 597
Pyridones electroreduction, 8, 593
hydrogenation, 8, 598
synthesis via Knoevenagel reaction, 2, 361
2-Pyridones photodimerization, 5, 637, 638
synthesis via [2 + 2 + 2] cycloaddition, 5, 1155–1157 via 8-ketonicitiles, 6, 280 via Mannich reaction, 2, 916
4-Pyridones reduction
dissolving metals, 8, 597
1H-Pyrido[3,2,1-kl]phenothiazine Mannich reaction with preformed iminium salts, 2, 902
synthesis via Friedel–Crafts reaction, 2, 759
Pyridopyrimidines synthesis, 3, 543
Pyrido[2,1-b]quinazoline synthesis via carbonylation, 3, 1038
Pyridoxine synthesis via [2 + 2 + 2] cycloaddition, 5, 1154
Pyridylamides, N-methylamino-acylation
Grignard reagents, 1, 422
Pyridyl betaine, nitro-cycloaddition reactions fulvenes, 5, 630
2-Pyridylcarboxylates acylation, 1, 434
Pyridylethoxy carbonyl group amine-protecting group, 6, 639
Pyridylethyl esters carboxy-protecting groups, 6, 666
3-Pyridyl isocyanide O-acyl thiohydroxamate photolysis, 7, 731
2-Pyridyl ketone-O-aclyloximes acylation
Grignard reagents, 1, 422
Pyridyl nitrites cycloaddition reactions, 5, 1152
Pyridylsulfonloylox group alcohol inversion, 6, 22
Pyridyl thioesters use in synthesis lactones, 6, 438
Pyridyl triflate coupling reactions with Grignard reagents, 3, 460
2,3-Pyridynes nucleophilic addition, 4, 494
3,4-Pyridynes Diels–Alder reactions, 5, 384
nucleophilic addition, 4, 494
Pyrimidine, 5-bromo-6-chloro-2,4-dimethyl-hydrogenolysis, 8, 902
Pyrimidine, 2-chloro-S_{2}N_{1} reaction, 4, 462
Pyrimidine, 5-chloro-synthesis via dichlorocarbene insertion, 4, 1021
Pyrimidine, 2-chloro-4,6-dimethyl-hydrogenolysis, 8, 906
Pyrimidine

Pyrimidine, 4-diarylborolxy-2-isopropyl-6-methylboryl enolates from, 2, 244
Pyrimidine, 1,3-diaryl-5,5-dimethylhexahydroalkylation, 6, 523
Pyrimidine, 2,4-diamino-5-(3,4,5-triethylbenzyl)-synthesis, 3, 301
Pyrimidine, hydroxy-Reimer–Tiemann reaction normal, 2, 770
Pyrimidine, 4-methoxy-l-oxide cyanation, 4, 433
Pyrimidine, 6-methyl-Vilsmeier–Haack reaction, 2, 789
Pyrimidine, 2-methylthio-alkylation with primary alkyl Grignard reagents, 3, 461
Pyrimidine, perhydro-synthesis via Mannich reaction, 2, 916
Pyrimidine, thio-synthesis via Eschenmoser coupling reaction, 2, 889
Pyrimidine, trichloro-alkylation with primary alkyl Grignard reagents, 3, 461
5-Pyrimidinecarbonitriles, 2-aryloxy-4-amino-synthesis, 4, 440
Pyrimidinediones isoalloxazines from, 4, 436
synthesis via [2 + 2 + 2] cycloaddition, 5, 1158
Pyrimidines analogs synthesis via Eschenmoser coupling reaction, 2, 889
Diels–Alder reactions, 5, 491
heterocyclic fused synthesis, 3, 543
N-oxides cyanation, 4, 433
Knoevenagel reaction, 2, 364
reduction, 8, 642
synthesis via Vilsmeier–Haack reaction, 2, 787
Pyrimidines, N-benzylidihydro-reduction
sodium borohydride, 8, 642
Pyrimidine-2-thione, 1-aryl-reduction
LAH, 8, 642
Pyrimidine-2((1H)-thiones reduction sodium borohydride, 8, 642
Pyrimidinium salts, dihydro-reduction, 8, 642
Pyrimidinone synthesis via retro Diels–Alder reactions, 5, 583
Pyrimidin-2((1H)-ones reduction sodium borohydride, 8, 642
Pyrimidobalamic acid synthesis via Diels–Alder reaction, 5, 492
Pyrimidopyridine

Pyroangolenosolide synthesis, 7, 174
Pyrocorticosterol synthesis via electrocyclization, 5, 700
Pyroglycerol synthesis via Cope rearrangement, 5, 809
Pyrone, α-cuprio-reactivity, 3, 217
Pyrone, dihydro-optically pure
Diels–Alder reaction, 2, 688
reduction DIBAL-H, 8, 544
synthesis via Diels–Alder reaction, 2, 665
via Knoevenagel reaction, 2, 359
2-Pyrone, 3,4-dihydro-4,4-dimethyl-photolysis with benzoquinone, 5, 156
Pyrone, 3,5-diphenyl-synthesis via Vilsmeier–Haack reaction, 2, 789
Pyrone, 4-hydroxy-6-methyl-
Knoevenagel reaction product
Michael reaction, 2, 359
2-Pyrene, 4-isopropyl-6-methyl-
alkylation, 3, 24
4-Pyrene, 2-methoxy-reduction
stereoselectivity, 8, 5
Pyrone-3-carboxylate synthesis via Michael addition, 4, 41
Pyrones (3 + 2) cycloaddition reactions, 5, 307
Diels–Alder reactions, 5, 330
enzymic reduction specificity, 8, 196
synthesis via activated alkynes, 4, 53
via [2 + 2 + 1 + 1] cycloadditions, 5, 1102
via [2 + 2 + 2] cycloaddition, 5, 1157
via dibromocyclopropyl compounds, 4, 1023
via Michael addition, 4, 41
via tandem vicinal difunctionalization, 4, 251
2-Pyrones 6-conjugated
synthesis, 7, 109
[4 + 3] cycloaddition reactions, 5, 604
photodimerization, 5, 638
synthesis via organocuprate conjugate addition, 4, 192
4-Pyrones aldol cyclization, 2, 170
reduction borohydrides, 8, 540
synthesis via palladium(II) catalysis, 4, 557, 558
4-Pyrones, 2,3-dihydro-α'-acetoxylation, 7, 175
4-Pyrones, tetrahydro-cyclization, 5, 766
Cumulative Subject Index

Pyrroles

synthesis
via intramolecular diastereoselective additions, 2, 651

α-Pyrole sulfone
Diels–Alder reaction, 6, 161

Pyrophosphates
phosphorylation, 6, 605
Pyrophosphates, tetraalkyl synthesis, 6, 607

Pyrrrole, 2-acetyl-
hydrogenation, 8, 604

Pyrrrole, 3-acetyl-
oxidative rearrangement solid support, 7, 846

Pyrrrole, 2-acetyl-1-methyl-
Friedel-Crafts reaction rearrangement, 2, 745

Pyrrrole, acyl-
reduction metal hydrides, 8, 270

Pyrrrole, 1-alkyl-

Pyrrrole, 1-benzenesulfonyl-

Pyrrrole, 2-benzyl-
reactions with carbenoids, 4, 1061
Friedel-Crafts reaction, 2, 743
reduction dissolving metals, 8, 605

Pyrrrole, 2,5-bis(piperidylmethyl)-synthesis
via Mannich reaction, 2, 965

Pyrrrole, 2,5-bis(trimethylsiloxy)-
reaction with carbonyl compounds, 2, 620

Pyrrrole, 2-(4′-chlorobenzoyl)-1,3,5-trimethyl-
rearrangement, 2, 745
Pyrrrole, 3-(4′-chlorobenzoyl)-1,2,4-trimethyl-
rearrangement, 2, 745

Pyrrrole, 4-cyano-3,3-diaryl-5-methyl-2-oxo-
2,3-dihydro-
synthesis, 3, 826

Pyrrrole, 2,5-dimethyl-
Birch reduction, 8, 605

Pyrrrole, 1-dimethylamino-
Friedel–Crafts acylation, 2, 737

Pyrrrole, 3,4-dimethyl-2,5-diphenyl-
synthesis, 6, 789

Pyrrrole, 3-hydroxy-
synthesis via activated alkynes, 4, 52

Pyrrrole, 2-lithio-
alkylation, 3, 261

Pyrrrole, 2-lithio-N-(N',N'-dimethylamino) acylation, 1, 410

Pyrrrole, 1-methyl-
Friedel–Crafts reaction, 2, 743
Mannich reaction nonprotic solvent, 2, 965
with formaldehyde and dimethylamine hydrochloride, 2, 965
photocycloaddition reactions with carbonyl compounds, 5, 176

Pyrrrole, 2-methyl-
Mannich reaction with formaldehyde and secondary amines, 2, 965

Pyrrrole, 1-methyl-2,3,5-tris(3-pyridyl)-synthesis
via γ-diketones, 1, 547

Pyrrrole, nitro-1-alkyl-
aromatic nucleophilic substitution, 4, 432

Pyrrrole, 1-phenyl-2-lithio-
crystal structure, 1, 35

Pyrrrole, 2-(2-pyrylidoxy)-synthesis
via Mannich reaction, 2, 971

Pyrrrole, 1-trimethylsilyl-
Diels–Alder reactions, 5, 382

Pyrrrole 1-aspartates
Friedel–Crafts reaction, 2, 757
Pyrrrole-2-carbaldehyde synthesis
via Reimer–Tiemann reaction, 2, 770
via Vilsmeier–Haack reaction, 2, 787

Pyrrrole-2-carbaldehydes, 5-substituted synthesis
via dithiation of azafulvene dimer, 1, 473
metallation, 1, 473

Pyrrrole-2-carboxylic acid reduction, 8, 606

Reimer–Tiemann reaction, 2, 771

Pyrrrole-2-carboxylic acid, 4, 5-dimethyl-
ethyl ester

Mannich reaction, 2, 965

Pyrrrole-3-carboxylic acid, 2,4-dimethyl-
ethyl ester

Mannich reaction, 2, 968

Pyrrrole-3-carboxylic acid, 2,5-dimethyl-
ethyl ester

Mannich reaction, 2, 965

Pyrrroles
acylation bimolecular aromatic, 2, 739
[2 + 2 + 2] cycloaddition reactions, 5, 1143
[4 + 3] cycloaddition reactions, 5, 608
Diels–Alder reactions, 5, 382, 491

Friedel–Crafts acylation, 2, 742
Mannich reaction with formaldehyde and secondary amines, 2, 962, 965
with imines, 2, 970
with primary amine hydrochlorides, 2, 968
metallation, 1, 473
reaction with dihalocarbenes, 4, 1004
reactions with ketocarbenoids, 4, 1061–1063
reduction, 8, 603–630
N-substituted lithiation, 1, 473
synthesis, 2, 943
regiocontrolled, 1, 552
via alkynes, palladium(II) catalysis, 4, 567
via anilino ketones and activated alkynes, 4, 52
via C–H insertion reactions, 3, 1057
via cyclization of β-aminoketones, 4, 411
via [2 + 2 + 2] cycloaddition, 5, 1140
via [3 + 2] cycloaddition reactions, 5, 297
via Diels–Alder reaction, 5, 428
via dipolar cycloadditions with muncnones, 4, 1097
via metal-catalyzed cycloadditions, 5, 1195
via Michael addition, 4, 16
via nitrogen-stabilized carbanions, 1, 461
via palladium catalysis, 4, 598
via retro Diels–Alder reactions, 5, 581
Vilsmeier–Haack reaction, 2, 780
Pyroles

Cumulative Subject Index

732

from succinimides, 2, 607
Pyroles, 1-amino-retrograde Diels-Alder reactions, 5, 571
Pyroles, 1,2-diencyl-electrocyclic ring closure, 5, 713
Pyroles, dihydro-annulated
synthesis via Knoevenagel reaction, 2, 378
carbone complexes
reaction with alkyones, 5, 1105
Schopf reaction, 2, 943
synthesis
via aminomercuration of dienes, 4, 291
Pyroles, 2-keto-introduction into natural products, 1, 409
Pyroles, 1-phenyl-synthesis
via [2 + 2 + 2] cycloaddition, 5, 1140
Pyroles, 1,2,5-trisubstituted
synthesis, 1, 559
Pyrrolidines
reduction
aluminates, 8, 272
Pyrrolidine, acyl-
synthesis
via Mannich cyclization, 2, 1041
Pyrrolidine, allyl-
anion
y-alkylation, 2, 61
Pyrrolidine, 1-amino-2-(methoxymethyl)-N,N-dimethylhydrazine replacement
chiral auxiliary, 2, 514
lithiated hydrazone
asymmetric alkylation, 3, 37
lithiated hydrazone enolate
crystal structure, 1, 29
synthesis, 6, 119
Pyrrolidine, 5-butyl-2-heptyl-
synthesis
via Eschenmoser coupling reaction, 2, 881
Pyrrolidine, 2,5-dimethyl-
cyclohexanone enamine from
alkylation, 3, 35
synthesis, 6, 717
Pyrrolidine, cis-dimethyl-
synthesis
via cyclization of 3-methyl-4-pentenylamine, 4, 403
Pyrrolidine, 2,3-dioxo-
dimerization, 2, 141
Pyrrolidine, 2-(diphenylhydroxymethyl)-
reduction, 8, 171
Pyrrolidine, divinyl-
synthesis
via palladium-ene reactions, 5, 53
Pyrrolidine, hydroxy-
HGA lactonization, 6, 358
Pyrrolidine, 2-methoxy-
synthesis, 3, 651
Pyrrolidine 2-methoxymethyl-chiral
copper ligand, 2, 120
enamine
reaction with nitrooxyrenes, 6, 716
a-hydroxylation, 7, 184
iminium salts from, 5, 111
Pyrrolidine, methyl-carbene complexes
reaction with 2-phenylpropanal, 5, 1080
Pyrrolidine, 1-methyl-deprotonation, 1, 476; 3, 65
N-oxide
azomethine ylides from, 4, 1089
reduction
lithium aluminum hydride, 8, 273
Pyrrolidine, 3-methylene-
synthesis
via allyl organometallic compounds, 2, 981
via crotyl organometallic compounds, 2, 982
Pyrrolidine, 1,phenylsulfonyl-
reaction with 1-octene, 7, 493
Pyrrolidine, 1-propionyl-
enolates
stereoselectivity, 2, 211
Pyrrolidine alkaloids
synthesis
via cyclofunctionalization, 4, 401
via enol ethers, 2, 613
via Eschenmoser coupling reaction, 2, 881
Pyrrolidine amides, 2-(1-hydroxy-1-methyl-ethyl)-addition reactions
with organomagnesium compounds, 4, 85
Pyrrolidine-2,4-dione, 3-diazocarbonylation
route to p-lactams, 3, 902
Pyrrolidines
alkylation, 3, 69
N-alkylation, 6, 66
annulation, 1, 889
chiral auxiliaries
nucleophilic addition reactions, 1, 64, 65
Diels-Alder reactions, 5, 366
enamines
alkylation, 6, 714
lithiated formamidines
reaction with benzaldehyde, 1, 482
synthesis, 1, 669; 3, 647; 6, 740
chiral, 1, 558
via N-acyliminium ions, 2, 1066
via alkenes, 7, 476
via cyclization of y-allylanilines, 4, 412
via cyclization of vinylic substrates, 4, 398
via [3 + 2] cycloaddition reactions, 5, 307
via ene reactions, 5, 10
via a-methoxy carbamates, 1, 377
via Michael addition, 4, 24
via palladium-ene reactions, 5, 51
via solvomercuration of amines, 4, 290
Pyrrolidines, 2,5-disubstituted
synthesis
via cyclization of allylic substrates, 4, 403
Pyrrolidinium ions, dimethyl-
electroreduction of nonalkenic carbonyl compounds
mediator, 8, 133
electroreduction of nonconjugated alkenic ketones
mediator, 8, 134
Pyrrolidinium tetrafluoroborate, dimethyl-
electropinacolization
aliphatic carbonyl compounds, 3, 570
Pyrrolidinium tetrafluoroborate, 1-vinyl-2-ethoxy-Diels-Alder reactions, 5, 500
Pyrrolidinetetacyclophanes
Cumulative Subject Index

Pyrrolo[1,2-α]quinoline

- synthesis
 - via vinylaziridine ring opening, 5, 937

3-Pyrrolo[1,2-α]quinolines
- synthesis
 - via cyclization of α-aminoallenes, 4, 411
 - via vinylaziridine ring opening, 5, 937

Pyrrolo[2,3-b]pyridines, 2,5-dialkyl-reduction, 8, 47
- synthesis
 - via N-substituted allylic anions, 2, 62

1H-Pyrrolo[3,2-b]pyridines
- synthesis
 - via diazoalkene cyclization, 4, 1157
 - via Knoevenagel reaction, 2, 377

Pyrrolopyrazoline
- synthesis
 - via diazoalkene cyclization, 4, 1153

Pyrrolopyridines
- lithiation, 1, 471

Pyrrolo[2,3-b]pyridines
- synthesis
 - via S_n1 reaction, 4, 478

1H-Pyrrolo[3,2-b]pyridines
- synthesis
 - via S_n1 reaction, 4, 478

Pyrrolo[2,3-b]pyridines, 2-alkyl-synthesis
- via S_n1 reaction, 4, 478

Pyrrolo[2,3-c]pyridines, 2-alkyl-synthesis
- via S_n1 reaction, 4, 478

Pyrrolo[3,2-c]pyridines, 2-alkyl-synthesis
- via S_n1 reaction, 4, 478

Pyrrolo[1,2-α]quinoline
- synthesis
 - via intramolecular hydride transfer, 8, 98
Pyrrolothiophene

Pyrrolothiophene
synthesis
via 5-exo-trig cyclization, 4, 38

2-Pyrolylaceta
synthesis
via ketocarbeneoids and pyrroles, 4, 1061

ϵ-Pyromycinone
synthesis
via cyclofunctionalization of cycloalkene, 4, 373

Pyruvates
ene reaction, 2, 538
synthesis
via β-cleavage of epoxides, 3, 759

Pyruvic acid
amides
catalytic hydrogenation, 8, 145
hydrogenation
catalytic, 8, 145
menthyl ester
asymmetric hydrogenation, 8, 144
methyl ester
hydrogenation, modified metal catalyst, 8, 151

Pyruvyl chloride
synthesis
via dichloromethyl methyl ether, 6, 305

Pyrylium salts
hydrogenation
via Diels–Alder reactions, 5, 502
via Friedel–Crafts acylation, 2, 712

Pyrylium salts, 3-oxido-
cycloaddition
carbonyl ylide intermediate, 4, 1092

Pyrylium ylides, oxido-
unsaturated side chain
dipolar cycloaddition, 4, 1093
Qinghaosu
synthesis via Paterno–Büchi reaction, 5, 155

Quadracyclane
cycloadition reactions, 5, 1187
reaction with dimethyl dioxiiran, 3, 736
synthesis via photocyclization, 5, 206

Quadrone
synthesis, 3, 573, 709; 7, 105, 817
via Cope rearrangement, 5, 504, 994
via cyclopropanation/Cope rearrangement, 4, 1049
via cyclopropane ring opening, 4, 1045
via organostannane acylation, 1, 447
via palladium(II) catalysis, 4, 573
via Pauson–Khand reaction, 5, 1060
via photocycloaddition, 5, 669
via Wharton reaction, 8, 927

Quadrone, decarboxy-
synthesis via photocycloaddition, 5, 667
via Wacker oxidation, 7, 455

Quadrone, dedimethyl-
synthesis via photocycloaddition, 5, 667

Quasi-Favorskii rearrangement
2-arylalkanoic acids, 3, 788

Quassin
synthesis via Diels–Alder reaction, 5, 351

Quassinoids
oxidation, 7, 239
synthesis, 7, 174; 8, 929
via cyclofunctionalization of cycloalkene, 4, 373
via Diels–Alder reactions, 5, 344
via Wharton reaction, 8, 928

Quaternary centers
contiguous synthesis via Ireland rearrangement, 5, 841

Queen bee substance
synthesis via Wacker oxidation, 7, 454

Quercus lactone
synthesis, 1, 565
via conjugate addition, 2, 330

2,2'-Quinaldil
rearrangement, 3, 826

Quinidine, dihydro-
asymmetric dihydroxylation, 7, 429
Quinine
lithium aluminum hydride modifier, 8, 164
Quinidine, dihydro-
asymmetric dihydroxylation, 7, 429

Quinisatine
rearrangement, 3, 835

Quinocarcin
synthesis, 1, 404; 2, 1069

p-Quinodimethane
synthesis via ketocarbenoids, 4, 1054

α-Quinodimethane, 7-butyl-
Diels–Alder reactions, 5, 391

α-Quinodimethane, diacetoxyl-
Diels–Alder reactions, 5, 395

α-Quinodimethane, 7-8-dibromo-
Diels–Alder reactions, 5, 394

Quinodimethanes
precursors synthesis, 3, 255
synthesis, 3, 161, 173

α-Quinodimethanes
Diels–Alder reactions, 5, 385–396
imines, 5, 410
synthesis, 5, 386–390
via benzocyclobutenes, 5, 675, 691
via benzocyclobutene thermolysis, 5, 1031
via electrocyclic ring opening, 5, 1151
via thermolysis, 5, 741
5,8-Quinoflavone
synthesis, 7, 341

α-Quinol
acetates extracyclic migrations, 3, 813
synthesis, 7, 338
diacetates rearrangements, 3, 812

Quinoline, 1-alkoxycarbonyl-2-(2-alkynyl)-1,2-dihydro-
synthesis via lithium allenes, 2, 86

Quinoline, 2-bromo-
SN1 reaction, 4, 462

Quinoline, 3-bromo-
coupling reactions with Grignard reagents, 3, 461
SN1 reaction, 4, 462

Quinidine, 2-chloro-
coupling reactions with Grignard reagents, 3, 461
oxidation peroxymaleic acid, 7, 750
SN1 reaction, 4, 462
reactions with benzyl sulfides, 4, 475

Quinoline, 3-chloro-
synthesis via dihalocarbenes, 4, 1004, 1021

Quinoline, 3-chloro-7-iodo-
SN1 reactions, 4, 460

Quinoline, cyano-
reduction
Quinoline

borohydrides, 8, 581
Quinoline, 2-cyano-
synthesis, 4, 433
Quinoline, 3,4-dihydro-
reaction with trimethylsilyl triflate, 1, 391
Quinoline, 3-dimethylamino-
reduction borohydrides, 8, 581
Quinoline, 2-halo-
SRN− reactions, 4, 458
Quinoline, 8-hydroxy-
esters reaction with Grignard reagents, 1, 422
Quinoline, 2-iodo-
SRN− reaction, 4, 462
Quinoline, mercapto-
synthesis, 4, 441
Quinoline, 6-methoxytetrahydro-
synthesis via arene–metal complexes, 4, 523
Quinoline, 2-methyl-
reduction ruthenium phosphine/formic acid complex, 8, 591
Quinoline, 4-methyl-
reduction homogeneous catalysis, 8, 600
Quinoline, N-methyltetrahydro-
synthesis via Diels–Alder reaction, 5, 500
Quinoline, 2-methylthio-
synthesis lithium allenines, 2, 86
Quinoline, 4-naphthyl-
synthesis, 4, 428
Quinoline, 8-nitro-
selective aldehyde reduction, 8, 17
Quinoline, 2-trimethylsilyl-
Friedel–Crafts reaction, 2, 743
Quinoline-N-borane
dihydropyridine, 8, 589
reduction dissolving metals, 8, 596
aluminum hydrides, 8, 584
4-Quinolinecarboxylic acid
Lossen reaction, 6, 824
Quinoline-3-carbonyl chloride, 2-phenyl-
Friedel–Crafts reaction, 2, 757
Quinolinecarboxylic acid
reductive decarboxylation, 7, 720
Quinolinediones, tetrahydro-
synthesis via conjugate addition, 4, 222
via hydrazone anions, 2, 520
Quinoline-S
catalyst Rosenmund reduction, 8, 286
Quinolines
acylating agents, 1, 422
with sp2 organometallics, 3, 460
electrocrodeuction, 8, 594
hydrogenation homogeneous catalysis, 8, 456
nickel catalysts, 8, 597, 598
N-oxides
deoxygenation, 8, 391
Knoevenagel reaction, 2, 364
reduction aluminum hydrides, 8, 584
borohydrides, 8, 580
dihydropyridine, 8, 589
sodium hydride, 8, 588
regioselective cyanation, 4, 433
Reissert compounds, 8, 295
synthesis, 7, 628
via lithium allenines, 2, 86
via Reimer–Tiemann reaction, 2, 773
via sequential Michael ring closure, 4, 262
via tandem vicinal difunctionalization, 4, 251
via Vilsmeyer–Haack reaction, 2, 787
Quinolines, chloro-
synthesis, 3, 513
Quinolines, dihydro-
synthesis via benzocyclobutenes, 5, 691
via FVP, 5, 718
Quinolines, 2,3-disubstituted
synthesis, 7, 627
Quinolines, halo-
coupling reactions, 3, 509
Quinolines, hydroxy-
Reimer–Tiemann reaction normal, 2, 770
Quinolines, octahydro-
cis-fused
synthesis via palladium-ene reactions, 5, 51
Quinolines, tetrahydro-
lithiated formamidines
reaction with benzaldehyde, 1, 482
microbial hydroxylation, 7, 75
oxidation, 7, 745
2-Quinolinethiol
synthesis via SRN− reaction, 4, 475
Quinolinium chlorochromate
oxidation alcohols, 7, 271
Quinolinium dichromate
oxidation alcohols, 7, 277
Quinolinium salts
reduction alcohols, 7, 271
Quinolinium salts, l-methyl-
reduction formates, 8, 591
Quinolinizidine alkaloids
synthesis chiral, 1, 559
via Eschenmoser coupling reaction, 2, 881
Quinolizidines
synthesis, 1, 559; 6, 746
via γ-diketones, 1, 547
via Mannich reaction, 2, 1009, 1010
via nitrones cyclization, 4, 1120
2-Quinolone, 4-methoxycarbonyl-
synthesis
Quinolones

via intermolecular vinyl substitution, 4, 846
synthesis
via activated alkynes, 4, 52

2-Quinolones
synthesis
via Vilsmeier–Haack reaction, 2, 787

2-Quinolones, 3,4-dihydro-1-hydroxy-
synthesis
via oxidation of tetrahydroquinolines, 7, 745

Quinolones, 4-phenyl-3-vinyl-
photolysis, 5, 728

8-Quinolyl phosphate
hydrolysis, 6, 624

o-Quinomethide imines
Diels–Alder reactions, 5, 473

Quinone, 1,2-dicyano-4,5-dichloro-
cycloaddition reactions, 5, 273

Quinone diacetals
synthesis, 7, 799

Quinone diazides
synthesis, 6, 122

Quinone epoxides
synthesis
via retro Diels–Alder reactions, 5, 563

o-Quinone methides
Diels–Alder reactions, 5, 468

Quinones
addition reactions
carbon-centred radicals, 4, 765
arenes from, 8, 949
aromatization, 7, 136
benzilic rearrangement, 3, 828
hydride transfer
with 1,4-dihydropyridines, 8, 93
hydrogenation, 8, 152

Quinoxalines

1,4-dioxides
deoxygenation, 8, 391
reduction, 8, 643
synthesis, stereocontrol, 3, 960

intramolecular cycloaddition
nitrones, 4, 1119
Perkin reaction, 2, 399
reactions with π-allylnickel halides, 3, 424
reduction
hydroquinones, 8, 19
silanes, 8, 318
synthesis, 7, 143, 345–356, 800
via electrolycyclization, 5, 733
via metal-catalyzed cycloaddition, 5, 1202–1204
via solid support oxidation, 7, 841
use in dehydrogenation
imines, 7, 138
vinyl substitutions
heterocyclic compounds, 4, 837

o-Quinones
Diels–Alder reactions, 5, 468

p-Quinones
Diels–Alder reactions, 5, 330, 341
radical alkylation, 7, 930
synthesis, 7, 346

Quinones, azido-
synthesis
via haloquinones, 6, 247

Quinones, cyano-
synthesis, 6, 238

Quinones, hydroxy-
benzilic rearrangement, 3, 828
Quinonoid α-diazo ketones
dipolar cycloaddition, 4, 1104

Quinoxaline, 2-chloro-
S_N1 reaction, 4, 462

Quinoxalines
Racemization
amino acids
oxazolinones, 6, 635
Radical addition reactions
alkenes, 4, 715–772
alkynes, 4, 715–772
Radical anions
chemistry, 7, 861
Radical cations
bimolecular reactions, 7, 858
chemistry, 7, 857
electron-transfer oxidation, 7, 850
unimolecular reactions, 7, 857
Radical cyclizations
acyl radicals, 4, 798
cyclizations, 4, 785–762
cyclizations to aromatic rings, 4, 809–811
cyclizations to carbon–carbon multiple bonds, 4, 789–809
carbonyl-substituted
addition reactions, 4, 740
addition to multiple bonds, 4, 765–770
cyclizations to aromatic rings, 4, 809–811
cyclizations to carbon–carbon multiple bonds, 4, 789–809
carbonyl-substituted
addition reactions, 4, 729
elimination, 4, 721
ether-substituted
cyclizations, 4, 795
fragmentation, 4, 721
heteroatom-centered
addition reactions, 4, 770–772
reactions, 4, 731
initiators, 4, 721
nitrogen-centered
cyclizations, 4, 811–814
nucleophilic
addition to alkenes, 4, 755
reactions, 4, 728
oxygen-centered
cyclizations, 4, 785
persistent, 4, 717
reactions
in synthesis, 4, 720–722
with solvents, 4, 719
selective coupling, 4, 718
stereochemistry, 4, 719
structure, 4, 719
transiency, 4, 717–719
Radio frequency plasma reactions
di-π-methane rearrangements, 5, 195
Radiolysis
Ritter reaction, 6, 280
Radiopharmaceuticals
synthesis, 4, 445
Ramberg–Bäcklund rearrangement, 3, 861–883
conjugated dienoic acids
synthesis, 6, 841
functional group compatibility, 3, 865
mechanism, 3, 866
Michael-induced, 3, 880
phase-transfer conditions, 3, 863
reaction conditions, 3, 862
scope, 3, 862
stereoselectivity, 3, 862
synthesis of alkenes, 3, 163; 6, 161
uses, 3, 862
variations, 3, 868
Raney nickel
deselenations, 8, 847
desulfurizations, 8, 836
α-alkylthio carbonyl compounds, 8, 995
mechanism, 8, 837
hydrogenation, 8, 418
alcohols, 8, 815
pyridines, 8, 597
hydrogenolysis
alkyl halides, 8, 794
benzyl halides, 8, 963
carbonyl compounds, 8, 320
reduction, 8, 366
epoxides, 8, 881
Rearrangements
alcohol synthesis, 6, 14
charge-accelerated
small rings, 5, 999–1033
donor radical cations, 7, 875
radical cations
unimolecular reaction, 7, 858
vinylcyclopropanes, 5, 899–965
1,3-Rearrangements
homologations, 1, 885
3,3-Rearrangements
cationic variations, 1, 889
Recifeiolide
synthesis, 3, 286
via ene reaction, 2, 538
via Wacker oxidation, 7, 455
Recombination
hydrogen atom abstraction, 3, 1046
Red A1 — see Sodium bis(2-methoxyethoxy)aluminum hydride
Red bollworm moth
sex pheromone
synthesis, 3, 169
Redox reactions
radical addition, 4, 726, 762–765
Reduction
acetalts, azaacetals and thioacetals
to ethers, 8, 211–232
alcohols
to alkanes, 8, 811–832
alkenes
enzymes and microorganisms, 8, 205
alkenes and alkenes
noncatalytic chemical methods, 8, 471–487
alkyl halides, 8, 793–807
aromatic rings
dissolving metals, 8, 489–519
benzol[b]furans, 8, 624
benzol[thiophenes, 8, 629
carbonyl compound arylsulfonfylhydrazones
hydrides, 8, 343
carbonyl compounds
enantiomeric distinctions, 8, 185
metal hydrides, 8, 1–22
carboxylic acid derivatives, 8, 235–254
Carboxylic acids
metal hydrides, 8, 237, 259–279
to aldehydes, 8, 283–304
C—halogen bonds, 8, 985
C=N
dissolving metals, 8, 123
C=N to CHNH
metal hydrides, 8, 25–74
C=S
dissolving metals, 8, 126
C=O to CH2
dissolving metals, 8, 307–323
Wolff–Kishner reduction, 8, 327–359
C=O to CHX
Catalytic hydrogenation, 8, 139–155
chirally modified hydride reagents, 8, 159–180
dissolving metals, 8, 107–126
electrolytically, 8, 129–137
enzymes and microorganisms, 8, 183–207
hydride delivery from carbon, 8, 79–103
enones, 8, 523–568
epoxides, 8, 871–891
furan, 8, 606
heterocycles, 8, 603–630
Hg—C bonds, 8, 850
imines
enzymes and microorganisms, 8, 204
metal hydrides, 8, 25–74
indoles, 8, 612
isocyanides, 8, 830
ketones, 8, 923–951
dissolving metals, stereoselectivity, 8, 116
metal hydrides
unsaturated carbonyl compounds, 8, 536
nitro compounds, 8, 363–379
nitroso compounds, 8, 363–379
N—N bonds, 8, 381–399
N=N bonds, 8, 381–399
N—O bonds, 8, 381
one-electron
pyridines, 8, 591
O—O bonds, 8, 381
partial and complete
heterocycles, 8, 635–666
P—C bonds, 8, 858
pyridines, 8, 579–600
pyrroles, 8, 604
S—C bonds, 8, 835–870
Se—C bonds, 8, 847
selective
acetalts, 8, 216
selenides
use in synthesis, 3, 106
styrenes, 8, 523–568
α-substituted carbonyl compounds, 8, 983–996
sulfides
use in synthesis, 3, 106
thiophenes, 8, 608
transition metal hydrides, 8, 548
vinyl halides, 8, 895–920
Reduction potentials
electron acceptors, 7, 855
electron-transfer oxidation
driving force, 7, 852
electrosynthesis, 8, 129
metal oxidants, 7, 854
oxidants
electron acceptors, 7, 854
Reductive alkylation
benzoic acids
Birch reduction, 8, 499
metal–ammonia reduction, 8, 527
Reductive cleavage
α-halo ketones
halide salts, 8, 988
metals, 8, 986
nitrogen compounds, 8, 383
sulfur compounds
α-halo ketones, 8, 989
Reductive deamination
amines, 8, 826
to alkanes, 8, 811
Reductive decarboxylation, 7, 720
Reductive decyanation
nitriles
electrolysis, 8, 252
Reductive dehalogenation
alkyl halides, 8, 794
dihalocyclopropanes, 4, 1006
Reductive desulfurization
thiocarbonyl group
Raney nickel, 6, 447
Reductive dimerization
Reductive elimination

alkynes
hydroalumination, 8, 744
electrochemical
unsaturated carbonyl compounds, 8, 532

Reductive elimination
acylation
organostannanes, 1, 444
hydrazones, 8, 939
ketones, 8, 925

Reductive ozonolysis
alkenes, 8, 398

Reductive silylations
aromatic rings, 8, 517

Reductones
intermolecular redox reactions
via enediols, 8, 88

Reed reaction, 7, 14
Reference electrodes
electrosynthesis, 8, 130

Reformatsky reaction
cerium enolates
generation and reaction, 2, 312
chemoselectivity, 2, 283
kinetic stereoselection, 2, 291
magnesium enolates
preparation, 2, 186
regioselectivity, 2, 285, 288
stereoselectivity, 2, 289
thermodynamic stereoselection, 2, 289
zinc enolates, 2, 122, 277–298

Reformatsky reagents
t-buty1 bromoacetate
crystal structure, 1, 30
coupling reactions
with alkenyl halides, 3, 443
with aromatic halides, 3, 454
in enolate–imine condensations
stereoselectivity, 2, 918
NMR spectral data
enolates, 2, 281
zinc enolates
isolation and stability, 2, 278

Reformatsky-type reaction
organosamarium compounds, 1, 266

Reforming
alkanes, 7, 7

Reframoline
synthesis, 3, 81
Regioselectivity
aldol cyclization, 2, 156
homoenolate anion equivalents
allylic anions, 2, 55

Reike powders
reactive zinc
Reformatsky reaction, 2, 282

Reimer–Tiemann reaction, 2, 769–775
abnormal, 2, 773
high pressure, 2, 772
industrial applications, 2, 772
limitations, 2, 770
mechanism, 2, 774
normal, 2, 769
regioselectivity, 2, 771
scope, 2, 770

Reissert compounds
reduction

amideS, 8, 295
synthesis
via heterocyclic amines, 8, 295

Remote functionalization
chlorination, 7, 43
oxidation
C—H bonds, 7, 39–51

Remote oxidations
alkanes, 7, 42
photochemical, 7, 42
prospects, 7, 50

Reorganization energy
electron-transfer oxidation, 7, 852

Reserpine
precursor
synthesis, 7, 677
synthesis, 7, 647
diastereoselection, 2, 1022
via Cope rearrangement, 5, 814
via cycloaddition of cycloalkenes, 4, 373
via Diels–Alder reaction, 5, 341

Resins
chromium(VI) oxidants support
alcohol oxidation, 7, 280

Resorcinol, 4,6-dinitro-
synthesis, 6, 110

Resorcinols
synthesis
via aldol cyclization, 2, 170
Resorcylic acid
synthesis, 2, 171

Resorcylic acid
synthesis, 2, 171
equilibration
 effect of counterion, 2, 235
 thermodynamic control, 2, 235
 solvent effect, 2, 196
 stereochemical homogeneity
 loss of, 2, 192

Retro-Dieckmann reaction, 2, 806
Retro-Diels–Alder reaction
 alken e protection, 6, 689
 enamine synthesis, 6, 706

Retroelectrolyzation
 triene synthesis, 5, 737–740

Retro-ene reactions, 6, 832
 1,3-heteroatom-hydrogen transposition reaction, 6, 865

Retro-Knoevenagel reaction, 2, 349
Retronecine synthesis, 3, 420

Rhenium catalysts
 alken e metathesis, 5, 1,118
 hydrogenolysis, benzylic alcohols, 8, 963
 metal vapor synthesis
 reactions with alkanes, 7, 4
Rhenium, cyclopentadienylnitroso(triphenylphosphine)-
crystal structure, 1, 309
Rhenium, cyclopentadienylnitroso(triphenylphosphine)–
(acetophenone)-
crystal structure, 1, 309
Rhenium, cyclopentadienylnitroso(triphenylphosphine)–
(phenylacetaldehyde)-
crystal structure, 1, 309

Rhenium acyl complexes
 deprotonation
 reaction, 2, 127
Rhenium enolates
 aldol reactions, 2, 312
 photochemical aldol reaction, 2, 312
Rhenium oxide
catalyst
 carboxylic acid hydrogenation, 8, 236
Rhizopus nigricans
 reduction
 unsaturated carbonyl compounds, 8, 558
Rhodacyclopentadienes
 synthesis
 via [2 + 2 + 2] cycloaddition, 5, 1,135
Rhodamine
 Perkin reaction, 2, 406
Rhodinose

synthesis
 via Lewis acid mediated Grignard addition, 1, 336
Rhodium
 acyclation catalyst, 1, 450
 allylic oxidation catalyst, 7, 107
 Cope rearrangement catalyst, 5, 802
 hydrogenation catalyst
 pyridines, 8, 597
 hydrogenolysis catalyst
 benzylc alcohols, 8, 963
 carbonyl compounds, 8, 320
 hydrometallation
 mechanism, 8, 672
 pentamethylene cyclopentadienyl derivatives
 hydrogenation of alkenes, 8, 445
 reduction
 transfer hydrogenation, 8, 366
Rhodium, acetylacetonetris(triphenylphosphine)-
hydrogenation
 alkenes, 8, 445
Rhodium, bis(acetonitrile)(1,5-cyclooctadiene)-
hydrogenation
 alkenes, 8, 445
Rhodium, bis(acetylacetone)–
catalyst
 hydrosilation, 8, 556
Rhodium, bromotris(triphenylphosphine)-
hydrogenation
 alkenes, 8, 445
Rhodium, carboxylhydridotris(triphenylphosphine)-
hydrogenation
 alkenes, 8, 445
Rhodium, chloro(carbonyl)bis(triphenylphosphine)–
catalyst
 acylation, 1, 451
Rhodium, chlorodicarboxylbis[bis(diphenylphosphino)–
 methane]–
hydrogenation
 alkenes, 8, 445
Rhodium, chlorotris(triphenylphosphine)–
catalyst
 decarbonylation, 3, 1040
 silane reaction with carbonyl compounds, 2, 603
 hydrogenation catalyst, 8, 152, 535
 alkenes, 8, 443, 445
 homogeneous catalysis, 8, 443
 hydrosilylation
 α,β-unsaturated carboxyl compounds, 8, 20, 555
 reduction
 unsaturated esters, 8, 555
Rhodium, chlorotris(triphenylphosphine m-trisulfonate)–
hydrogenation
 alkenes, 8, 445
Rhodium, dicarboxylchlorobis-
lithium chloride salt
 catalyst, alkenyl halide dimerization, 3, 484
Rhodium, dodecacarbonyltetrakis-
catalyst
 hydroformylation, 4, 915
Rhodium, hexadecacarbonylhexa-
catalyst
 hydrogenation, 8, 600
Rhodium, iodotris(triphenylphosphine)–
hydrogenation
 alkenes, 8, 445
Rhodium, nitrosotris(triphenylphosphine)–
Rhodium acetate hydrogenation alkene, 8, 445

Rhodium acetate allylic oxidation, 7, 95 catalyst C—H insertion reactions, 3, 1051 deoxygenation epoxides, 8, 890

Rhodium carboxylates dimeric diazo compound decomposition catalysts, 4, 1033

Rhodium chloride allylic oxidation, 7, 95

Rhodium cluster, tetrakis(μ-acetato)diallylic oxidation, 7, 95 hydrosilation, 8, 556

Rhodium clusters hydrogenation alkenes, 8, 445

Rhodium complexes carbonyl reduction, aromatic nitro compounds, 8, 372 catalysts hydroboration, 8, 709 hydroxylation, 8, 764 enantioselective aldol reaction catalysis, 2, 311 homogeneous hydrogenation, 8, 152 hydride transfer catalyst, 8, 91 polymer bound catalyst, hydrogenation, 8, 419

Rhodium complexes, alkylacylation acid chlorides, 1, 450

Rhodium enolates aldol reaction, 2, 310

Rhodium hydride, tetrakis(triphenylphosphine)-oxidation diols, 7, 314

Rhodium trichloride Aliquat-336 ion-pair hydrogenation, 8, 535

Riboflavin synthesis, 8, 292

D-Ribofuranose, 2,3-O-isopropylidene-Knoevenagel reaction, 2, 386

Ribofuranoside synthesis via Baeyer–Villiger reaction, 7, 684 β-D-Ribofuranosyl-1-carbonitrile, 2,3,5-tri-O-benzoyl-reaction with hydrogen selenide, 6, 477

Ribofuranosyl cyanide synthesis via Lewis acid promoted reaction, 1, 347

Ribonuclease A synthesis, 6, 384

Ribonucleosides phosphorylation, 6, 601

Ribose synthesis, 8, 292

D-Ribose selective monoacetylation enzymatic, 6, 340

D-Ribose, 2-deoxy-selective monoacetylation enzymatic, 6, 340

enzyemtic, 6, 340

Ribulose synthesis via Lewis acids, nonchelation selectivity, 1, 339

Ricinelaic acid synthesis via ene reaction, 2, 538

Ricinoleic acid synthesis via ene reaction, 2, 538

Rieke copper acylation, 1, 426

Rifamycin ansa bridge synthesis, 1, 182

Rifamycin S syn selective aldol reaction zirconium enolates, 2, 303 synthesis, 2, 264 via Baeyer–Villiger reaction, 7, 683 via Diels–Alder reaction, 2, 703 via Wittig reaction, 1, 762

Rimuene synthesis, 3, 21

Ring contractions Wolff rearrangement, 3, 900 ylides 3,2-sigmatropic rearrangements, 3, 954

Ring expansion, 1, 843–899 via Claisen rearrangement, 5, 831 via iterative sigmatropic processes, 5, 894–896 via silyloxy cyclopropanes, 2, 445 via Wagner–Meerwein reactions, 3, 713 via ylides, 3, 957

Ring-growing reactions 3,2-rearrangement, 3, 957

Ring opening metathesis polymerization alkene metathesis, 5, 1120

Ring opening reactions cyclobutenes, 5, 675–694 two-carbon ring expansion, 5, 686–688 cyclobutenones, 5, 688–691 epoxides with nitrogen nucleophiles, 6, 88

Ristosamine amino sugars, 2, 323 synthesis via aldol reaction, 2, 195

Ritter reaction acetonitrile reaction with methyl phenyl sulfoxide, 7, 201 acids concentration, 6, 264 alkenes, 4, 292–294 amination alkenes, 4, 290 carbenium ion source, 6, 267 extensions, 6, 280 initial description, 6, 261 intramolecular, 6, 272 Lewis acids catalyst, 6, 264 mechanism, 6, 261 metallic reagents, 6, 283 modified, 7, 488, 490
nitriles, 6, 265
physical techniques, 6, 280
reaction conditions, 6, 263
solvents
polarity, 6, 264
vinyllogous, 7, 505
Ritter-type reactions, 6, 261-296
amide synthesis, 6, 401
isocyanides, 6, 293
Robinson annulation
aldol reaction, 2, 156
cyclohexenone synthesis, 4, 2, 6
1,5-diketone cyclization, 2, 162
synthesis, 1, 564
Rocaglamide
via [3 + 2] cycloaddition reactions, 5, 311
Roflamycin
synthesis, 1, 568
Rosaramicin
synthesis
via Wacker oxidation, 7, 454
Rosenmund reduction
acyl chlorides, 8, 259, 286
mechanism, 8, 287
Rosettane
synthesis
via photocycloaddition, 5, 662, 663
Rotaxanes
diethylmagnesium/18-crown-6 complex
crystal structure, 1, 15
synthesis
via intramolecular acyloin coupling reaction, 3, 628
Rothins
synthesis, 6, 780
Royleanone
synthesis
via metal-catalyzed cycloaddition, 5, 1203
Rubidium
reduction
ammonia, 8, 113
carbonyl compounds, 8, 109
Rubidium fluoride
catalyst
Knoevenagel reaction, 2, 343
Rubradirins
synthesis, 7, 346
via Homer–Wadsworth–Emmons reaction, 1, 772
Rudmollin
synthesis
via photocycloaddition, 5, 669
Rule of diastial opening
epoxides, 3, 734
Rule of five
intramolecular photocycloaddition reactions, 5, 133
Rupe rearrangement
alkynic alcohols, 5, 768
Ruthenium
alkene metathesis catalyst, 5, 1118
hydrogenation catalyst, 8, 418
pyridines, 8, 597
Ruthenium, carbonyldihydridotris(triphenylphosphine)-hydrogenation
benzylideneacetone, 8, 551
Ruthenium, chlorohydridotris(triphenylphosphine)-hydrogenation
alkenes, 8, 445
transfer hydrogenation
\(\alpha,\beta\)-unsaturated ketones, 8, 551
Ruthenium, cyclopentadienyltris(dimethyl sulfoxide)
nucleophilic substitution, 4, 531
Ruthenium, decacarbonyl(isocyanide)tri-
hydrogenation
alkenes, 8, 446
Ruthenium, dichlorobis(triphenylphosphine)-formic acid complex
2-methylquinoline reduction, 8, 591
oxidation
allylic alcohols, 7, 308
Ruthenium, dichlorotris(triphenylphosphine)-hydrogenation catalyst, 8, 369, 535
alkenes, 8, 445
anhydrides, 8, 239
oxidation
primary alcohols, 7, 309, 310
transfer hydrogenation, 8, 557
\(\alpha,\beta\)-unsaturated ketones, 8, 551
Ruthenium, dihydridotetakis(triphenylphosphine)-hydrogenation
alkenes, 8, 445
oxidation
diols, 7, 314
Ruthenium, octacarbonyldihydridotetrais(2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane)tetakis-
transfer hydrogenation, 8, 552
Ruthenium, tetrachlorotris(2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane)bis-
transfer hydrogenation, 8, 552
Ruthenium, tris(acetonitrile)chloro-
[bis(diphenylphosphino)methane]hydrogenation
alkenes, 8, 446
Ruthenium, tris(triphenylphosphine)-reductions
aliphatic nitro compounds, 8, 374
Ruthenium complexes
catalysts
hydroisilylation, 8, 764
hydrogenation
alkenes, 8, 154
oxidation
primary alcohols, 7, 309
secondary alcohols, 7, 324
transfer hydrogenation
silanes, 8, 554
Ruthenium dichlorate, dioxygen(6,6′-dichlorobipyridyl)-oxidation
ethers, 7, 236
Ruthenium dioxide
catalyst
carboxylic acid hydrogenation, 8, 236
hydrated
oxidation, allylic alcohols, 7, 308
oxidation
ethers, 7, 235, 238
oxidative cleavage of alkenes
catalysts, 7, 542
periodate cleavage of alkenes
catalyst, 7, 587
Ruthenium tetroxide
asymmetric dihydroxylation, 7, 431
oxidation
benzyl ethers, 7, 240
benzyl methyl ether, 7, 240
ethers, 7, 236, 237
organoboranes, 7, 602
oxidative cleavage of alkenes, 7, 542
synthesis of carbonyl compounds, 7, 564

Ruthenium trichloride

catalyst
ether oxidation, 7, 238
periodate cleavage of alkenes
catalyst, 7, 587

synthesis of carboxylic acids, 7, 587
Saccharides coupling
via heteroatom cyclization, 4, 391
synthesis
via trichloroacetimidates, 6, 51

Saccharides, acyl reduction
metal hydrides, 8, 271

Saccharin, chloro-reduction
metal hydrides, 8, 271

Saccharomyces cerevisiae reduction
unsaturated carbonyl compounds, 8, 559

Saframycin B synthesis, 7, 350

Sakurai cyclization
y-lactone formation, 6, 357

Salâın reagent solid support, 7, 843

Salcomine cobalt(II) complex oxidation, quinones, 7, 354 oxygen quinone synthesis, 7, 355

Salicylaldehyde dichlorodimethyltin complex crystal structure, 1, 305
Knoevenagel reaction, 2, 357 reaction with malonic esters, 2, 354 synthesis, 8, 285 via Reimer–Tiemann reaction, 2, 772 via Vilsmeier–Haack reaction, 2, 790

Salicylaldehyde, fluoro-synthesis, 8, 285

Salicylamides synthesis, 4, 434

Salinomycin synthesis, 7, 245

Salsolidine synthesis, 3, 78

Samarium acyl anions and radicals generation, 1, 273 oxidation state stability, 1, 252 reaction with methyl β-bromopropionate, 1, 254

Samarium, allyl-reactions with carbonyl compounds, 1, 256

Samarium, benzyl-reactions with carbonyl compounds, 1, 253

Samarium, dicyclopentadienyl-intermolecular Barbier-type reactions, 1, 258 intermolecular pinacolic coupling reactions organosamarium compounds, 1, 271 Meerwein–Ponnordorf oxidation aldehydes, 1, 258 reactions promoted by, 1, 255 reactions with benzylic halides, 1, 253 synthesis via samarium diiodide, 1, 255

Samarium, ethyliodo-

reaction with benzaldehyde, 1, 254

Samarium chlorides reduction enones, 8, 540 toxicity, 1, 252

Samarium diiodide Barbier-type reaction mechanism, 1, 258 characterization, 1, 255 deoxygenation epoxides, 8, 889 intermolecular pinacol coupling reactions aliphatic carbonyl compounds, 3, 570 intramolecular pinacol coupling reactions, 3, 574 iodoxydrin synthesis, 1, 831 pinacol coupling reactions, 3, 567 radical cyclizations nonchain methods, 4, 809 reactions promoted by, 1, 255 reactions with acyl halides preparation of samarium acyl anions, 1, 273 reduction alkyl halides, 8, 797 epoxides, 8, 883 reductive cleavage α-alkyliithio ketones, 8, 994 synthesis, 8, 115 via oxidation of samarium, 1, 255

Samarium reagents, 1, 251–280 acyl anion chemistry, 1, 273 acyl radical chemistry, 1, 273 ketyl–alkene coupling reactions, 1, 268 pinacolic coupling reactions, 1, 270 Reformatsky-type reactions, 1, 266

Samarium salts reduction carbonyl compounds, 8, 115 reductive cleavage ketols, 8, 992

Sanadaol synthesis via ene reaction, 2, 553

Sandmeyer reaction bromination, 6, 211 chlorination, 6, 208

Sanitoxins synthesis via Blaise reaction, 2, 297

α-Santalene synthesis, 3, 161, 427, 712
β-Santalene synthesis, 3, 712 via Diels–Alder reactions, 5, 358 α-Santalol synthesis via Wittig reaction, 1, 757

Sanote synthesis, 3, 706

Santonin rearrangement, 3, 804 synthesis, 8, 530

Sapogenins
Sarcophine

Steroidal reduction, 8, 220

Sarcophine

transannular cyclization, 3, 407

Sarcosine

reaction with 2,4-dimethylphenol

Mannich reaction, 2, 956

Saret oxidation

alcohols

chromium(VI) oxide/pyridine complex, 7, 256

Sarkomycin

synthesis, 3, 937

via α-alkyliron complexes, 4, 579

via [3 + 2] cycloaddition reactions, 5, 308

via cyclopropanes, 5, 907

via nitrile oxide cyclization, 4, 1126

via Pauson–Khand reaction, 5, 1051

via retro Diels–Alder reaction, 5, 560, 568

via tandem vicinal difunctionalization, 4, 259

via vinylcyclopropane thermolysis, 4, 1048

Sarracenin

synthesis

via photocycloaddition, 5, 129, 166

Sativene

synthesis, 3, 20, 712

Saxitoxin

synthesis

via azomethine imine cyclization, 4, 1147

via Eschenmoser coupling reaction, 2, 879

Scandine

biomimetic synthesis, 6, 755

Scandium, bis(cyclopentadieny1)hydrido-

biomimetic synthesis, 6, 755

Scandium, (cyclopentadieny1)hydrido-

hydrometallation

alkenes, 8, 696

Schiff bases

catalytic hydrogenation, 8, 143

electroreduction, 8, 136

electroreductive cyclization, 8, 136

homogeneous hydrogenation, 8, 155

reactions with organocopper complexes, 1, 119

Schizandrin, deoxy-

synthesis

via vanadium oxytrifluoride, 3, 676

Schizandrin C

synthesis

via thallium trifluoroacetate, 3, 669

Schmidt reaction, 3, 908; 6, 817

amide synthesis, 6, 404

carboxylic acids, 6, 817

hydrazoic acids, 6, 798

ketones, 6, 820

istereoselectivity, 6, 798

Schopf reaction, 2, 943

Schweizer’s reagent

phosphonium ylide synthesis, 6, 176

reaction with divinylcuprates, 3, 259

Scrier

synthesis

via cycloaromatization reaction, 2, 621

Scopine

synthesis

via [4 + 3] cycloaddition, 5, 609

Sebacic acid

synthesis, 3, 640

7,12-Sechoishwaran-12-ol

synthesis

via nitrene cyclization, 4, 1120

6,7-Secoagroclavine

synthesis

via Mannich reaction, 2, 967

Secoalkylation

chain extension

via Greb fragmentation, 6, 1048

Secoiridoids

synthesis

via Knoevenagel reaction, 2, 358

Secoisouquinoline alkaloids

synthesis, 1, 552

Secologanin

aglycone

synthesis via Claisen condensation, 2, 822

synthesis, 3, 599

via Knoevenagel reaction, 2, 371

16,17-Secopregnanes

reduction

dissolving metals, 8, 114

Secosulfonylation

cyclobutanones, 6, 143

7,16-Secotrinervita-7,11-diene, 3α-acetoxy-

15β-hydroxy-

synthesis

via organoaluminium reagents, 1, 100

1,2,3-Selenadiazoles

aryne reactions, 4, 509

reactions with amines, 6, 480

Wolff rearrangement, 3, 909

1,2,3-Selenadiazoles, 4-aryl-

arylethynylselenolate synthesis, 6, 473

Selenaldehydes

Diels–Alder reactions, 5, 442

synthesis, 5, 443; 6, 475

Selenamides

aliphatic

synthesis, 6, 477

reactions, 6, 481

reactivity, 6, 461

synthesis, 6, 476

via sulfinylation of primary amines, 7, 741

Selenates

rearrangement, 6, 904

Selenation

decarboxylative chalcogenation, 7, 726

electrochemical, 7, 819

Selenazofuran

synthesis, 6, 474

Selenazole-4-carboxamide, 2β-D-ribofuranosyl-

synthesis, 6, 478

Selenazole-4-carboxylate, 2-(2,3,5-tri-O-benzoyl-

D-glucosyl)-ethyl ester

synthesis, 6, 477

1,3-Selenazoles

synthesis, 6, 474, 481

Selenazolium hydroxide, anhydro-2,3,5-triphenyl-

4-hydroxy-

synthesis, 6, 481

Selenenamides, N-acetyl-

selenol ester synthesis, 6, 466

Selenenic acid, aryl-

allylic oxidation

alkenes, 7, 91

Selenenic acids
Cumulative Subject Index

Selenides

Selenenyl bromide, phenyl-
reaction with alkenyldihydroxyboranes, 7, 608
Selenenyl bromide, 2-pyridyl-
dehydrogenation
carbonyl compounds, 7, 128
Selenenylbenzenones, 2-phenyl-
synthesis, 7, 521
Selenenyl halides
reactions with alkenes, 4, 339-342
Seleneny 1 bromide, phenyl-
Selenenyl bromide, 2-pyridyl-
carbonyl compounds, 7, 128
Selenenylenones, 2-phenyl-
synthesis, 7, 521
Selenenyl halides
reactions with alkenes, 4, 339-342
Selenenyl bromide, methyl phenyl
methallation, 1, 641
Selenide, phenyl trimethylsilyl
dehalogenation
benzoin acetates, 8, 993
Selenide, phenyl trimethylsilylmethyl
methallation, 1, 641
Selenide, triphenylphosphine
deoxygenation
epoxides, 8, 887
Selenides
addition to alkynes, 4, 50
alkenes from, 3, 114
alkyl and allyl halides from, 3, 118
alkylated
use in synthesis, 3, 106
allylic
oxidative rearrangement, 3, 117
deselenation
nickel boride, 8, 848
halogenation, 7, 772
α-heterosubstituted
carbonyl compound synthesis from, 3, 141
methallation
synthesis of selenoalkyl metals, 1, 635
oxidation, 7, 129, 770
to selenones, 7, 773
photooxidation, 7, 774
reactions with alkenes, 4, 317-319
reactions with alkyl metals, 1, 630
reduction
use in synthesis, 3, 106
Selenides, acetamido
synthesis, 7, 495
Selenides, acyl phenyl
reaction with tri-n-butyltin hydride
reductive decarboxylation, 7, 721
Selenides, 2-adamantyl phenyl
synthesis
via adamantanone, 7, 14
Selenides, alkenyl
coupling reactions
with sp³ organometallics, 3, 446
Selenides, alkenyl phenyl
synthesis, 7, 608
Selenides, alkenyl pyridyl
methallation, 1, 648
Selenides, alkyl phenyl
oxidation, 7, 773
Selenides, alkyl 2-pyridyl
synthesis, 7, 726
Selenides, alkyl vinyl
carbonyl compounds from, 3, 120
Selenides, allenyl phenyl
synthesis, 3, 106
Selenides, allyl
methallation, 1, 640
oxidation, 3, 117
rearrangement, 6, 904
synthesis
via β-hydroxyalkyl selenides, 1, 705
Selenides, β-amido phenyl
synthesis
via Ritter reaction, 6, 289
Selenides, aryl
coupling reactions
with Grignard reagents, 3, 456
tandem vicinal difunctionalization, 4, 257
Selenides, aryl alkyl
synthesis, 4, 447
Selenides, aryl 1-(2-methyl-1-propenyl)
methallation, 1, 647
Selenides, aryl 1-propenyl
methallation, 1, 647
Selenides, aryl vinyl
alkylation, 3, 106
Selenides, benzyl
methallation, 1, 640
Selenides, diaryl
synthesis, 4, 443, 447
via β-Selenyl reaction, 4, 476
Selenides, diphenyl
synthesis
via β-Selenyl reaction, 4, 476
Selenides, homoallyl
synthesis, 3, 91
Selenides, β-hydroxy
deoxygenation, 8, 887
elimination reactions, 3, 787
epoxide synthesis, 6, 26
oxidation
solid support, 7, 841
pinacol-type reactions, 1, 861
rearrangement, 3, 786
semipinacol rearrangements, 3, 777
synthesis
via selenium-stabilized anions, 1, 828
Selenides, β-hydroxy-γ-alkenyl
rearrangement, 1, 717
Selenides, β-hydroxyalkyl
epoxide synthesis from
mechanism, 1, 718
in synthesis, 1, 696, 721
reactions with carbonyl compounds, 1, 673
rearrangement, 1, 714
reduction, 1, 699
reductive elimination, 1, 700
synthesis, 1, 650
Selenides, γ-hydroxyalkyl
oxidation, 3, 120
Selenides, β-hydroxyphenyl
oxidative rearrangement, 7, 819
Ritter reaction, 6, 289
Selenides, β-hydroxy-α-trimethylsilylalkyl
reductive elimination, 1, 705
Selenides, α-lithio
epoxidation, 1, 828
Selenides, α-metalloalkyl
synthesis
via metallation, 1, 630
Selenides

Selenides, α-metalloallenyl phenyl
 synthesis, 1, 646
Selenides, α-metallovinyl
 alkylation, 3, 104
 synthesis
 via metallation, 1, 630
Selenides, 1-metallovinyl aryl
 synthesis, 1, 646
Selenides, 4-nitrophenyl methyl
 synthesis, 4, 447
Selenides, nor-alkyl-2-pyridyl
 synthesis, 7, 722
Selenides, phenyl
 reduction, 6, 470
Selenides, propargylic
 metallation, 1, 640
Selenides, propargyl phenyl
 oxidative rearrangement, 7, 826
Selenides, α-silylalkyl
 carbonyl compound synthesis from, 3, 141
Selenides, trimethylsilyl
 selenol ester synthesis, 6, 463
Selenides, vinyl
 metallation, 1, 644
 reactions with organometallic compounds, 1, 669
 reaction with Grignard reagents, 3, 493
 synthesis, 3, 253
 via β-hydroxyalkyl selenides, 1, 705
Seleninic acid, allyl-
 in allylic oxidation
 selenium dioxide, 7, 85
Seleninic acid, phenyl-
 hydroxylation
 alkenes, 7, 446
Seleninic acids
 oxidation, 7, 770
 synthesis, 7, 770
Seleninic anhydride, 2-pyridyl
 allylic oxidation, 7, 110
Selenium
 carbanions
 synthesis, 1, 630
 synthesis via metallation, 1, 635
 carbanions stabilized by
 alkylation, 3, 85-181
 dehydrogenation
 carbonyl compounds, 7, 128
 halogen displacement, 7, 124
 reductions, 8, 370
 carbonyl compounds, 8, 323
 nitro compounds, 8, 366
Selenium compounds
 oxidation, 7, 757-779
 secondary alcohols, 7, 323
 reactions with arynes, 4, 508
 tetravalent
 reaction with alkenes, 4, 342
Selenium dioxide
 allylic oxidation, 7, 84
 α,β-unsaturated carbonyl compounds, 7, 108
 anti hydroxylation
 alkenes, 7, 446
 oxidant
 silica support, 7, 843
 oxidative rearrangement, 7, 829, 832
 Selenium imides
 Diels–Alder reactions
 diamines from, 7, 486
 Selenium insertion reaction
 hydroammoniation adducts, 8, 754
 Selenium nucleophiles
 aromatic nucleophilic substitution, 4, 447
 Selenium tetrabromide
 reactions with alkenes, 4, 342
 Selenium tetrachloride
 reactions with alkenes, 4, 342
 Selenium ylides
 epoxidation, 1, 825
 reactions with enals, 1, 683
Selenoacetals
 carbonyl group regeneration, 7, 846
 synthesis, 1, 656
 Selenobenzaldehyde, 2,4,6-tri-r-butyl-
 synthesis, 6, 475
 Selenobenzoate, p-nitrobenzyl
 synthesis, 6, 465
 Selenobenzoate, trimethylsilyl
 synthesis, 6, 473
 Selenobenzoic acid
 synthesis, 6, 465
 γ-Selenobutyrolactone
 synthesis, 6, 462
 Selenocarbamates, β-phenyl-
 synthesis, 7, 495
 Selenocarbonates, Se-aryl-
 reduction
 stannanes, 8, 825
 Selenocarboxyl compounds
 Diels–Alder reactions, 5, 442
 Selenocarboxylates
 alkylation, 6, 464
 Selenocarboxylates, Se-silylmethyl
 selenium extrusion, 6, 469
 Selenocyanates
 alkyl
 synthesis, 7, 608
 oxidation, 7, 770
 reaction with carboxylic acids, 6, 466
 Selenocyclizations, 7, 495
 Seleno-1,3-diienes, 1-phenyl-
 synthesis
 via methoxyselenation, 4, 339
Selenoesters
 synthesis, 1, 95
 Selenoformamide
 synthesis, 6, 480
 Selenoketones
 synthesis, 5, 442
 Selenolactams
 synthesis, 6, 478
 Selenolactones
 metallation, 1, 642
 Selenolactonization, 7, 523
 Selenolates, arythynyl-
 reaction with alcohols, 6, 473
 Selenol esters
 aromatic
 synthesis, 6, 462
 Friedel–Crafts reaction, 2, 737
 reactions, 6, 468, 474
 with cuprates, 6, 469
Cumulative Subject Index

Semicarbazones

- with isocyanides, 6, 470
- reactivity, 6, 461
- synthesis, 6, 461–481

Selenols
- acylation, 6, 462
- oxidation, 7, 769
- radical additions
 - alkenes, 4, 770
- reductions
 - aromatic compounds, 8, 370
- synthesis, 6, 462

Selenones
- epoxidation, 1, 828
- metallation, 1, 650
- oxidation, 7, 773

Selenones, α-metalloalkyl
- reactivity
 - reactions with carbonyl compounds, 1, 672
 - synthesis, 1, 648; 3, 87
 - via metallation, 1, 630
- Selenones, vinyl
 - reactions with organometallic compounds, 1, 669

Selenonic acids
- oxidation
 - to selenoxides, 7, 770

Selenonium bromide, phenacylmethyl(dimethyl)-metallation, 1, 655

Selenonium salts
- metallation, 1, 651

Selenonium salts, allyldimethyl-metallation, 1, 653

Selenonium salts, allylmethylphenyl-metallation, 1, 653

Selenonium salts, α-metalloalkyl-
 - synthesis, 1, 648; 3, 87
 - via metallation, 1, 630

Selenonium ylides
- reactivity
 - reactions with carbonyl compounds, 1, 672

Selenophene, 2-lithio-
- synthesis, 1, 668

Selenophenes
- coupling reactions
 - with primary alkyl Grignard reagents, 3, 447
 - metallation, 1, 644
 - synthesis, 6, 481
 - via [2 + 2 + 2] cycloaddition, 5, 1139
 - Vilsmeier–Haack reaction, 2, 780

Selenophenols
- conjugate additions
 - enones, 4, 231
 - imines, 8, 36

Selenopthalimide, N-phenyl-
- addition reactions
 - alkenes, 7, 522

Selenosuccinimide, N-phenyl-
- addition reactions
 - alkenes, 7, 522

Selenosulfides
- synthesis, 7, 519

Selenosulfonyl derivatives
- addition reactions
 - alkenes, 7, 523

Selenosulphonation
- alkenes, 4, 341

Selenosulfones
- synthesis, 7, 519

Selenothioalactonization
- alkenes, 7, 520

Selenoxide, 2-azidocyclohexyl phenyl
- synthesis, 7, 772

Selenoxide, benzyl phenyl
- synthesis, 7, 772

Selenoxide, di-4-anisyl
 - Kornblum oxidation, 7, 657

Selenoxide, dimethyl
 - Kornblum oxidation, 7, 657

Selenoxide, methyl phenyl
- synthesis, 7, 772

Selenoxides
- chiral
 - synthesis, 7, 777, 779
 - elimination
 - carbonyl compounds, 7, 128, 146
 - via metallation, 1, 649
 - oxidation, 7, 657, 770
 - to selenones, 7, 773
 - rearrangement, 6, 904
 - alcohol synthesis, 6, 14

Selenoxides, alkyl
- alkylation, 3, 147, 157

Selenoxides, allyl
- rearrangement, 3, 117

Selenoxides, α-lithioalkyl
- synthesis
 - via alkylation, 3, 157

Selenoxides, α-metalloalkyl
- alkylation, 3, 147, 157
- reactivity
 - reactions with carbonyl compounds, 1, 672
 - synthesis, 1, 648; 3, 87
 - via metallation, 1, 630

Selenoxides, α-metallovinyl
- alkylation, 3, 157
- reactivity
 - reactions with carbonyl compounds, 1, 672
 - synthesis, 1, 630; 3, 87

Selenoxides, β-oxidoalkyl
- synthesis, 1, 650

Selenoxides, vinyl
- reactions with organometallic compounds, 1, 669
 - 2-Selenoxobenzothiazole, 3-methyl-deoxyxygenation
 - epoxides, 8, 887

Selenuranes
- reactions with aldehydes, 1, 651

Selinene
- synthesis, 6, 777; 8, 943
 - via oxyanion-accelerated rearrangement, 5, 1020
 - via reductive lithiation, 6, 146

Semibenzenilic pathway
- Favorovskii rearrangement, 3, 840
- mechanism, 3, 828, 836

Semibullvalene
- synthesis, 3, 640
 - via photoisomerization, 5, 194, 204

Semibullvalenes, dihydro-
- synthesis
 - via retro electrocyclization, 5, 737

Semicarbazones
- reduction, 8, 336
Semipinacol rearrangements

Vilsmeier–Haack reaction, 2, 791
Semipinacol rearrangements, 3, 777–799
definition, 3, 777
pinacol rearrangement
comparison with, 3, 722
tandem cyclization reactions, 3, 792
Semi-ylides
phosphonium
formation, 6, 172
Senecioic acid
dicopper(I) dianion
alkylation, 3, 50
Senecioic acid, 4-bromo-trimethylsilyl ester
Senecioic acid amide, N-isopropyl-
dianions
alkylation, 3, 50
Senepoxyde
synthesis
alkene protection, 6, 689
via retro Diels–Alder reactions, 5, 563
Senoxepin
synthesis
via Peterson alkenation, 1, 733
Senoxydene
precursor
synthesis via intramolecular ene reactions, 5, 22
Senoxy-4-en-3-one, 8-oxy-
synthesis, 3, 404
Sepiolite
solid support
oxidants, 7, 845
Septamycin
synthesis
A-ring fragment, 1, 429
Sequential rearrangements, 5, 876–891
Serine
enantioselective aldol cyclizations, 2, 169
hydroxy groups
protection, 6, 650
β-lactone
reaction with organocopper compounds, 3, 227
reaction with pivaldehyde, 3, 40
Serine, phenyl-
synthesis, 8, 148
Serine proteases
peptide synthesis, 6, 395
Sesamin
synthesis
via Diels–Alder reaction, 5, 468
via Knoevenagel reaction, 2, 373
Sesamol, benzyl-
oxidative coupling, 3, 669
Sesamolin
synthesis
via Diels–Alder reaction, 5, 468
via Knoevenagel reaction, 2, 373
Sesbanine
synthesis
via regioselective lithiation, 1, 474
Sesquicarene
synthesis, 3, 288
Sesquifenchene
synthesis, 3, 161
Sesquinorbornene
reaction with methanol, 5, 74
Sesquiterpenes
hydrazulene-based
synthesis, 7, 301
marine
synthesis, 2, 710
microbial hydroxylation, 7, 63
polycyclic
biosynthesis, 3, 388
synthesis, 3, 288
via photoisomerizations, 5, 230
Seven-membered rings
synthesis
via aldol reaction cascade, 2, 623
via [4 + 3] cycloadditions, 5, 593
via Friedel–Crafts reaction, 2, 763
via intramolecular aldolization of keto aldehydes,
2, 160
via polyene cyclization, 3, 357
Sex pheromones
bark beetle
synthesis, 1, 218
Seychellene
synthesis, 3, 20
via Diels–Alder reactions, 5, 329
via Prins reaction, 2, 542
via radical cyclization, 4, 796
Shapiro reaction, 6, 779; 8, 944
limitations, 8, 948
regioselectivity, 8, 944
stereoselectivity, 8, 948
vinyllithium generation, 3, 251
Shell Higher Olefin Process
alkene metathesis, 5, 1117
Shikimic acid
synthesis
via cyclofunctionalization of cycloalkene, 4, 373
via cyclohexadienyl complexes, 4, 683
via Diels–Alder reactions, 5, 335, 360, 363
Shikimic acid pathway
Claisen rearrangement, 5, 855
Showdomycin
synthesis
via [4 + 3] cycloaddition, 5, 611
via retro-Dieckmann reaction, 2, 855
Sialic acids
synthesis
via enzymatic method, 2, 463, 464
Sibirine
synthesis
via nitrile oxide cyclization, 4, 1129
Sibirosamine
synthesis
stereospecific, 1, 413
Sigmatropic rearrangements
alcohol synthesis, 6, 14
Baldwin's rules, 3, 915
carbene complexes, 5, 1075
1,2-Sigmatropic rearrangements, 3, 921
chirality transfer, 3, 927
1,3-Sigmatropic rearrangements
allylic alcohols, 5, 1001
aza-anion accelerated, 5, 1003
oxanion-accelerated
stereochemistry, 5, 1002
1,5-Sigmatropic rearrangements
Cumulative Subject Index

Silane

carbonion-accelerated, 5, 1005
oxygenion-accelerated, 5, 1003
2,3-Sigmatropic rearrangements, 6, 873–908
allylic systems, 6, 834
3,2-Sigmatropic rearrangements, 3, 932
ylides
isterecontrol, 3, 943
3,3-Sigmatropic rearrangements
allylic systems, 6, 834
aluminum enolates, 1, 91
ererythro–threo ratio, 3, 949
homologations, 1, 880
Silabarrelene
photorearrangement, 5, 199
7-Silabicyclo[2.2.2]octadiene
thermolysis
retro Diels–Alder reaction, 5, 587
Silacycles
intramolecular hydrosilylation, 8, 774
Silacyclopentene
acetylation
Friedel–Crafts reaction, 2, 717
Silane, 2-acetoxymethyl-3-allyltrimethyl-
trimethylenemethane synthetic equivalent, 5, 244
Silane, allyl(diethy1amino)dimethyl-
reaction with BuLi/IMEDA, 2, 59
Silane, allyloxy-
siloxy carbanions from, 2, 601
Silane, allyltrisopropyl-
deprotonation
γ-selectivity, 2, 58
Silane, allyltrimethyl-
alcohol protection, 6, 654
eene reactions, 5, 2
intramolecular additions
hydrocarbons, 1, 612
dissolving metals, 8, 513
Silane, aryltrimethyl-
metal/metal exchange, 7, 649
Silane, benzyl-
Birch reduction
dissolving metals, 8, 513
Mannich reaction, 2, 1035
Silane, benzylltrimethyl-
C—Si bond cleavage, 7, 649
Silane, tert-butylidimethylchloro-
O-silylation with, 2, 604
Silane, chloror-
ydrosilylation
unsaturated hydrocarbons, 8, 765
Silane, chlorodimethyl-
ydrosilylation
alkynes, 7, 643
Silane, (chloromethyl)trimethyl-
Darzens glycidic ester condensation, 2, 426
Silane, chlorotrimethyl-
acylom coupling reaction
trapping agent, 3, 615
alcohol protection, 6, 653
reaction with conjugated ketones
1,4-addition, 2, 599
Silane, crotyl-
reaction with achiral carbonyl compounds, 2, 17
reaction with iminium salts, 2, 1002
synthesis, 2, 977
Silane, crotyl(trimethyl-
configurational stability, 2, 6
Silane, cyanotrimethyl-
Beckmann rearrangement, 6, 768
Silane, cycloprenyl-
acylation
Friedel–Crafts reaction, 2, 728
Silane, (diethoxymethyl)-
ydrosilylation
alkynes, 7, 643
Silane, diiododimethyl-
reduction
benzylcarboxylates, 8, 979
Silane, dimethylphenyl-
ydrosilylation
carbonyl compounds, 8, 21
ketone reduction, 8, 8
oxidation, 7, 646
Silane, diphenyl-
reduction
carbonyl compounds, 8, 322
Silane, diphenyl(4-pentenyl)-
ing closure, 8, 774
Silane, ethynyl-
hydroamination, 8, 748
reaction with acrylates, 5, 243
reaction with aldehydes, 2, 575
reaction with ketones, 2, 579
reaction with ketones, 2, 575
Silane, fluoroaminomethyl-
aldo reactions
catalytic cycle, 2, 633
Silane, hydrido-
ionic hydrogenation
unsaturated hydrocarbons, 8, 546
Silane, (iodomethyl)trimethyl-
reduction with sulfonyl carbanions, 5, 1014
Silane, iodotrimethyl-
Beckmann rearrangement, 6, 767
dehalogenation
α-halo ketones, 8, 988
ester cleavage, 6, 665
iodination
alkyl alcohols, 6, 214
methyl ether cleavage, 6, 647
Silane, methoxybis(trimethylsilyl)methyl-
moxyacylne anion synthesis, 7, 650
Silane, methoxy(trimethylsilyl)methyl-
formyl anion synthesis, 7, 650
Silane, methylidiphenylchloro-
reaction with lithium ester enolates
regiochemistry of silylation, 2, 604
Silane, methyltrichloro-
dehalogenation
α-halo ketones, 8, 988
Silane, (2-nitroethyl)trimethyl-
synthesis, 6, 107, 109
Silane, nitrovinyl-
synthesis, 6, 108
Silane, (α-oxaallyl)-
reaction with benzonitrile oxide, 5, 262
Silane, (pentadieny1)trimethyl-
acylation
Friedel–Crafts reaction, 2, 721
Silane, phenyl-
transfer hydrogenation
molybdenum complex catalyst, 8, 554
Silane, α-phenylthiomethyltrimethyl-
reaction with alkyl halides
synthesis of aldehydes, 6, 139
Silane, 1-phenylthiovinyl-
Nazarov cyclization, 5, 778
Silane, 2-phenylthiovinyl-
Nazarov cyclization, 5, 778
Silane, propargyltrimethyl-
condensation with acyl cyanide, 2, 85
reaction with N-acyliminium ions, 2, 1061, 1071
reaction with α-ethoxy lactams, 2, 89
reaction with glycine cation equivalents, 2, 1075
Silane, 2-propynyl-
reduction
Silane, trichloro-
carbonyl compounds, 8, 322
carboxylic acids, 8, 238
Silane, triethyl-
ionic hydrogenation
carbonyl compounds, 8, 319
reduction
acyl halides, 8, 265
alcohols, 8, 813
carbocations, 8, 275
carbonyl compounds, 8, 318
1,4-dihydropyridine, 8, 589
Silane, triisopropyl-
reduction
acetyl halides, 8, 265
reduction
ketones, 8, 265
Silane, vinyl-
metal exchange reaction
replacement of hydroxy by alkene, 8, 738
Silane, vinyl(alkoxy)-
synthesis
via Ireland silyl ester enolate rearrangement, 5, 841
Silanes, acyl-
carbomagnesiation
intramolecular, 4, 879
formylation, 2, 728
intramolecular acylation
Friedel–Crafts reaction, 2, 714
synthesis
via carboxylation, 4, 900
via metal carbene complexes, 1, 808
Silanes, allenyl-
coupling reactions
with α,β-unsaturated acylsilanes, 1, 598
reactions with allylsilanes, 1, 598
Silanes, allyl-
acetylation
Friedel–Crafts reaction, 2, 712
carbomagnesiation
intramolecular, 4, 879
formylation, 2, 728
intramolecular acylation
Friedel–Crafts reaction, 2, 712
synthesis
via carboxylation, 4, 900
via metal carbene complexes, 1, 808
Silanes, allyloxy-
hydroalumination
unsaturated hydrocarbons, 8, 765
Silanes, allenyl-
acetylation
Friedel–Crafts reaction, 2, 712
carbomagnesiation, 4, 892
coupling reactions
with α,β-unsaturated acylsilanes, 1, 598
reactions with allylsilanes, 1, 598
reactions with α,β-unsaturated acylsilanes, 1, 598
reactions with aldehydes, 1, 599; 2, 575
reactions with carbonyl compounds
synthesis of substituted alkynes, 1, 595
titanium tetrachloride, 1, 595
reactions with imines
syn-anti selectivity, 2, 992
reactions with ketals, 2, 579
reactions with ketones, 2, 575
reactions with tropylion ions, 1, 603
reactions with α,β-unsaturated acylsilanes, 1, 598
reactions with α,β-unsaturated carbonyl compounds, 1, 596
synthesis, 2, 587
Silanes, allyl-
acetylation
Friedel–Crafts reaction, 2, 712
addition reactions
stereoreactive, 1, 610
allylations
Lewis acid promoted, 1, 346
allylic rearrangements, 7, 822
π-allylpalladium complexes from, 4, 588
chiral
vinyl substitution
palladium complexes, 4, 840
Silanes, acyl-
reaction with sulfonyl carbamions, 5, 1014
rearrangement
enol ether preparation, 2, 601
synthesis, 7, 598
via Claisen rearrangement, 5, 850
via organoaluminum reagents, 1, 97
α,β-unsaturated
reactions with allenylsilanes, 1, 598
Silanes, alkenyl-
acetylation
Friedel–Crafts reaction, 2, 712
carbomagnesiation
intramolecular, 4, 879
formylation, 2, 728
intramolecular acylation
Friedel–Crafts reaction, 2, 714
synthesis
via carboxylation, 4, 900
via metal carbene complexes, 1, 808
Silanes, alkenoxy-
metal exchange reaction
dialkyloboryl triflate, 2, 245
Silanes, alkynyl-
hydroboration
unsaturated hydrocarbons, 8, 765
Silanes, acryloyl-
coupling reactions
via Claisen rearrangement, 5, 850
via organoaluminum reagents, 1, 97
α,β-unsaturated
reactions with allenylsilanes, 1, 598
Silanes, allenyl-
[3 + 2] annulations, 1, 596
reactions with acetals, 2, 579
reactions with activated imines, 1, 602
reactions with acryliminium salts, 1, 598; 2, 1061
reactions with aldehydes, 1, 599; 2, 575
reactions with carbonyl compounds
synthesis of substituted alkynes, 1, 595
titanium tetrachloride, 1, 595
reactions with imines
syn-anti selectivity, 2, 992
reactions with ketals, 2, 579
reactions with ketones, 2, 575
reactions with tropylion ions, 1, 603
reactions with α,β-unsaturated acylsilanes, 1, 598
reactions with α,β-unsaturated carbonyl compounds, 1, 596
synthesis, 2, 587
Silanes, allyl-
acetylation
Friedel–Crafts reaction, 2, 712
addition reactions
stereoreactive, 1, 610
allylations
Lewis acid promoted, 1, 346
allylic rearrangements, 7, 822
π-allylpalladium complexes from, 4, 588
chiral
reaction with aldehydes, stereospecifically, 2, 568
conjugate additions to \(\alpha,\beta \)-enones
Lewis acid catalyzed, 4, 155
[4 + 3] cycloaddition reactions, 5, 598
electrophilic substitutions
allylic rearrangement, 6, 832
epoxidation, 7, 360
intermolecular additions
aldehydes, ketones and acetals, 1, 610
internal additions
stereochemistry, 1, 615
Mannich reaction, 2, 1032
metallated
additions to aldehydes, 1, 113
reactions
fluoride ion catalysis, 2, 565
reactions with acetals, 2, 576
reactions with N-acyliminium ions, 2, 1060, 1064, 1066, 1070, 1071
reactions with aldehydes, 2, 567
reactions with alkoxy methyl chlorides, 2, 580
reactions with carbonyl compounds, 1, 610; 2, 563–590
reactions with glycine cation equivalents, 2, 1075
reactions with imines, 2, 1002
reactions with ketals, 2, 576
reactions with ketones, 2, 567
reactions with phenylthiomethyl chlorides, 2, 580
reactions with vinyloxiranes
regioselectivity, 5, 936
synthesis, 2, 582
via coupling reactions, 3, 437, 445
via [3 + 2] cycloaddition reactions, 5, 304
via esters, 1, 244
via \(\beta \)-hydroxyalkyl selenides, 1, 705
via nickel catalysts, 3, 229
via Peterson methylation, 1, 238, 735
Silanes, allyl amino-
methylated
addition reactions, 1, 624
Silanes, aryl-
Birch reduction
dissolving metals, 8, 513
defluorosilylation
aryne generation, 4, 487
Silanes, bisallyl-
synthesis, 3, 482
Silanes, chiral acyl-
nucleophilic addition reactions
stereoselectivity, 1, 57
Silanes, dienyl-
synthesis
via zinc-ene reactions, 5, 32
Silanes, dimethylfluoro-
reaction with alkynyl iodides
organopalladium catalysis, 3, 233
Silanes, \(\alpha,\beta \)-epoxy-
Peterson reaction, 1, 737
reaction with organocopper compounds, 3, 224
synthesis, 7, 643
via Darzens glycidic ester condensation, 2, 426
via vinylsilanes, 2, 57
synthesis and rearrangement
enol ether preparation, 2, 601
Silanes, \(\alpha,\beta \)-epoxyalkyl-
deprotonation, 3, 198
Silanes, homoallylic
intermolecular acylation
Friedel–Crafts reaction, 2, 719
Silanes, 2-hydroxy-
synthesis, 7, 643
via trimethylsilylmethylerium reagent, 1, 238
Silanes, \(\beta \)-hydroxyalkyl(1-naphthyl)phenylmethyl-
synthesis, 1, 785
Silanes, \(\beta \)-keto(aldelydo)-
synthesis from \(\alpha \)-trimethylsilyl epoxides
reaction with Grignard reagents, 3, 759
Silanes, organo-
hydride donor
ionic hydrogenation, 8, 486
Silanes, propargyl-
acylation
Friedel–Crafts reaction, 2, 726
electrophilic additions
formation of \(\beta \)-silyl carbocations, 1, 616
reaction with acetals, 2, 579
reaction with N-acyliminium ions, 2, 1071
reaction with aldehydes, 2, 575
reaction with ketals, 2, 579
reaction with ketones, 2, 575
synthesis, 2, 587
Silanes, trialkyl-
nucleophilic addition reactions
stereoselectivity, 1, 57
reduction in acetals, 8, 216
Silanes, vinyl-
conjugate addition
organocuprates, 4, 191
coupling reactions
with aryl bromides, 3, 495
with organic halides, 8, 786
cyclization reactions
acetal- and carbonyl-initiated, 1, 585
Nazarov type, 1, 585
divinyl ketones from, 5, 777
epoxidation, 2, 58, 601
hydroxylation, 8, 774
hydroxylation
 generation of \(\alpha \)-hydroxy ketones, 7, 172
intramolecular addition, 1, 584
Mannich reaction, 2, 1030
oxidative rearrangement, 7, 816
reaction with acetals, 2, 579
reaction with N-acyliminium ions, 2, 1064
reaction with aldehydes, 2, 575
reaction with carbonyl compounds, 2, 563–590
reaction with electrophiles, 8, 785
reaction with glycine cation equivalents, 2, 1074
reaction with ketals, 2, 579
reaction with ketones, 2, 575
reaction with methoxymethyl chloride
carbon–oxygen bond cleavage, 2, 581
synthesis, 2, 588; 8, 769
via \(\beta \)-hydroxyalkyl selenides, 1, 705
via Peterson reaction, 1, 786
vinyl anion equivalents, 1, 583
Silanol, (3E)-phenylethylidimethyl-
asymmetric epoxidation, 7, 423
Silanones
 generation
2-Silapropene

via retro Diels–Alder reaction, 5, 587

2-Silapropene, 2-methyl-
synthesis
via retro Diels–Alder reaction, 5, 587

Silap-Fummerer rearrangement
β-elimination, 7, 204

2-Silapryn
Diels–Alder reaction, 5, 587
methyl acrylate, 5, 1074

Silasemibulvalene
synthesis
via photoisomerization, 5, 199

Silenes

generation
via retro Diels–Alder reaction, 5, 587

Silica
solid support
oxidants, 7, 840
oxidation, 7, 842

Silica gel
catalyst

Pauson–Khand reaction, 5, 1056

Silicates, crotyl
pentacoordinate
configurational stability, 2, 6
reactions with achiral aldehydes, 2, 17

Silicates, hydridocarboxyl compound reduction, 8, 20
Silicates, organopentafluorosynthesis, 7, 642

Silicates, pentafluorosynthetic reactions, 8, 787

Silicon hydrides
reduction
carbonyl compounds, 8, 20
unsaturated carbonyl compounds, 8, 546

Silicon reagents
Darzens glycidic ester condensation, 2, 426
organopalladium catalysis, 3, 233
reactions with achiral carbonyl compounds, 2, 17

Silphinene
synthesis
via Nazarov cyclization, 5, 779
via photocycloaddition, 5, 662

Silphiperfol-5-ene
synthesis
via photocycloaddition, 5, 664
Silphiperfol-6-en-5-one
synthesis
via photoisomerization, 5, 232

Silver
catalysts
Grignard reagent coupling, 3, 418

Silver, allenyl-
synthesis, 2, 85

Silver acetate
allylic oxidation, 7, 92

Silver benzoate
iodine
alkene hydroxylation, 7, 447
Wolff rearrangement initiator, 3, 891

Silver carbonate
on celite
oxidant, 7, 841
oxidation

diols, 7, 318
α,ω-diols, 7, 312
secondary alcohols, 7, 320

Silver carboxylates
reaction with halogens, 7, 723
synthesis, 7, 718

Silver cyanide
isocyanide synthesis, 6, 243
Silver dichromate, tetrakis(pyridine)-oxidation
alcohols, 7, 286

Silver homoenolates
substitution reactions, 2, 450

Silver nitrate
in halohydrin rearrangements
formation of aldehydes, 3, 758
oxidation
halides, 7, 664

Silver oxide
quinone synthesis, 7, 355
reaction with acyl chloride
preparation of silver carboxylates, 7, 723
Wolff rearrangement initiator, 3, 891

Silver permanganate, bispyridine-oxidation
primary arylamines, 7, 738

Silver salts
catalysts
Cope rearrangement, 5, 802
Kornblum oxidation, 7, 656
Ritter reaction initiators, 6, 283
Wurtz coupling, 3, 422

Silver tetrafluoroborate
activator
DMSO oxidation of alcohols, 7, 299

Silver trifluoroacetate
alkane oxidation, 7, 13

Silybin
synthesis, 3, 691
Silylamine, α-cyano-
azonemethine ylides from, 4, 1088
Silylamines
reaction with ketenes, 2, 605
Sililation
alcohol protection, 6, 654
1-O-Sililation
glycoside synthesis, 6, 49
C-Sililation
Claisen rearrangements
competition, 5, 850

Silyl carbonates
synthons
[3 + 2] cycloaddition reactions, 5, 304
Silyl chromate, bis(triphenyl-
oxidative cleavage
alkenes, 7, 571
Silyl compounds, titanated
reactions with carbonyl compounds, 1, 161
Silyl cyanides, trialkyl-
reactions with carbonyl compounds
Lewis acid promotion, 1, 328
Silyl dienol ethers
cross-conjugated
alkylation, 3, 28
Sinefugin

Silyl groups, 2-furyldimethyl-desilylation, 7, 647
Silyl halides, trialkyl-reaction between aldehydes and organocuprates, 1, 112
Silyl-hydroformylation

cycloalkanes

enol ether preparation, 2, 603
Silylimines, N-trimethyl-reaction with allyl organometallic compounds, 2, 999
reaction with silylketene acetics, 5, 102
Silyl ketene acetals

chiral

aldol reaction, 2, 636
diastereoselective addition to imines, 2, 638, 639
diastereoselective aldol additions, 2, 636
reaction with aldehydes, diastereoselectivity, 2, 637
Claisen condensation, 2, 803
conjugate additions

epoxides, 4, 158–162
α,β-epoxyenes, 4, 162
dehydrosilylation, 7, 142
diastereoselective addition reactions
circular aldehydes, 2, 652
from butyrolactone
reaction with aldehydes, 2, 632
α-hydroxylation, 2, 632
reactions with aldehydes

Lewis acid mediated, 2, 630
reactions with imines, 2, 929
diastereoselectivity, 2, 636
reactions with oxime ethers, 2, 940
reactions with N-silylimines, 2, 937
synthesis

via Ireland silyl ester enolate rearrangement, 5, 841
thiol esters
reaction with aldehydes, 2, 644
Silyl ketene acetals, bis-

α-hydroxylation, 7, 185
Silylmetallation

alkynes, 8, 771
Silylmethyl radicals
cyclizations, 4, 794; 7, 648
Silylum salts, α-trimethyl-desilylation

azomethine ylide generation, 4, 1086
Silyl perbenzoates, trimetrico-

rearrangement, 7, 641
Silyl peroxide

rearrangement, 7, 641
Silyl polyphosphate, trimethyl-
cyclization

alkene oximes, 6, 671
Silyl triflate, trimethyl-

reduction

acetals, 8, 216
Simmons–Smith cyclopropanation, 4, 968
asymmetric, 4, 968
hydroalumination adducts, 8, 756
unsaturated ketones, 1, 533
Simonini complex

alkene hydroxylation, 7, 447
Sinapic acid

oxidation, 3, 692
Sinefugin

synthesis

extended

γ-alkylation, 3, 27
homocoupling

alkylation, 3, 27
α′-hydroxylation, 7, 177
Silylenes
dicarbonyl compound monoprotection, 6, 684
Silyl enol ethers
aldehyde

allylation, 3, 28
dacl reactions, 8, 786
Lewis acid promoted, 1, 346
alkali metal enolates
reaction, 2, 108
allylation, 3, 25
amination, 6, 118
asymmetric synthesis, 2, 629
Beckmann rearrangement, 6, 770; 7, 697
chiral

diastereoselective aldol additions, 2, 636
chlorination, 7, 530
cleavage

methylmagnesium bromide, 2, 110
conjugate additions

epoxides, 4, 158–162
conversion to enolates, 2, 184
coupling reactions

with aryl Grignard reagents, 3, 492
with primary bromides, 3, 454
with primary alkyl Grignard reagents, 3, 445
cyclic

synthesis, 2, 601
cycloalkylation, 3, 27
dehydrogenation

palladium catalysts, 7, 141
quinones, 7, 137
dihalocyclopropanation, 4, 1005
ene reactions, 5, 1075
halogenation, 7, 121
α-hydroxylation

ketones, 7, 163
intramolecular alkylation, 3, 26
Mannich reactions

iminium ions, 2, 1015
ozonolysis, 7, 166
reactions, 2, 613
reactions with aldehydes

Lewis acid mediated, 2, 630
reactions with carbonyl compounds

catalysts, 2, 614
chemoselectivity, 2, 615
regioselectivity, 2, 616
reactions with α-chloromethyl phenyl sulfides, 6, 141
reactions with nitroarenes, 4, 429
reduction, 8, 935
regiospecific synthesis, 2, 599
sulfenylation, 7, 125
α-sulfonofunctionylation, 7, 145
synthesis, 2, 599
via lithium homoenolates, 3, 197
via oxidative cleavage, 7, 587
vinyl substitution

palladium complexes, 4, 840
Silylepoxy ethers
rearrangements

alcohol synthesis, 6, 14
α-Sinensal

via Ugi reaction, 2, 1096

α-Sinensal

synthesis, 1, 560; 3, 936

β-Sinensal

synthesis, 3, 429

via tandem Claisen–Cope rearrangement, 5, 878

Single electron transfer
desulfurization
electropositive metals, 8, 842

Sinularene

synthesis

via Cope rearrangement, 5, 989

via magnesium–ene reaction, 5, 41

Sinularene, 12-acetoxy-
synthesis

via magnesium–ene reaction, 5, 41

Sirenin

synthesis, 3, 288, 788; 7, 86

Six-membered rings

synthesis

via aldol reaction cascade, 2, 620

via Friedel–Crafts reaction, 2, 758

via polyene cyclization, 3, 349

Skattebol rearrangement

heterocyclic version, 4, 1021

vinylcyclopentadiene–cyclopentadiene compounds, 4, 1012

Skeletal reorganizations, 1, 843–899

α-Skytanthine

synthesis

via conjugate addition to α,β-unsaturated carboxylic acid, 4, 202

via magnesium–ene reaction, 5, 41

δ-Skytanthine

synthesis

via magnesium–ene reaction, 5, 41

Slaframine

synthesis

via Diels–Alder reaction, 5, 414

Small ring compounds
cycloaddition reactions

metal-catalyzed, 5, 1185–1204

Sodium

Birch reduction, 8, 492

alkyl halides, 8, 795

ethanol as solvent

reduction, 8, 111

in alcohol

alkyl halide reduction, 8, 795

liquid ammonia

amide reduction, 8, 293

carbonyl compound reduction, 8, 308

reduction

amides, 8, 302

ammonia, 8, 113

carbonyl compounds, 8, 109

enones, 8, 524

epoxides, 8, 880

reductive dimerization

unsaturated carbonyl compounds, 8, 532

Sodium, benzyl-
tetramethylethylenediamine solvate
crystal structure, 1, 13

Sodium, indenyloctamethylethlenediamine complex
crystal structure, 1, 19

Sodium, methyl-
synthesis
crystal structure, 1, 12

Sodium acetate

Rosenmund reduction, 8, 287

Sodium acetoxymethylenetriphenylphosphorane
hydroboration, 8, 709

Sodium aluminum hydride

reduction

amides, 8, 271

esters, 8, 267

enones, 8, 36

nitriles, 8, 274

reduction kinetics, 8, 2

Sodium amalgam

C—P bond cleavage, 8, 863
demercuration, 8, 857

stereoselectivity, 8, 857

desulfurization, 8, 843

reduction

aldolactones, 8, 292

enones, 8, 525

reductive cleavage

α-alkylthio ketone, 8, 993

reductive dimerization

unsaturated carbonyl compounds, 8, 532

Sodium amide

phosphonium ylide synthesis, 6, 174

Sodium arsenate

reduction

nitro compounds, 8, 366

Sodium azide

reaction with π-allyl complexes, 6, 86

reaction with trialkylboranes, 7, 607

Sodium benzoate

reduction

dissolving metals, 8, 526

Sodium bis(phenoxymethoxymethyl)aluminum hydride
allylic alcohol synthesis

reduction, 7, 397

reduction

amides, 8, 271

aromatic nitriles, 8, 274

benzylic halides, 8, 967

carbonyl compounds, 8, 314

carboxylic acids, 8, 238

epoxides, 8, 879

enones, 8, 267

imines, 8, 36

lactones, 8, 268

pyridines, 8, 584

α-siloxy ketones, 8, 7

unsaturated carbonyl compounds, 8, 542–544

Sodium bis(2-methoxyethoxy)ethoxylaluminum hydride
reduction

lactones, 8, 268

Sodium bis(2-methoxyethoxy)-Ν-methylpiperidinoaluminum hydride
reduction

esters, 8, 267

Sodium bismuthate

glycol cleavage, 7, 703

Sodium bis(trimethylsilyl)amide

phosphonium ylide synthesis, 6, 174

Sodium borodeuteride

labeling
demercuration, 8, 852
reduction
Sodium borohydride

cerium chloride complex
cyclic ketone reduction, 8, 15
enone reduction, 8, 539
chirally modified
reduction, 8, 160
demercurations, 8, 851
hydroboration, 8, 708
liquid ammonia
reductive amination, 8, 54
reduction
acetals, 8, 215
acyl halides, 8, 240, 263
alkyl halides, 8, 803
N-alkyphthalimides, 8, 254
amides, 8, 249
benzylic alcohols, 8, 962
benzylic halides, 8, 967
carboxyl compounds, 8, 2, 313
carboxylic acids, 8, 237
enones, 8, 15
epoxides, 8, 874
esters, 8, 244, 267
hydrazones, 8, 345
imines, 8, 26
imines, chemoselectivity, 8, 37
indoles, 8, 616
ketones, 8, 9
keto sulfides, 8, 12
lactones, 8, 269
nitriles, 8, 253
nitro compounds, 8, 366
pyridines, 8, 579
tosylates, 8, 812
unsaturated carbonyl compounds, 8, 536
unsaturated hydrocarbons, 8, 485
reductive demercuration, 7, 632
selective aldehyde reduction, 8, 16
selective ketone reduction, 8, 18
trifluoroacetic acid
carbonyl compound reduction, 8, 315
Sodium bromate
reduction
dissolving metals, 8, 526
Sodium bromite
oxidation
secondary alcohols, 7, 322
Sodium cation complexes
acetone
theoretical studies, 1, 287
crystal structure, 1, 299
Sodium chromoglycate
synthesis, 7, 338
Sodium cyanoborohydride
boration trifluoride mixture
epoxide reduction, 3, 753
reduction
acetals, 8, 216
alkyl halides, 8, 806
allylic leaving group, 8, 960
benzylic compounds, 8, 969
carbonyl compounds, 8, 314
enones, 8, 538
epoxides, 8, 876
hydrazones, 8, 350
imines, 8, 26, 36
imines, chemoselectivity, 8, 37
pyridines, 8, 580
tosylates, 8, 812
unsaturated carbonyl compounds, 8, 536
reductive amination, 8, 26, 47
biochemical applications, 8, 47
Sodium (cyclopentadieny1)dicarbonylferate
deoxygenation
epoxides, 8, 890
Sodium dichromate
oxidation
alcohols, 7, 252
Sodium O,O-diethyl phosphorotelluroate
deoxygenation
epoxides, 8, 887
Sodium disobutylaluminum hydride
reduction
aromatic nitriles, 8, 274
Sodium dithionite
demercurations, 8, 857
reduction
dienoic carboxylic acids, 8, 563
imines, 8, 36
1-methyl-4-carbamoylpyridinium bromide, 8, 589
pyridines, 8, 589
Sodium enolates
Claisen rearrangement, 5, 847
synthesis, 2, 100
Sodium hexamethyltrisilazane
enolate formation, 2, 182
Sodium hexamethyltrisilazide
crystal structure, 1, 37
Sodium hydride
phosphonium ylide synthesis, 6, 175
reduction
acyl halides, 8, 262
cyclic carbonyl compounds, 8, 14
enones, 8, 16
epoxides, 8, 879
quinoline, 8, 588
unsaturated hydrocarbons, 8, 485
Sodium hydrogen telluride
reduction, 8, 880
aromatic compounds, 8, 370
Sodium hypochlorite
oxidation
organoboranes, 7, 602
primary arylamines, 7, 738
secondary alcohols, 7, 318
Sodium metaperiodate
oxidant
solid support, 7, 842
Sodium methoxide
oxidant
solid support, 7, 842
Sodium methylsulfinate
phosphonium ylide synthesis, 6, 175
Sodium naphthalenide
reductive cleavage
aryl-phosphorus bonds, 8, 859
Sodium nitrite
oxidation
halides, 7, 665
Sodium

Cumulative Subject Index

758

reduction
dissolving metals, 8, 526
Sodium octacarbonyldihydridodiferrate reduction
unsaturated carbonyl compounds, 8, 550
Sodium perborate
1-hydroxy-1-acetoxyalkene synthesis, 7, 466
oxidation, 7, 674
organoboranes, 7, 602
primary amines, 7, 737
primary arylamines, 7, 738
Sodium percarbonate oxidation
primary amines, 7, 737
Sodium periodate oxidation
ethers, 7, 238
selenides, 7, 722
Sodium percarbonate oxidation
primary amines, 7, 737
Sodium persulfate oxidation
Sodium-potassium alloy oxidation
primary amines, 7, 737
Sodium selenoisocyanate reaction with trialkylboranes, 7, 608
Sodium sulfide reduction
dibromoalkanes, 8, 806
nitro compounds, 8, 370
Sodium telluride synthesis, 8, 370
Sodium tetraacarbonylcobaltate catalyst
Sodium tetracarbonyldiferrate catalyst
Sodium tetraacarbonylferrocene catalyst
Sodium tetrachloroaluminate catalyst
Friedel−Crafts reaction, 2, 756
Sodium tetraphenylborate oxidation
organoboranes, 7, 603
Sodium p-toluenesulfonamide reaction with m-allyl complexes, 6, 86
Sodium triacetoxyborohydride reductive amination, 8, 54
Sodium tri-n-butylaluminum hydride reduction
amides, 8, 271
Sodium triethoxylaluminum hydride reduction
nitriles, 8, 274
Sodium triethylborohydride reduction
isoquinoline, 8, 583
Sodium trimethoxyborohydride demercuration, 8, 853
reduction
acyl halides, 8, 263
unsaturated carbonyl compounds, 8, 536
Solanesol synthesis, 3, 170
Solasodine reduction, 8, 228
Solavetivone synthesis via ketocarbonoids, 4, 1056
Solentopin synthesis, 1, 558
Solentopin A synthesis, 6, 770
Solentopin B synthesis, 6, 771
Solid-supported reagents oxidation, 7, 839−847
alumina, 7, 841
clay, 7, 845
silica, 7, 842
Solvinops sp. via ketocarbenoids, 4, 1056
trail pheromone component synthesis, 1, 568
Sonication hydroboration, 8, 716
Sonn−Müller reduction imidoyl chlorides, 8, 300
Sonoelectrochemistry nitrile synthesis, 6, 234
Sorbamide, N,N-diethylamine conjugate additions
organomagnesium reagents, 4, 183
Sorbamide, N,N-diethylamine−alkyl conjugate additions
organomagnesium reagents, 4, 183
Sorbic acid sodium salt hydrogenation, 8, 450
Southern corn rootworm pheromone synthesis via conjugate addition to α,β-unsaturated carboxylic acid, 4, 202
Soybean lipoxigenase irreversible inhibitors synthesis, 3, 217
Sparteine ethylmagnesium bromide complex crystal structure, 1, 13
Sparteine, 6-benzyl-ethylmagnesium bromide complex crystal structure, 1, 14
Specionin synthesis, 7, 301 via ene reaction, 2, 537
Spectinomycin Mannich reaction, 2, 903 synthesis via Diels–Alder reaction, 2, 696
Sphingolipids amino alcohols and, 2, 323
erythro-Sphingosine synthesis via Henry reaction, 2, 331
threo-Sphingosine synthesis via intramolecular Diels–Alder reaction, 5, 425
Sphingosines synthesis, 6, 53
Sphondin synthesis, 5, 1096, 1099 regioselective, 5, 1094
Spirocyclic ethers synthesis, 2, 331 via dihalocarbene insertion, 4, 1022
Spirocyclic ketones synthesis, 3, 252 via cyclization of enol ethers, 4, 390
Spir(4,4)alkenones synthesis via [3 + 2] cycloaddition reactions, 5, 285
Spiran annulation conjugate additions bisorganocuprates, 4, 192 Wurtz coupling, 3, 423
Spirazepinedione synthesis via intramolecular photocycloaddition, 5, 181
Spirobenzyldiisouquinoline alkaloids synthesis via photoinduced iminium ion–benzylsilane cyclization, 2, 1040
Spirocycles synthesis via cyclopropane ring opening, 4, 1043 via radical cyclizations, 4, 791
Spirocyclusations N-acyliminium ions, 2, 1064 polyenes, 3, 354
Spirophenylbutanone annulation via ring expansion, 5, 919 synthesis via rearrangement of vinylcyclopropane, 5, 919
Spirocyclohexa-1,4-diene oxidative rearrangement, 7, 833 Spiro[5,5]cyclohexadiene synthesis via arene–metal complexes, 4, 541
Spirocyclohexanone oxime Ritter reaction, 6, 279
Spirocyclopentanes π-allylpalladium complexes from, 4, 587
Spirocyclopropanes synthesis via dihalocyclopropanes, 4, 1014
Spiro[4,5]decadienones synthesis via vinylsilanes, 1, 584
Spirodienones oxygen migration, 3, 813 synthesis, 3, 679, 7, 136 via aryl radical insertion, 3, 686 via C–C phenol-phenol coupling, 3, 679 via ketocarbenoids, 4, 1056
Spirodihydrofuranes synthesis via lithium allenates, 2, 88
Spiroethers synthesis, 3, 688
Spiro[2.4]hept-4-ene-6-diene cycloaddition reactions tropones, 5, 621
Spiro[2,4]heptane, 2-methylene-synthesis via metal-catalyzed coooligomerization, 5, 1195
Spiroindolenine synthesis, 6, 737
Spiroketals chiral reaction with silyl enol ethers, 2, 651 reduction, 8, 220 synthesis, 8, 837 via organocerium reagents, 1, 239
Spirolactones synthesis via oxidation of hydroxyalkenes, 7, 267
Spirolactonization Reformatsky reaction, 6, 357
Spiro[3.5]nonanone, 5-methylene-divinylcyclobutanols from, 5, 1028
Spiro[4,4]nonatetraene synthesis, 2, 710
Spiropyrolidinones synthesis via intramolecular vinyl substitution, 4, 847
Spirorenone synthesis via microbial methods, 7, 74
Spirothiazines synthesis via thiol addition to alkenes, 4, 317
Spirovetevanes
Sporamine

Cumulative Subject Index

Sporamine

synthesis, 7, 536

Spores

oxidation, 7, 80

Squalene

photocrosslinking reactions

poly(vinylbenzophenone), 5, 161

synthesis, 3, 99, 170; 6, 145; 7, 87

via aryynes, 4, 507

via iterative rearrangements, 5, 892

via phosphonium ylides, 3, 201

via reduction of sulfides, 3, 107

via 3,2-sigmatropic rearrangement, 3, 943

via sulfones, 6, 157

via sulfur ylides, 3, 2-rearrangement, 3, 933

via ylides, 3, 919

Squalene, 2,3-epoxy-
synthesis, 3, 126

Squalene, 1-hydroxy-
asymmetric epoxidation, 7, 409

Squalene, perhydro-
synthesis, 3, 586

Squalenoids

oxacyclic

synthesis via exo alkene cyclization, 4, 378

synthesis

(2)-selectivity, 1, 767

Squaric acid
dialkyl esters
cyclobutenones from, 5, 689

2-Stanna-1,3-dioxolane

synthesis, 3, 571

Stannane, [2-(acetoxyethyl)-3-allyl]-tri-n-butyl-
reactions with crotol organometallic compounds, 2, 982

Stannane, acetyl-

asymmetric reduction
to α-siloxy organostannanes, 3, 196

prochiral
enantioselective reduction, 8, 164

Stannane, 1-adamantyltrimethyl-
oxidation
formation of tertiary alcohol, 7, 614

Stannane, (1-alkynyl)tributyl-
acylation
platinum catalyzed, 1, 447

Stannane, allenyl-
reaction with N-acyliminium ions, 2, 1061

reaction with aldehydes, 2, 575

reaction with ketones, 2, 575

synthesis, 2, 587

Stannane, allylchloro-

acetylation
Friedel–Crafts reaction, 2, 726

Stannane, allyltri-n-butyl-
alloylation, 4, 743

reaction with aldmines, 2, 986

reaction with α-alkylimines, 2, 981

Stannane, allyltrimethyl-
radical reactions
fragmentation methods, 4, 744

Stannane, aryli

dimerization, 3, 500

Stannane, crotyl-

reaction with aldehydes, 2, 4

reaction with iminium salts, 2, 1002

synthesis, 2, 977

Stannane, crotylalkyl-

isomerization, 2, 6

reactions with aldehydes, 2, 18

Stannane, crotyltri-n-butyl-

reaction with α-alkylamines

syn–anti selectivity, 2, 989

stability
boron trifluoride etherate, 2, 977

Stannane, dienylmethyl-

reaction with aldehydes, 2, 575

Stannane, diphenyl-

reduction
unsaturated carbonyl compounds, 8, 548

Stannane, ethoxy-α-chloromethyltributyl-

reaction with Grignard reagents

preparation of O-ethyl organostannanes, 3, 196

Stannane, ethynyl-

reaction with aldehydes, 2, 575

reaction with ketones, 2, 575

Stannane, α-hydroxy-
synthesis

via enantioselective reduction of acylstannone, 8, 164

Stannane, γ-hydroxy-
fragmentation, 1, 894

synthesis

via sequential Michael ring closure, 4, 262

Stannane, propargyl-

reaction with aldehydes, 2, 575

reaction with ketones, 2, 575

synthesis, 2, 587

Stannane, pyridyl-

coupling reactions

with bromopropynidine, 3, 510

Stannane, β-silylvinyl-
coupling reactions

with alkyl halides, 3, 495

Stannane, α-sulfonallykyl-
coupling reactions

with alkyl halides, 3, 443

Stannane, 4-tetrahydropyranoyloxphenyltrimethyl-

reaction with N,N-dimethylmethyleniminium chloride, 2, 962

Stannane, 3-thienyltrimethyl-

Mansch reaction, 2, 963

Stannane, trialkyl-

reduction
unsaturated nitriles, 8, 548

Stannane, triaryl-

reduction
unsaturated nitriles, 8, 548

Stannane, tri-n-butyl-

decyanation
isoconanides, 8, 830

deoxygenation
thioesters, 8, 818

radical reduction
allylic groups, 8, 969

reduction, 8, 961

acyl halides, 8, 264

alkyl halides, 8, 798

unsaturated carbonyl compounds, 8, 548

Stannane, tributyldeutero-
reduction
alkyl halides, 8, 798
Stannane, tributyltritio-
reduction
alkyl halides, 8, 798
Stannane, triphenyl-
reduction
acyl halides, 8, 264
carbonyl compounds, 8, 322
isocyanates, 8, 74
unsaturated carbonyl compounds, 8, 548
Stannane, vinyl-
coupling reactions
butadiene synthesis, 3, 483
with alkanyl halides, 3, 495
with vinyl iodides, 3, 488
oxidation, 7, 620
radical cyclizations, 4, 799
radical reactions
fragmentation methods, 4, 743–746
reaction with aldehydes, 2, 575
reaction with carbonyl compounds, 2, 563–590
reaction with ketones, 2, 575
synthesis, 2, 582
via Ireland silyl ester enolate rearrangement, 5, 841
toxicity, 8, 800
Stannanes, alk-1-ynyltrialkyl-
oxidation, 7, 620
Stannanes, allyl-
π-allylpalladium complexes from, 4, 588
conjugate additions to α,β-enones
Lewis acid catalyzed, 4, 155
[3 + 2] cycloaddition reactions
with acylicn complexes, 5, 277
electrophilic substitutions
allylic rearrangement, 6, 832
Lewis acid catalyzed reactions
regioselectivity, 2, 565
oxidation, 7, 616
Prins reaction
mechanism, 2, 564
radical cyclizations, 4, 799
radical reactions
fragmentation methods, 4, 743–746
reaction with acetics, 2, 578
reaction with N-acyliminium ions, 2, 1060, 1064, 1067
reaction with aldehydes, 2, 572
reaction with aldmines
syn–anti selectivity, 2, 983, 991
reaction with amines, 2, 1002
reaction with carbonyl compounds, 2, 563–590
reaction with imines, 2, 976
reaction with iminium salts, 2, 1002
reaction with ketals, 2, 578
reaction with ketones, 2, 572
reaction with vinyloxiranes
regioselectivity, 5, 936
synthesis, 2, 587
Stannanes, α-aminotransmetallation, 1, 476, 479
Stannanes, cyclohexenyl-
hydroxylation, 7, 616
synthesis
via Diels–Alder reaction, 5, 335
Stannanes, dialkoxy-
diol protection, 6, 662
Stannanes, 1,2-epoxy-
synthesis
via oxidation of vinylstannanes, 7, 620
Stannanes, tetraalkyl-
oxidation
chromium trioxide, 7, 614
Stannanes, tetrasubstituted
synthesis, 1, 445
γ-Stannyl alcohols
cyclic
1,4-fragmentation, 7, 621
1,3-eliminative cyclization
formation of cyclopropanes, 7, 621
γ-Stannyl alcohols, trialkyl-
oxidation, 7, 621
Stannylocupration
alkynes, 4, 901
Stannylene, dialkyl-
reactions with polyols, 6, 18
O-Stannyl ketene acetal
formation
by 1,4-hydrostannation, 2, 609
Stannyl thiolates
polythiolactone synthesis, 6, 441
Statine
analog
synthesis via aldol reaction, 2, 223
synthesis
via N-acyliminium ions, 2, 1060
Staudinger reaction
heterocyclic synthesis, 6, 759
5H-thieno[2,3-c]pyrrole synthesis, 2, 378
Stearic acid, trans-2-epoxy-
methyl ester
Ritter reaction, 6, 271
Stegancin
synthesis, 1, 566
via vanadium oxytrifluoride, 3, 674
Stegane
synthesis
via vanadium oxytrifluoride, 3, 675
Steganone
synthesis, 3, 150, 501
via cyclobutene ring expansion, 5, 687
via ring expansion, 3, 674
via thallium trifluoroacetate, 3, 673
Stemodin
synthesis, 3, 717
Stemodinone, deoxy-
synthesis
via samarium diiodide, 1, 259
Stemodione, 2-deoxy-
Stephen reduction

Cumulative Subject Index

762

synthesis
via ene reaction, 2, 545

Stephen reduction
nitriles, 8, 298

Stephens–Castro coupling
alkynic ketones, 3, 226
copper acetylide intermediates, 3, 217

Stereodifferentiation
double, 2, 32
Stereoelectronics
reactions of chiral carbonyl compounds with nucleophiles, 2, 24

Stereo (organometallics)
uncatalyzed, 2, 1

Stereoanalytical method
in enolate–amine condensations, 2, 918

Steroselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti

Stereoselective synthesis
allyl organometallics

Stereoselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti
in enolate–amine condensations, 2, 918

Stereoselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti
in enolate–amine condensations, 2, 918

Stereoselective synthesis
allyl organometallics
uncatalyzed, 2, 1

Steroselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti
in enolate–amine condensations, 2, 918

Stereoselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti
in enolate–amine condensations, 2, 918

Stereoselectivity
aldol reaction
kinetic and thermodynamic control, 2, 154
syn–anti
in enolate–amine condensations, 2, 918

Steroids
A-ring aromatic
synthesis via [2 + 2 + 2] cycloaddition, 5, 1151
aromatic
synthesis, 3, 366

B-ring aromatic
synthesis via [2 + 2 + 2] cycloaddition, 5, 1151
carbonyl compounds
NMR, 1, 293
hydroxylation
metalloporphyrin, 7, 50
idoaryl esters
radical relay chlorination, 7, 46
ketones
dehydrosylation, 7, 132
dehydrosylation, selenium dioxide, 7, 128
oxidation, 7, 675
exo-methylene
epoxides, opening, 3, 743
microbial dehydrosylation, 7, 145
microbial oxidation, 7, 66
nonaromatic, synthesis
polyene cyclization, 3, 369
synthesis
Sarett, 2, 158
via Dieckmann reaction, 2, 823
via 1,5-diketone cyclization, 2, 163
via Ireland silyl ester enolate rearrangement, 5, 841
via palladium catalyzed oxidation, 7, 460
via polyene cyclization, 3, 362
Woodward’s, 2, 156
total synthesis
1,5-diketone cyclization, 2, 162
unsaturated
hydrofluorination, 4, 271

Steroids, 17α-bromo
rearrangements, 3, 846
Steroids, 21-bromo
rearrangements, 3, 846
Steroids, trans-β-cyanoxyhydroxy
synthesis
via epoxides, 6, 237
Steroids, halo
ring A contractions, 3, 854
Steroids, 19-hydroxy
synthesis
via microbial methods, 7, 74
Steroids, Δ4-3-keto
microbial hydroxylation, 7, 72
Steroids, 11-keto
homochiral
synthesis, 4, 218
reduction
dissolving metals, 8, 118
Steroids, 12-keto
reduction
dissolving metals, 8, 119
dissolving metals/ammonia, 8, 112
Steroids, nitro
reduction, 8, 374
Sterpurene
synthesis, 3, 402, 714
Sterpuric acid
synthesis, 7, 164
Stevens rearrangement, 3, 913–971; 6, 854
ammonium ylides, 6, 834
benzyldimethyl(trimethylsilylmethyl)ammonium halides, 4, 430
Steviol
rearrangement, 3, 715
Stibides
SN1 reactions, 4, 474
Stibine, diphenyl-
selective ketone reduction, 8, 18
Stibonium triflate, tetraphenyl-
oxirane ring-opening, 6, 89
4-Stilbazole, 3-cyano-
Ritter reaction, 6, 279
Stilbene, o-bromo-
photocyclization, 5, 724
Stilbene, cyano-
synthesis, 1, 561
Stilbene, difluoro-
hydrogenation, 8, 896
Stilbene, o-fluoro-
hydrogenation, 8, 896
Stilbene oxide
doxygenation, 8, 886
reaction with Grignard reagents
epoxide ring opening, 3, 755
Stilbene oxide, o-cyano-
ring opening
carbonyl ylide generation, 4, 1090
Stilbenes
cleavage by sodium hydrazide, 7, 506
nitro addition reactions, 7, 488
oxidation
osmium tetroxide, 7, 441
solid support, 7, 841
photocyclization, 5, 723
bornyl fumarate, 5, 132
reduction
hydrazine, 8, 568
synthesis, 3, 497
via Horner reaction, 1, 776
via Knoevenagel reaction, 2, 362
via palladium catalysts, 4, 840
via Ramberg–Bäcklund rearrangement, 3, 864, 865
Stilbenes, chloro-
hydrogenation, 8, 899
peroxy acid reaction
epoxides as reactive intermediates, 3, 739
Stilbestrol, diethyl-
Stiles’ reagent
ketone carboxylation
methylmagnesium carbonate, 2, 841
Stille acylation
rate
factors affecting, 1, 442
Still–Wittig rearrangement, 3, 983; 6, 879
ethers, 6, 875
Stobbe reaction
succinic esters
deprotonation, 6, 355
Stork enamine reaction, 3, 28
Stork–Eschenmoser hypothesis
polyalkene cyclization, 3, 341
Strecker synthesis
amino acids, 1, 460
Streptazoline
synthesis
via N-acyliminium ions, 2, 1064
Streptogramin
synthesis
via Peterson alkenation, 1, 791
Streptonigrin
synthesis, 1, 560; 7, 347
via Curtius reaction, 6, 814
via Diels–Alder reaction, 5, 406, 492
Streptovaricin
synthesis
(Z)-selectivity, 1, 764
Strictosidine
derivatives
synthesis via Knoevenagel reaction, 2, 373
Strigol
synthesis
via Raphael–Nazarov cyclization, 5, 779
Strontium
reduction
ammonia, 8, 113
Styrene, bromo-
catalytic hydrogenation, 8, 900
reaction with aldehydes
cromium(II) chloride, 1, 193
Styrene, t-butyl peroxy-
synthesis, 8, 855
Styrene, α-cyclopropyl-
[3 + 2] cycloaddition reactions
with 2,4-dibromopentan-3-one, 5, 283
Styrene, cis-β-deuterio-
[3 + 2] cycloaddition reactions
iron catalyzed, 5, 285
Styrene, dicyano-
odioxidative cleavage
synthesis of dithioacetal, 7, 588
Styrene, α-ethoxy-
reduction, 8, 937
Styrene, 4-methoxy-
[2 + 2] cycloaddition reactions, 5, 73
hydroboration, 8, 713
reaction with tetracyanoethylene, 5, 71
solvent effects, 5, 75
Styrene, α-methyl-
[3 + 2] cycloaddition reactions
with tetramethyl dibromo ketones, 5, 283
hydroesterification, 4, 945
Styrene, β-methyl-
epoxidation, 7, 383
oxidation, 7, 464
Styrene, trans-β-methyl-p-methoxy-
reaction with tetracyanoethylene
solvent effects, 5, 76
thermochemistry, 5, 76
Styrene, β-methyl-β-nitro-
reduction, 8, 376
Styrene, β-nitro-
conjugate additions, 4, 224
synthesis
via acid catalysis, 2, 326
via nitril iodide to alkene, 4, 357
Styrene, 2-nitro-
hydroformylation, 4, 926
Styrene, 4-nitro-
reduction, 8, 364
Styrene, pentafluoro-
hydroformylation, 4, 927
Styrene, β-tetrahydropropynyl-
odioxidation
regioselectivity, 7, 464
Styrene, 4-(2-thienylcarbonyl)-
hydroformylation, 4, 932
Styrene, trifluoro-
dimerization, 5, 64
Styrene, 4-(trifluoromethyl)-
hydroboration, 8, 713
Styrene oxide
optionally pure
synthesis, 1, 833
reaction with organocopper compounds, 3, 224
rearrangement, lithium halide catalyzed, 3, 764
rearrangement, lithium perchlorate catalyzed, 3, 761
reduction
lithium aluminum hydride, 8, 875
synthesis, 7, 423
Styrene oxide, β-methyl-
reduction
lithium aluminum hydride, 8, 872
Styrenes
anodic oxidation, 7, 796
carboalumination, 4, 887
cleavage by sodium hydrazide, 7, 506
conjugated
partial reduction, 8, 564
cyclobutanones from, 5, 1087
cyclopropanation, 4, 1035
dimerization, 5, 63
hydration, 4, 298
hydroboration, 8, 704, 718
hydroesterification
palladium catalyst, 3, 1030
hydroformylation, 4, 919, 930–932
Substitution

Cumulative Subject Index

platinum catalysts, 3, 1022
hydrogenation
homogeneous catalysis, 8, 453
hydrode metallation, 8, 672
hydroisilylation
asymmetric, 8, 783
hydrozirconation
regioselectivity, 8, 685
oxidation
Wacker process, 7, 451, 452
partial reduction, 8, 523–568
Pauson−Khand reaction, 5, 1045
synthesis, 3, 495
via Friedel−Crafts reaction, 3, 294
via vinylic coupling, 3, 485
Vilsmeier−Haack reaction, 2, 782
Substitution, radical nucleophilic, unimolecular reactions, 4, 463–476
aromatic substrates, 4, 458
association, 4, 453
cyclizations, 4, 476–480
definition, 4, 452
fragmentation, 4, 454
intramolecular
ring closure, 4, 476
mechanism, 4, 452–462
nucleofuges, 4, 457
photostimulated, 4, 452
propagation, 4, 453
reviews, 4, 452
solvents, 4, 456
termination, 4, 455
Succinidealdehyde
3-substituted esters
synthesis via conjugate addition to imidazole, 4, 207
Succinidealdehyde, 3-alkyl- methyl esters
synthesis via copper catalyzed Grignard additions, 4, 93
Succinic acid
diesters, dianion enolates
stereochemistry, 2, 103
diethyl ester
disilyl ketene acetics, 2, 606
2,3-disubstituted
synthesis, 3, 638
Succinic acid, α-benzyl-β-phenyl-
synthesis, 3, 828
Succinic acid, 2-methyl-
dimethyl ester
intramolecular acyloin coupling reaction, 3, 621
Succinic anhydride
disilyl enol ethers
synthesis, 2, 607
hydrogenation, 8, 239
Succinimide, N-benzenesulfonyloxy-
Lossen reaction, 6, 822
Succinimide, N-bromo-
activator
DMSO oxidation of alcohols, 7, 299
addition reactions
alkenes, 7, 500
alkane bromination, 7, 16
allylic oxidation, 7, 112
oxidation
aldehydes, 6, 308
secondary alcohols, 7, 318
Succinimide, N-chloro-
activator
DMSO oxidation of alcohols, 7, 299
decarboxylationative halogenation, 7, 724
diisopropyl sulfide
oxidation of secondary diols, 7, 318
oxidation
primary alcohols, 7, 309
sulfide chlorination
formation of α-chlorosulfides, 7, 207
Succinimide, N-iodo-
oxidative cleavage, 7, 706
Succinimide, N-methyl-
reduction, 8, 254
Succinimide, N-methyl-2-hydroxy-
Diels−Alder reactions, 5, 365
Succinimides
Tebbe reaction, 1, 745
Succinimides, exo-methylene-
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1141
Succinoid, di-α-buty-
synthesis
via intramolecular acyloin coupling reaction, 3, 621
Succinonitrile, diimino-
Diels−Alder reactions, 5, 385
Sugar aldehydes
Knoevenagel reaction, 2, 385
Wittig reaction, 1, 759
Sugar dialdehydes
Henry reactions
cyclization, 2, 328
Sugars
acets and acetates of
reaction with allylsilanes, 2, 577
anhydro
glycosyl donors, 6, 48
branched
synthesis, 2, 139
bromides
reaction with ethynylstannanes, 2, 582
chlorination
displacement of hydroxy group, 6, 205
2-deoxy
glycosides, 6, 59
saccharides, 6, 59
Kiliñi−Fischer synthesis, 1, 460
synthetic application
Knoevenagel reaction, 2, 385
thioacets
reaction with allylstannanes, 2, 581
Sugars, amino
synthesis
via cyclofunctionalization, 4, 375, 400
Sugars, aminodeoxy
synthesis
via Henry reaction, 2, 330
Sugars, 2-azido-2-deoxy-
glycoside synthesis, 6, 42
Sugars, branched-chain
synthesis
via Paterno−Büchi reaction, 5, 158
Sugars, deoxyamino-synthesis
 via Peterson methylenation, 1, 732
Sugars, C-methylenodeoxy-synthesis, 8, 694
Sugars, 3-C-methyldeoxy-synthesis
 via Peterson methylenation, 1, 732
Sulcatol formation of tetrahydro-2,2,6-trimethyl-2H-pyran-3-ol, 7, 634
 enzymatic resolution, 6, 340
Sulfamates, N,N-dimethyl-
catalytic hydrogenation, 8, 817
Sulfamides synthesis
 via amines, 7, 739
Sulfamides, diaryl reactions with organometallic compounds, 1, 390
Sulfate esters
 cyclic synthesis, 7, 431
Sulfates chlorination
 nucleophilic displacement, 6, 206
Sulfenamides
 ketone sulfenylation, 7, 125
 synthesis
 via sulfenylation of primary amines, 7, 741
Sulfenamides, nitroaryl-
synthesis, 7, 483
Sulfenates rearrangements
 chirality transfer, 6, 899
 diastereoselectivity, 6, 900
 from sulfoxides, 6, 899
 stereochemistry, 6, 899
Sulfenates, propargylic rearrangement, 6, 903
Sulfenes
 Diels–Alder reactions, 5, 440–442
Sulfenimide, trityl-
reaction with aldehydes, 2, 940
Sulfenimides
 amine synthesis, 6, 83
 reactions with allylborationates, 2, 15
Sulfenimine, phenyl-
reactions with allyl organometallics
 diastereoselective, 2, 32
Sulfenimines
 reactions with allyl organometallic compounds, 2, 998
 Cram selectivity, 2, 998, 999
 reactions with enolates, 2, 940
Sulfenimines, S-aryl-
reactions with organometallic compounds, 1, 389
Sulfenimines, S-trityl-
reduction
 sodium cyanoborohydride, 8, 74
 synthesis
 via condensation of aldehydes with tritylsulfenamide, 2, 940
Sulfenylation
 amines, 7, 741
 esters, 7, 125
Sulfenyl chlorides reactions with phosphonium ylides, 6, 177
 tandem vicinal difunctionalization, 4, 262
2-Sulfenyl compounds, 1-amido-
synthesis, 7, 494
Sulfenyl groups
 carbonyl compounds, 7, 124
Sulfenyl halides
 reactions with alkenes, 4, 330–337
Sulfhydrolysis
 imidates, 6, 450
 imidothioates, 6, 455
Sulfide, benzyl t-butyl
 chlorination
 regioselectivity, 7, 212
Sulfide, benzyl ethyl
 chlorination
 regioselectivity, 7, 210
Sulfide, benzyl isopropyl
 chlorination
 regioselectivity, 7, 210
Sulfide, benzyl p-methoxybenzyl
 chlorination
 regioselectivity, 7, 212
Sulfide, benzyl methyl
 chlorination, 7, 210
Sulfide, benzyl p-methylbenzyl
 chlorination
 selectivity, 7, 212
Sulfide, bis(α-bromobenzyl)
 dehydrogenation
 ylide generation for [4 + 3] cycloaddition, 5, 600
Sulfide, chloro cyclopropyl
 synthesis
 via sulfide chlorination, 7, 209
Sulfide, chloromethyl phenyl
 reaction with silyl enol ethers, 6, 141
 reaction with silyl ketene acetal
 regioselectivity, 2, 617
 synthesis, 7, 212
Sulfide, crotyl phenyl
 chlorination, 7, 210
Sulfide, disopropyl
 oxidation
 primary alcohols, 7, 309
Sulfide, dimethyl
 chlorine activator
 DMSO oxidation of alcohols, 7, 297
 diborane complex
 carboxylic acid reduction, 8, 261
 oxidative cleavage
 alkenes, ozone, 7, 544
 solvent
 alkylcopper compound reactions, 3, 210
Sulfide, di-n-propyl
 oxidation
 4-(dimethylamino)pyridinium chlorochromate, 7, 269
Sulfide, ethyl methyl
 chlorination
 regioselectivity, 7, 212
Sulfide, 1-methoxycyclopropyl phenyl
 reductive lithiation, 6, 146
Sulfide, methyl phenyl
 Friedel–Crafts acylation, 2, 741
Sulfide, 1-naphthyl ethyl
 desulfurization, 8, 914
Sulfide, 1-naphthyl isopropyl
desulfurization, 8, 914
Sulfide, 1-naphthyl phenyl
desulfurization, 8, 914
Sulfide, 1-(trimethylsilyl)cyclopropyl phenyl
reductive lithiation, 6, 145
Sulfide contraction — see Eschenmoser coupling reaction

Sulfides
alkenes from, 3, 114
alkyl and allyl halides from, 3, 118
alkylated
use in synthesis, 3, 106
anions
reaction with boranes, 3, 795
annulation
stereospecific, 6, 144
benzylic
reduction, 8, 964
carbanions
crystal structure, 1, 36
chemoselective epoxidation, 7, 384
cleavage
metal-ammonia, 8, 531
Darzens glycidic ester condensation, 2, 417
desulfurization, 8, 836, 842
LAH-CuClz, 8, 840
tin hydrides, 8, 846
α-halo-
genation, 7, 206
regioselcivity, 7, 210
heteroaromatic
coupling reactions with sp3 organometallics, 3, 459
α-heterosubstituted
carbonyl compound synthesis from, 3, 141
γ-lithiated
synthesis, 4, 869
metallation
use of additives, 3, 86
Michael addition
stereospecific, 6, 144
oxidation, 7, 124
asymmetric, 6, 150
bipyridinium dichromate, 7, 267
pyridinium dichromate, 7, 267
solid support, 7, 842, 843
to sulfoxides, 7, 193, 762
reactions with alkenes, 4, 316
reactions with π-allylpalladium complexes
stereochemistry, 4, 624
rearrangements, 6, 892
diastereoselectivity, 6, 893
regioselectivity, 6, 893
reduction
use in synthesis, 3, 106
synthesis, 6, 133–167
via oxidative cleavage of alkenes, 7, 542
tandem vicinal difunctionalization, 4, 257
α-thion metallation, 3, 196
Wittig rearrangement, 3, 978
Sulfides, β-acetamidovinyl
synthesis
via alkynes, 4, 336
Sulfides, acetamido
synthesis, 7, 494
Sulfides, α-acetoxy
synthesis
via Pummerer rearrangement to carbohydrates, 7, 196
Sulfides, alkenyl
coupling reactions
with sp3 organometallics, 3, 446
synthesis
via metal carbene complexes, 1, 808
Sulfides, alkoxyaryl alkyl
synthesis, 4, 441
Sulfides, alkyl
ionic halogenation
mechanism, 7, 195
oxidation, 7, 193
synthesis
via Pummerer rearrangement, 7, 199
Sulfides, alkyl aryl
desulfurization, 8, 847
synthesis, 4, 444; 7, 726
via \(S_{RN1}\) reaction, 4, 474
Sulfides, alkyl2-pyridyl
synthesis, 7, 726
Sulfides, alkyl vinyl
carbonyl compounds from, 3, 120
Sulfides, 1-alkynyl
metallation, 3, 106
Sulfides, alkynyl allyl
sigmatropic rearrangement
synthesis of thioketenes, 6, 426
Sulfides, alkynyl silyl
thiocyclization, 6, 426
Sulfides, allyl
oxidation, 3, 116
radical addition reactions
irradiation, 4, 745
reaction with allylic bromides, 6, 145
reduction
selectivity, 3, 107
2,3-sigmatropic rearrangement, 6, 846
synthesis, 7, 517
via β-hydroxysallyl selenides, 1, 705
use in synthesis, 6, 138
Sulfides, allyl benzyl
metallation
selectivity, 3, 99
Sulfides, allyl phenyl
chlorination, 7, 209
Sulfides, allyl 2-pyridyl
reduction, 3, 108
Sulfides, amino
synthesis, 7, 495
Sulfides, α-aminobenzyl
desulfurization, 8, 976
Sulfides, ary1
coupling reactions
with Grignard reagents, 3, 456
synthesis
via Pummerer rearrangement, 7, 199
Sulfides, aryldiazo phenyl
\(S_{RN1}\) reactions, 4, 471
Sulfides, α-azo
synthesis
via thioketals, 6, 254
Sulfides, benzothiazolyl alkyl
desulfurization
tin hydrides, 8, 846
Sulfides, benzyl α-chlorobenzyl
Cumulative Subject Index

Cumulative Subject Index

Ramberg–Bäcklund rearrangement, 3, 870
Sulfides, benzyl \(\alpha,\alpha\)-dichlorobenzyl
Ramberg–Bäcklund rearrangement, 3, 870
Sulfides, benzylc
in zearalenone synthesis, 6, 137
use in synthesis, 6, 138
Sulfides, bis-
reaction with vinylmagnesium halides
regioselectivity, 3, 493
Sulfides, bis(\(\beta\)-chloroethyl)
synthesis
via electrophilic addition, 4, 330
Sulfides, bis(trimethylsilyl)
reaction with bromine, 4, 331
Sulfides, \(\alpha\)-bromosilyl silyl
bromo-desilylation
thiocarbonyl ylide generation, 4, 1095
Sulfides, t-butyl
thiol protection, 6, 664
Sulfides, \(\beta\)-carbonyl aryl
Knoevenagel reaction, 2, 363
Sulfides, \(\alpha\)-chloro
cyclic
synthesis, 6, 142
in synthesis, 7, 214
solvolysis, 7, 214
stereoselective synthesis, 6, 142
synthesis, 7, 212
via sulfide chlorination, 7, 206
vicinal functionalization
alkenes, 6, 141
Sulfides, \(\alpha\)-chlorophenacyl phenacyl
Ramberg–Bäcklund rearrangement, 3, 870
Sulfides, \(\alpha\)-cyano
synthesis
via thiaoacetals and thioketals, 6, 238
Sulfides, \(\beta\)-cyano aryl
Knoevenagel reaction, 2, 363
Sulfides, cycloalkyl phenyl
synthesis, 3, 88
Sulfides, cyclopropyl phenyl
reaction with butyllithium, 6, 143
Sulfides, dialkyl
reactions with arynes, 4, 507
synthesis, 7, 607
Sulfides, diaryl
synthesis, 4, 457
via \(S_{E2}\) reaction, 4, 474
unsymmetrical
synthesis, 4, 443
Sulfides, diazo
nitrile synthesis, 6, 240
Sulfides, 1,3-diaryl
alkylation, 3, 105
Sulfides, \(\alpha,\alpha\)-dihalo
hydrolysis
synthesis of thiol esters, 6, 444
Sulfides, divinyl
electrocyclic ring closure
thiocarbonyl ylide generation, 4, 1093
Sulfides, \(\alpha,\beta\)-epoxy-
synthesis
via Darzens glycidic ester condensation, 2, 417
Sulfides, \(\beta\)-fluoro
synthesis
via alkenes, 4, 331
Sulfides, haloalkyl phenyl
rearrangement, 3, 88
Sulfides, homoallylic
alkylation
palladium(II) catalysis, 4, 573
Sulfides, hydroxy-
elimination reactions, 3, 786
Sulfides, \(\beta\)-hydroxy
oxidation
solid support, 7, 841
pinacol-type reactions, 1, 861
rearrangement, 3, 784
semipinacol rearrangements, 3, 777, 778
synthesis
via reduction of \(\beta\)-keto sulfides, 8, 12
Sulfides, \(\beta\)-keto
Knoevenagel reaction
stereochemistry, 2, 363
reduction, 8, 12
synthesis
via silyl enol ethers, 6, 141
Sulfides, \(\beta\)-ketophenyl
synthesis
via alkenes, 4, 336
Sulfides, \(\alpha\)-lithio
anions
epoxidation, 1, 827
Sulfides, \(\alpha\)-metallovinyln
alkylation, 3, 104
Sulfides, \(\alpha\)-methoxalkenyl phenyl
carbonyl compound synthesis from, 3, 141
Sulfides, \(\alpha\)-methoxy allyl
\(\alpha\)-methylene acyl anion equivalent, 3, 144
Sulfides, methyl
desulfurization, 8, 958
Sulfides, 3-methyl-2-butenyl phenyl
allylic carbonanions, 1, 508
Sulfides, methyl (trimethylsilyl)methyl
Peterson alkenation, 1, 787
Sulfides, \(\beta\)-nitro
synthesis
via alkenes, 7, 493
Sulfides, phenyl (trimethylsilyl)methyl
Peterson alkenation, 1, 787
Sulfides, 2-pyridyl
coupling reactions
with Grignard reagents, 3, 460
Sulfides, \(\alpha\)-silylalkyl phenyl
carbonyl compound synthesis from, 3, 141
Sulfides, thioacetyl diphenylthiophosphinyl
thioacylation
thiols, 6, 454
Sulfides, \(\alpha\)-thiomethylcyanomethyl
Wittig rearrangement, 3, 978
Sulfides, trimethylsilyl alkyl
reactions with allylpalladium complexes
regioselectivity, 4, 642
Sulfides, vinyl
Diels–Alder reactions, 5, 326
Paterno–Büchi reaction
with benzophenone, 5, 160
reaction with alkenylaluminum, 3, 492
reaction with Grignard reagents
nickel catalysts, 3, 229
synthesis, 7, 517
Sulfilimine, diphenyl-
Sulfimides

reaction with alkenes, 7, 470

Sulfimides
oxidation
synthesis of nitroso compounds, 7, 752

Sulfinamides
unsaturated
synthesis, 6, 841

Sulfinate, methyl
sulfoxide synthesis
optically active, 6, 148

Sulfonates
arylation
palladium complexes, 4, 858
vinyl substitutions
palladium complexes, 4, 842

Sulfonates, phenyl-
reaction with \(\pi\)-allylpalladium complexes
stereocchemistry, 4, 624

Sulfone, \(\alpha\)-chloro-
Diels--Alder reactions, 5, 441

Sulfines
Diels--Alder reactions, 5, 440–442

Sulfines, \(\alpha\)-oxo-
Diels--Alder reactions, 5, 441

Sulfinic acids
synthesis
via thiols, 7, 759

Sulfinic acids, allylic
fragmentation, 6, 866
to terminal alkenes, 6, 842
retro-ene reactions, 5, 424

Sulfynyl anions
chiral
conjugate additions, 4, 226

Sulfynyl chlorides
tandem vicinal difunctionalization, 4, 262

Sulfynyl compounds, 1,3-dicarbonyl-2-phenyl-
pyrolysis, 2, 388

Sulfynyl compounds, \(\alpha,\beta\)-unsaturated
synthesis
via Knoevenagel reaction, 2, 363

N-Sulfynyl dienophiles
Diels--Alder reactions, 5, 422
intramolecular, 5, 425

Sulfites
esters
cyclic
asymmetric dihydroxylation, 7, 431

Sulfones
aromatic nucleophilic substitution, 4, 443

4-Sulfobenzyl esters
carboxy-protecting groups
cleavage, 6, 668

Sulfolane, 3-methyl-
solvent
Wacker oxidation, 7, 450

3-Sulfolene
reaction with alkyl iodides
selectivity, 3, 172

Sulfojenes
1,3-dienes from, 3, 173

Sulfonamide, phenacyl-
reduction
dissolving metals, 8, 994

Sulfonamides
amidomercuration, 4, 295
Darzens glycidic ester condensation
phase-transfer catalysis, 2, 429
deamination, 8, 828
desulfurization, 8, 836
reactions with \(\pi\)-allylpalladium complexes, 4, 598

Sulfonamides, alkyl
alkylation, 3, 179

Sulfonamides, \(\alpha\)-chloro-
dimethylformamide, 6, 490

Sulfonamides, \(N,N\)-dibromo-
reactions with alkenes, 7, 483

Sulfonamides, \(N,N\)-dihalo-
addition reactions
alkenes, 7, 499

Sulfonamides, homoallylic
synthesis
via retro-ene reactions, 5, 425

Sulfonates, \(N\)-sulfynyl-
Diels--Alder reactions
dienes, 5, 403

Sulfonamidomercuration
alkenes, 8, 856

Sulfonates
alkylation
vinyl carbanions, 3, 242
alkyl esters
alkylation, 6, 23
amine alkylation, 6, 72
cyclic
alcohol synthesis, 6, 19
iodination, 6, 214
nitrile synthesis, 6, 235
reduction
lithium aluminum hydride, 8, 812

Sulfonates, alkyl
alkylation, 3, 179
reactions with carboxylates
inversion of alcohols, 6, 21

Sulfonates, allylic
reduction, 8, 974

Sulfonates, S-(dialkylaminomethyl)dithio-
iminium salts
generation in situ, 1, 370

Sulfonates, dialkylaminotrifluoro-
halogen transfer agents
acid fluoride synthesis, 6, 307

Sulfonation
alcohols
hydroxy group activation, 6, 18

Sulfone, allyl phenyl
1,1-dilithiated
reaction with benzaldehyde, 2, 76

Sulfone, benzyl phenyl
lithium salt
crystal structure, 1, 528

Sulfone, \(\alpha\)-bromoethyl ethyl
Ramberg–Bäcklund rearrangement, 3, 861

Sulfone, 1,3-butadienyl tosyl
reaction with dialkycuprates, 6, 161

Sulfone, \(\alpha\)-chloroethyl ethyl
Ramberg–Bäcklund rearrangement, 3, 861

Sulfone, chloromethyl phenyl
aromatic nucleophilic substitution, 4, 432
Darzens-type reactions, 1, 530
epoxidation, 1, 827
Sulfones

reaction with quinoxaline, 4, 432
Sulfone, dibenzyl
Ramberg–Bäcklund rearrangement, 3, 864
Sulfone, ethynyl-p-tolyl
ene reactions
Lewis acid catalysis, 5, 8
Sulfone, methoxymethyl phenyl anions
reaction with cyclic ketones, 3, 785
lithium anion
addition to ketones, 1, 865
Sulfone, methyl-α-bromovinyl
Diels–Alder reactions, 5, 324
Sulfone, methylthiomethylalkylation, 3, 139
Sulfone, phenylmethylalkylation, 3, 159
Sulfone, phenylthiomethyl alkylolation, 3, 139
Sulfone, methyl (trimethylsilyl)methyl Peterson alkenation, 1, 787
Sulfone, α-triflyldimethylalkylation, 3, 177
Sulfone acetals, γ-oxoacylation, 6, 159
Sulfones
alkylation, 3, 158
carbanions
crystal structure, 1, 36
chlorination
mechanism, 3, 864
cyclic
diene protection, 6, 690
Darzens glycidic ester condensation, 2, 415
phase-transfer catalysis, 2, 429
desulfurization, 8, 837
chemoselective, 8, 836
metal–ammonia, 8, 842
Friedel–Crafts cyclization, 6, 165
hydrobromination, 4, 282
hydrogenolysis, 8, 914
hydroiodination, 4, 288
(E)-isomers
synthesis via Knoevenagel reaction, 2, 363
Julia coupling
carbonyl compounds, 1, 806
Knoevenagel reaction
activated methylenes, 2, 362
synthesis, 6, 133–167
via sulfoxides, 7, 766
tandem vicinal difunctionalization, 4, 251
use in synthesis, 6, 157
Sulfones, acetoxyphenyl-
α-quinodimethane precursor
Diels–Alder reactions, 5, 392
Sulfones, alkanyl coupling reactions
with sp2 organometallics, 3, 446
hydroxylation, 7, 441
Sulfones, alkyl
in synthesis, 3, 160
α-metallo, α-heterosubstituted
alkylation, 3, 174
Sulfones, alkynyl
synthesis, 7, 519
Sulfones, allenyl
hetero-Cope rearrangement, 5, 1004
reaction with allylic alcohols, 6, 856, 857
synthesis, 7, 519
Sulfones, allyl
π-allylpalladium complexes from, 4, 589
in synthesis, 3, 169
radical cyclizations, 4, 799
reduction, 8, 975
Sulfones, allyl dienyl
synthesis, 6, 161
Sulfones, aryl
coupling reactions
with Grignard reagents, 3, 456
Sulfones, β-azidovinyl
synthesis
via iodine azide addition to alkene, 4, 350
Sulfones, bis(aryloxynitrophenyl) synthesis, 4, 439
Sulfones, bis(4-chloro-3-nitrophenyl) polycondensation, 4, 439
Sulfones, γ-bromo-α,β-unsaturated phenyl
addition reaction
with organomagnesium compounds, 4, 89
Sulfones, α-chloro
synthesis, 3, 864
Sulfones, cycloalkenyl
addition reactions
with organolithium compounds, 4, 78
Sulfones, cyclopentenyl
conjugate additions
organocuprates, 4, 192
Sulfones, di-s-alkyl
Ramberg–Bäcklund rearrangement, 3, 864
Sulfones, α-diazo
Wolff rearrangement, 3, 909
Sulfones, γ,γ-dimethylallylenyl phenyl
reaction with butyllithium, 2, 91
Sulfones, epoxy
Darzens glycidic ester condensation, 2, 416
synthesis, 2, 415
via Darzens glycidic ester condensation, 2, 431
Sulfones, α-halo
reactions with carbonyl compounds, 1, 530
reactions with trialkylboranes, 3, 794
synthesis, 3, 862
Sulfones, α-haloalkyl
Ramberg–Bäcklund reaction, 6, 161
Sulfones, β-halovinyl
addition reactions, 4, 127
Sulfones, α-hydroxy
α-quinodimethane precursors
Diels–Alder reactions, 5, 389
Sulfones, syn-hydroxy
synthesis
via aldehydes, 6, 164
Sulfones, γ-hydroxy-α,β-unsaturated
addition reaction
with organomagnesium compounds, 4, 89
Sulfones, α-iiodovinyl
synthesis
Sulfones

via iodine azide addition to alkene, 4, 350

Sulfones, α-isocyanooalkyl
alkylation, 3, 175

Sulfones, α-keto
desulfurization, 8, 843

Sulfones, β-keto
methoxy enolates
alkylation, 3, 54

Sulfones, α-metalloalkyl
reactions, 3, 158

Sulfones, α-metalloallyl
reactions, 3, 168

Sulfones, α-metallovinyl
reactions, 3, 173

Sulfones, α-sulfinyl
reactions, 3, 176

Sulfones, thioketone
Michael addition, 4, 18

Sulfones, α-sulfonyl
Ramberg–Bäcklund rearrangement, 3, 868

Sulfones, β-(trimethylsilyl)vinyl phenyl
addition reactions
with organolithium compounds, 4, 79

Sulfones, α-(trimethylsilyl)phenyl
Michael addition, 4, 18

Sulfones, α-tosyloxy
Ramberg–Bäcklund rearrangement, 3, 868

Sulfones, α-(trimethylsilyl)vinyl phenyl
addition reactions
with organolithium compounds, 4, 79

Sulfones, (E)-α-unsaturated
synthesis
via Knoevenagel reaction, 2, 362

Sulfones, vinyl
addition reaction with enolates, 4, 102
deprotonation, 3, 253
desulfurization, 8, 842

Diels–Alder reactions, 5, 324
functionalization
Michael addition, 4, 13
tandem difunctionalization, 4, 251

Petersen alkenation, 1, 786
reaction with Grignard reagents, 3, 493
selectivity, 6, 162
heteroconjugate addition, 6, 164
stereoselective reduction
sodium dithionate, 8, 847

synthesis, 7, 517, 523
via Julia coupling, 1, 805
tandem vicinal difunctionalization, 4, 257

Sulfones, vinyl amino
synthesis, 6, 163

Sulfones, vinyl phenyl
desulfurization, 8, 840

Sulfonic acids
Knoevenagel reaction
activated methylenes, 2, 362
synthesis
via thiols, 7, 759

Sulfonic acids, 2-amino
synthesis, 7, 495

Sulfonimide, N,N-bis(trifluoromethane)-
reduction, 8, 827

Sulfonimines
reactions with organometallic compounds, 1, 390

Sulfonium, tris(dimethylamino)-
difluoromethylsiliconate
catalyst, stereoselectivity, 2, 634

Sulfonium benzylide, diphenyl-
reactions with aldehydes
synthesis of trans-stilbene oxides, 1, 824

Sulfonium fluoride, tris(diethylamino)-
catalyst
Sulfonium fluoro borate, dimethyl(methylene) -
catalyst
allylstannane reaction with thioacetal s, 2, 581
reactions with alkenes, 7, 493

Sulfonium methylide, dimethyl-
cyclopropanation, 4, 987
epoxidation
carbonyl compounds, 1, 820

Sulfonium methylide, dimethylcy clopropanation, 4, 987
epoxidation
carbonyl compounds, 1, 820

Sulfonium methylides
synthesis
via sulfides, 6, 893

Sulfonium salts
polymeric resins
phase transfer catalysts, 1, 821
reactions with alkenes, 4, 337
sulfur ylides from, 1, 820

Sulfonium salts, alkyl diphenyl O-alkylation
amide protection, 6, 672

Sulfonium salts, chloro-
reactions with alkenes, 4, 337

Sulfonium salts, β-hydroxy-
epoxide synthesis, 6, 26

Sulfonium salts, α-metalloalkyl
synthesis, 3, 87

Sulfonium salts, oxy-
reactions with alkenes, 4, 337

Sulfonium salts, acyl-
Wolff rearrangement, 3, 909

Sulfonium salts, allylic
rearrangements, 6, 854

Sulfonium ylides, cyclic
2,3-sigmatropic rearrangements, 6, 855

Sulfonyl chloride
arylation
palladium complexes, 4, 858
Sulfonyl halogenides
substitutions
organoaluminum reagents, 6, 165

Sulfonyl halogenides
adducts
amides, 6, 490

Sulfonyl ylides
reaction with allyl organometallic compounds, 2, 999

Sulfonioyl phosphate
synthesis, 6, 51

Sulfoxide, benzyl r-butyl
carbamion, 1, 512
reactions with carbonyl compounds, 1, 513

Sulfoxide, benzyl methyl
carbamion, 1, 512

Sulfoxide, bis(trimethylsilylmethyl)
disiloxane release from
Cumulative Subject Index

Sulfoxides

thiocarbonyl ylide generation, 4, 1095
Sulfoxide, t-butyl thiomethyl
 alkylation, 3, 139
Sulfoxide, chiral vinyl
 [3 + 2] cycladdition reactions
 asymmetric induction, 5, 301
Sulfoxide, chloromethyl phenyl
 Darzens-type reactions, 1, 530
lithiation
 butyllithium, 1, 524
Sulfoxide, cyclopropyl phenyl
 methylation
 Pummerer rearrangement, 7, 202
Sulfoxide, dibenzyl
 Pummerer rearrangement, 7, 194
Sulfoxide, dimethyl
 activated
 reagents, 7, 293
anion
 conjugate additions, 4, 177
oxidation, 7, 653
alcohols, 7, 291–302
mechanism, 7, 292
Sulfoxide, ethyl ethyllithio
 alkylation, 3, 139
Sulfoxide, methyl 2-chlorophenyl
 lithium anion
 ring expansion with cyclobutanones, 1, 862
Sulfoxide, methyl methyllithio
 alkylation, 3, 139
Sulfoxide, methyl methylthiomethyl
 alkylation, 3, 139
metallated
 alkylation, 3, 135
Sulfoxide, methyl thiomethyl
 alkylation, 3, 137
Sulfoxide, methyl p-tolyl
 carbanions
 reactions with carbonyl compounds, 1, 513
epoxide synthesis, 1, 833
α-lithiated
 reactions with aldehydes, 1, 341
Sulfoxide, phenyl thiomethyl
 alkylation, 3, 139
Sulfoxide elimination
 carbonyl compound dehydrogenation
 choice of reagent, 7, 146
dehydrogenation, 7, 124
Sulfoxides
 alkenes from
 sulfenic acid elimination, 3, 154
alkylated
 in synthesis, 3, 154
carbanions
 crystal structure, 1, 36
chiral
 nucleophilic addition reactions, 1, 69
synthesis, 7, 777, 778
Darzens glycidic ester condensation, 2, 416
desulfurization, 8, 837
homochiral
 synthesis, 6, 900
hydrogenolysis, 8, 914
Knoevenagel reaction
 activated methylenes, 2, 362
nitrile synthesis, 6, 239
optically active
 synthesis, 6, 149
oxidation
to sulfones, 7, 766
Pummerer rearrangement
 α-acetoxylation of alkyl sulfides, 7, 196
rearrangements
 alcohol synthesis, 6, 14
chirality transfer, 6, 899
diastereoselectivity, 6, 900
stereochemistry, 6, 899
to sulfenates, 6, 899
2,3-rearrangements, 6, 873
reduction
 as part of Pummerer rearrangement, 7, 193
synthesis, 6, 133–167
via sulfides, 7, 762
tandem vicinal difunctionalization, 4, 251
α,β-unsaturated
 addition reactions with organomagnesium compounds, 4, 86
use in synthesis
 chirality, 6, 148
Sulfoxides, 1-alkenyl aryl
 alkylation, 3, 155
Sulfoxides, alk-1-enyl phenyl
 Pummerer rearrangement
 with thionyl chloride, 7, 205
Sulfoxides, alky1
 alkylation, 3, 147
reduction, 3, 155
Sulfoxides, alky1 aryl
 carbanions
 reactions with carbonyl compounds, 1, 513
Sulfoxides, alkynyl
 synthesis, 7, 763
Sulfoxides, allenyl
 desulfurization, 8, 847
electrocyclic ring-closure, 6, 903
intra molecular cycloaddition, 6, 903
rearrangement
to conjugated dienones, 6, 841
synthesis
 via propargylic sulfenates, 6, 155
Sulfoxides, allyl
 alkylation, 3, 155
metallation, 3, 155
Michael addition, 4, 12
rearrangements, 6, 152, 899
stability, 6, 902
Sulfoxides, allyl aryl
 reactions with aromatic aldehydes, 1, 517
Sulfoxides, allyl p-tolyl
 reactions with carbonyl compounds, 1, 519
Sulfoxides, aryl
 coupling reactions
 with Grignard reagents, 3, 456
Sulfoxides, aryl vinyl
 isomerization, 6, 839
Sulfoxides, α-chloro
 cyclobutene synthesis from, 3, 872
optically active
 synthesis, 6, 156
Sulfoxides, cyclohexyl phenyl
 reaction with trifluoroacetic anhydride
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfoxides</td>
<td>Cumulative Subject Index</td>
<td>772</td>
</tr>
<tr>
<td>β-elimination of α-thiocarbocation intermediate</td>
<td>7, 204</td>
<td></td>
</tr>
<tr>
<td>Sulfoxides, cyclopentenone</td>
<td>Pummerer rearrangement with dichloro ketene</td>
<td>7, 206</td>
</tr>
<tr>
<td>Sulfoxides, epoxy</td>
<td>reaction with amines</td>
<td>6, 91</td>
</tr>
<tr>
<td></td>
<td>synthesis via Darzens glycidic ester condensation</td>
<td>2, 416</td>
</tr>
<tr>
<td></td>
<td>via α-halo sulfoxides</td>
<td>1, 524</td>
</tr>
<tr>
<td>Sulfoxides, α-halo</td>
<td>reactions with carbonyl compounds</td>
<td>1, 524</td>
</tr>
<tr>
<td>Sulfoxides, β-hydroxy</td>
<td>chiral</td>
<td>in synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epoxide synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>homoolylic synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>synthesis via organoaluminum reagents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via α-sulfinyl carbanions</td>
</tr>
<tr>
<td>Sulfoxides, indolizidinyl</td>
<td>reaction with butanal</td>
<td>via α-sulfinyl carbanion</td>
</tr>
<tr>
<td>Sulfoxides, α-keto</td>
<td>desulfurization</td>
<td>8, 847</td>
</tr>
<tr>
<td>Sulfoxides, β-keto</td>
<td>allylic reduction</td>
<td>6, 156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>metal enolates alkylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optically active synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>propargylic reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pummerer rearrangement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>synthesis via allenic sulfoxides</td>
</tr>
<tr>
<td>Sulfoxides, α-lithio</td>
<td>anions epoxidation</td>
<td>1, 827</td>
</tr>
<tr>
<td>Sulfoxides, α-metalloalkyl</td>
<td>alkylation</td>
<td>1, 147</td>
</tr>
<tr>
<td>Sulfoxides, silyl</td>
<td>thermolysis aryne generation</td>
<td>4, 488</td>
</tr>
<tr>
<td></td>
<td></td>
<td>synthesis Darzens glycidic ester condensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-substituted α-carbanions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ylides carbonyl epoxidation</td>
</tr>
<tr>
<td>Sulfoximines, alkenyl</td>
<td>reaction with organozinc reagents nickel catalysis</td>
<td>3, 230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>synthesis via silylation of β-hydroxysulfoximines</td>
</tr>
<tr>
<td>Sulfoximines, α-chloroalkyl</td>
<td>Ramberg–Bäcklund rearrangement</td>
<td>3, 871</td>
</tr>
<tr>
<td>Sulfoximines, cycloalkenyl-syn hydroxylation</td>
<td>diastereoselectivity</td>
<td>7, 440</td>
</tr>
<tr>
<td>Sulfoximines, epoxy</td>
<td>Darzens glycidic ester condensation</td>
<td>2, 418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via Darzens glycidic ester condensation</td>
</tr>
<tr>
<td>Sulfoximines, α-halo N-tosyl</td>
<td>Ramberg–Bäcklund rearrangement</td>
<td>3, 870</td>
</tr>
<tr>
<td>Sulfoximines, β-hydroxy-reductive elimination</td>
<td>1, 738</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stereoselectivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via prochiral carbonyl compounds</td>
</tr>
<tr>
<td>Sulfoximines, (β-hydroxyalkyl)-</td>
<td>synthesis via N-silyl-S-methyl-S-phenylsulfoximine</td>
<td>1, 532</td>
</tr>
<tr>
<td>Sulfoximine ylides</td>
<td>addition reactions</td>
<td>4, 115</td>
</tr>
<tr>
<td>Sulfoxonium salts</td>
<td>ylides from in Pummerer rearrangement</td>
<td>7, 195</td>
</tr>
<tr>
<td>Sulfoxonium ylides</td>
<td>3,2-sigmatropic rearrangement</td>
<td>3, 939</td>
</tr>
</tbody>
</table>
Cumulative Subject Index

Superacids

Sulffoxonium ylides, β-keto-
Wolff rearrangement, 3, 909

Sulfur
 carbanions stabilized by
 alkylation, 3, 85–181
dehydrogenation with, 7, 124
 electrophilic
 reactions with alkenes, 7, 516
 halogen displacement, 7, 124
 radical
 reactions with alkenes, 7, 518
 reductions, 8, 370

Sulfuration
decarboxylative chalcogenation, 7, 726
Sulfur-based rearrangements, 5, 889–891
Sulfur compounds
 adducts
 amides, 6, 490
 oxidation, 7, 757–779
 activated {C—H bonds, 7, 193–214
 reactions with amides, 6, 496
 reductive cleavage
 α-halo ketones, 8, 989
 Sulfur compounds, vinyl
 chiral
 conjugate additions, 4, 213–217
 Sulfur dichloride
 reactions with dienes, 7, 516
 Sulfur dioxide
 bisimides
diels–Alder additions to dienes, 7, 486
extrusion
diene synthesis via retro diels–Alder reaction, 5, 567
 in Mannich reaction
 nonprotic solvent, 2, 959
reaction with π-allylpalladium complexes, 4, 601

Sulfur dioxide insertion reaction
hydroalumination adducts, 8, 754

Sulfur-extrusion reaction — see Eschenmoser coupling reaction

Sulfur groups
 functionalization
 oxidative cleavage, 7, 588
 Sulfur heterocycles
 synthesis, 7, 524
 Sulfinic acid
 catalyst
 carboxylic acid acylations, 2, 711
 Sulfur insertion reaction
 hydroalumination adducts, 8, 754

Sulfur nucleophiles
 aromatic nucleophilic substitution, 4, 441–444
 nucleophilic addition to π-allylpalladium complexes, 4, 599
 regioselectivity, 4, 640–642
 stereochemistry, 4, 624

Sulfur tetrafluoride
 fluorination
 alkyl alcohols, 6, 217
 reaction with amides, 6, 496
 reaction with alkenes, 7, 516
 Sulfur trifluoride, diethylamino-
 fluorination
 alkyl alcohols, 6, 217
 Sulfur trioxide
 alkane functionalization, 7, 14
 pyridine
 activator, DMSO oxidation of alcohols, 7, 296
 Sulfur trioxide insertion reaction
 hydroalumination adducts, 8, 754
 Sulfonyl bromide
 bromination
 alkyl alcohols, 6, 209
 Sulfonyl chloride
 adducts
 dimethylformamide, 6, 491
 alkane chlorination, 7, 16
 alkane chlorosulfonation, 7, 14
 chlorination
 alkyl alcohols, 6, 204
 chloromethyleniminium salt preparation, 2, 779
 oxidative rearrangement
 gibberellin epoxides, 7, 826
 reaction with hydroalumination adducts, 8, 754
 sulfide halogenation, 7, 206
 Sulfonyl chloride fluoride
 amide synthesis, 6, 388
 Sulfur ylides
 alkylation, 3, 178
cyclopropanation, 4, 987
 epoxidation
 carbonyl compounds, 1, 820
 ketocarbenes from, 4, 1032
 reaction with trialkylboranes, 2, 242
 sigmatropic rearrangement, 5, 894
 synthesis, 3, 918
 tandem vicinal difunctionalization, 4, 258
 Sultam, 1-cyclohexenoyl-
 conjugate additions
 organocuprates, 4, 204
 Sultams
 tandem vicinal difunctionalization, 4, 249
 Sultams, N-acyl-
 aldol reaction
 diastereofacial preference, 2, 231
 Diels–Alder reactions
 intramolecular asymmetric, 5, 543
 homochiral
 aldol reactions, 2, 253
 Sultams, N-crotonyl-
 Diels–Alder reactions, 5, 365
 Sultams, N-enoyl-
 addition reactions
 with organomagnesium compounds, 4, 85
 chiral
 conjugate additions, 4, 204
 conjugate additions
 Grignard reagents, 4, 204
 Diels–Alder reactions, 5, 365
 Sultones
 arene alkylation
 Friedel–Crafts reaction, 3, 317
 Sultones, alkyl
 alkylation, 3, 179
 Superacids
 catalysts
 Friedel–Crafts reaction, 3, 297
 solid, catalysts
Super Deuteride

Friedel–Crafts reaction, 3, 297
Super Deuteride
deuteration
alkyl halides, 8, 805
Super enamines
Henry reaction, 2, 337
Super Hydride — see Lithium triethylborohydride
Superoxides
reaction with alkyl sulfonates
alcohol inversion, 6, 22
Supporting electrolytes
electrosynthesis, 8, 130
Suprofen
synthesis
via hydroformylation, 4, 932
Surfactants
nonionic
synthesis, 6, 37
Surugatoxin
synthesis
via Knoevenagel reaction, 2, 384
Suzuki couplings
alkenylboron species, 3, 489
Swern oxidation

alcohols, 7, 291
DMSO, 7, 296
primary alcohols, 7, 396
Sydnone, C-methyl-N-phenyl-1,3-dipolar cycloadditions, 4, 1096
Sydnone, N-phenyl-dipolar cycloaddition reaction with styrene, 4, 1097
Sydnones
azomethine imine cyclizations, 4, 1149
1,3-dipolar cycloadditions, 4, 1096
photolysis
nitrilimines from, 4, 1084
tandem intermolecular–intramolecular
cycloadditions, 4, 1149
Sydnones, 4-acetyl-3-aryl-Schmidt reaction, 6, 821
Sydowic acid
synthesis
via 1,2-addition of trimethylaluminum, 1, 104
Synthetase
organic synthesis
carbon–carbon bond formation, 2, 456
Syringaresinol
synthesis, 3, 693
Tabersonine, 16-methoxy-
synthesis
via Mannich reactions, 2, 1043
Tagatose
synthesis
via Lewis acids, nonchelation selectivity, 1, 339
Tagetones
synthesis
via aliphatic acylation, 2, 718
via diene acylation, 2, 720
via 1,6-addition, 1, 554
Talaromycin A
synthesis
via functionalized alkyne addition, 1, 419
via radical cyclization, 4, 794
Talaromycin B
synthesis, 1, 568; 7, 237
Talaromycins
synthesis, 7, 239
Talose
synthesis
via Diels–Alder reaction, 2, 689
Tamoxifen
synthesis, 3, 585
Tamura reagent
Beckmann rearrangement, 6, 764
Tandem rearrangements, 5, 876–891
Tantalates, carbynyldicyclopentadienylhydrido-
reduction
acyl chlorides, 8, 290
Tantalum
hydrometallation
mechanism, 8, 672
Tantalum, t-butylalkylidene-
t-butylalkene synthesis, 1, 743
Tantalum catalysts
alkene metathesis, 5, 1118
alkylidenation
carboxyl compounds, 5, 1122, 1125
Tartric acid
acetal
stereospecific bromination, 3, 789
Tartric acid, monoacetyl-
catalyst
Diels–Alder reactions, 5, 377
Tartric acid diamide, N,N,N',N'-tetramethyl-
α,β-unsaturated ketal derivatives
coujgate additions, 4, 209
Tartramide, dibenzyl-
catalyst
asymmetric epoxidation, 7, 424
Tartramide, dicyclohexyl-
asymmetric epoxidation
homoallylic alcohols, 7, 419
Tartrates
chiral
asymmetric epoxidation, 7, 390
esters
asymmetric epoxidation, 7, 395
polymer-linked
asymmetric epoxidation, 7, 395
Taurolithocholic acid
microbial hydroxylation, 7, 73
Taxanes
synthesis, 3, 832; 7, 242
via [4 + 4] cycloaddition, 5, 640
via epoxide ring opening, 3, 744
Tebbe reaction
titanium-stabilized methylenation, 1, 743
Tebbe reagent
alkene synthesis, 1, 807
allyl vinyl ethers, 5, 830
enol ether synthesis, 2, 597
hydrozirconation, 8, 676
methylenation, 5, 1122
reaction with norbornene, 5, 1121
synthesis, 5, 1124
Tellurapyrylium dyes
photooxidation, 7, 777
Telluration
decarboxylative chalcogenation, 7, 726
Telluride, dialkyl
reductions
nitro compounds, 8, 371
Tellurides
addition to alkynes, 4, 50
aromatic
synthesis, 4, 447
oxidation, 7, 776
to telluroxides, 7, 775
reductions
nitro compounds, 8, 366
Tellurides, alkenyl
coupling reactions
with sp³ organometallics, 3, 446
Tellurides, aryl phenyl
synthesis
via S7 reaction, 4, 476
Tellurides, diaryl
symmetrical
synthesis, 4, 447
synthesis
via S7 reaction, 4, 476
Tellurides, diphenyl
synthesis
via S7 reaction, 4, 476
Telluric acid
synthesis, 7, 775
Tellurinyl acetates
reactions with alkenes, 4, 343
Tellurium
reductions, 8, 370
nitro compounds, 8, 366
unsaturated carbonyl compounds, 8, 563
Tellurium compounds
catalyst
Wurtz reaction, 3, 421
oxazoline synthesis, 7, 492
oxidation, 7, 757–779
to ditellurides, 7, 774
photooxidation, 7, 777
reactions with alkenes, 4, 343
reactions with arenes, 4, 508
Tellurium nucleophiles

Tellurium nucleophiles

aromatic nucleophilic substitution, 4, 447

Tellurium tetrachloride
reaction with alkenes, 7, 534

Tellurium triacetate, phenyl-
synthesis, 7, 774

Tellurium trichloride, 2-naphthyl-
reaction with alkenes, 7, 534

Tellurium ylides
epoxidation, 1, 825

1-Tellurochromene
oxidation, 7, 774

Tellurofuraninization

alkenes, 7, 497

Tellurols

oxidation
to ditellurides, 7, 774

Tellurone, bis(4-methoxyphenyl)
synthesis, 7, 776

Tellurone, dodecyl4-methoxyphenyl
synthesis, 7, 776

Tellurones
synthesis, 7, 776

Tellurophene
coupling reactions
with primary alkyl Grignard reagents, 3, 447

Tellurophenopyridazine
photooxidation, 7, 777

Telluroxides
synthesis, 7, 775

Teloidine
synthesis
via [4 + 3] cycloaddition, 5, 609

Terephthalic acid
dichloride synthesis, 6, 302
dimethyl ester
synthesis via retro Diels–Alder reaction, 5, 571

Terephthalic acid bis(dimethylamide)
dications, 6, 501

Terephthaloyl chloride
acyloin coupling reaction, 3, 617

Tamaphthn
synthesis
via nickel catalysts, 3, 229

Terpeoxides
epoxide ring opening
zinc bromide catalyst, 3, 771

Terpenes

cyclic
biogenetic origins, 3, 380
epoxidation
microbial, 7, 429
hydroxylation
microbial, 7, 62
ketones
dehydrogenation, 7, 132
synthesis, 3, 428
via Ireland silyl ester enolate rearrangement, 5, 841
via photoisomerizations, 5, 230

Terpenes, polybromomono-
Pavorski rearrangements, 3, 849

Terpenoids
synthesis
via Dieckmann condensation, 2, 824
via 1,3-dipolar cycloadditions, 4, 1077

Terphenyl

synthesis, 3, 503

Testosterone
hydrogenation
catalytic, 8, 533
homogeneous catalysis, 8, 452
oxidation
DMSO, 7, 295, 296
synthesis
via polyene cyclization, 3, 371
Testosterone, 17-methyl-
hydrogenation
homogeneous catalysis, 8, 452

Tetracycles
polyene cyclization, 3, 369
Tetracyclic triterpenes
synthesis
via arenes, 4, 501

Tetracyclines
oxygenation, 7, 157
synthesis, 3, 809
via conjugate addition of aryl cyanohydrin, 1, 552
via oxoanion-accelerated rearrangement, 5, 1022

Tetracyclonone
benzyne assay
Diels–Alder reaction, 5, 380
synthesis, 2, 142

Tetracyclo[4.3.0.03,7.06.10]non-8-ene
cycloaddition reactions, 5, 1187

Tetracyclo[3.3.0.02,6.06.10]octane

synthesis
via metal-catalyzed cycloaddition, 5, 1187
Tetracycloundecanone
cis,syn,cis
synthesis via photoisomerization, 5, 233

Tetraenes
conjugated
synthesis, 3, 880

η4-Tetraenes
transition metal complexes
reactions with electrophiles, 4, 706
tricarbonylmanganese complexes, 4, 712

Tetrahydrofolate
one-carbon transfer agent, 2, 955

Tetrahydrofolate, N(5),N(10)-methylene-
synthesis from tetrahydrofolate, 2, 955

1,3-(1,3,3-Tetraisopropylxiloxanylidene) group
diol protection, 6, 662

Tetrailin, 1,4-dihydro-
reduction
Wilkinson catalyst, 8, 445

Tetrailin, 1,4-dimethyl-
synthesis
Cumulative Subject Index

Thallium reagents

via Friedel-Crafts reaction, 3, 318

Tetratin, 5-hydroxy-2-(di-n-propylamino)-
synthesis, 7, 331

Tetratin, 8-hydroxy-2-(di-n-propylamino)-
synthesis, 7, 331

Tetratin, 5-nitro-
synthesis
via electrocyclization, 5, 719

Tetralsins
synthesis, 7, 331
via silicon-stabilized cyclizations, 1, 585

Tetralone, 6-methoxy-
reduction
hydrogen transfer, 8, 320

Tetralones
dehydrogenation, 7, 144
synthesis
via electrocyclization, 5, 719
via enolate addition/cyclization, 4, 258
via Friedel-Crafts cycloalkylation, 3, 326

1-Tetralones
Birch reduction
dissolving metals, 8, 509
reduction
dissolving metals, 8, 114
ionic hydrogenation, 8, 319
synthesis
via oxyanion-accelerated rearrangement, 5, 1022
via thermal ring opening, 5, 711

2-Tetralones
methylation
organometallic compounds, 1, 150
pyrrolidine enamine
monomethylation, 3, 29
synthesis
via ketocarbenoids, 4, 1055

1-Tetralones, 2-oximo-
reduction
chemoselective, 8, 125

1,4-Tetramethylene diradical
alkene dimerizations, 5, 72

N,N,N,N’-Tetramethyl(methylene)diamine
Mannich base, 2, 909

N,N,N,N’-Tetramethyl(methylene)diamine-
N,N-dimethyl(methylene)iminium salt
preparation from, 2, 901

Lactone tetraosyl ceramide
synthesis, 6, 53

Tetrapeptides
phospho analogs
synthesis, 2, 1097

Tetraphenyl
synthesis, 3, 501

1,3,5,7-Tetrathiacyclooctane
tetraanion
methylation, 3, 134

Tetrahidromalonate, diethyl
synthesis
via O,O-diethyl thihiomalonate, 6, 454

Tetrazene, tetramethyl-
zoic chloride complex
reaction with α-methylstyrene, 7, 485

Tetrazenes
synthesis
via oxidation of 1,1-disubstituted hydrazines, 7, 742

via oxidation of secondary amines with Fremy’s
salt, 7, 746

Tetrazine, 3,6-diphenyl-
cycloaddition reactions
fulvenes, 5, 627

Tetrazines
Diels-Alder reactions, 5, 411, 413
1,2,4,5-Tetrazines
Diels-Alder reactions, 5, 491

Tetrazole, 1-(2-bromocyclohexyl)-2-methyl-
synthesis, 7, 501

5-Tetrazole diazonium chloride
thermal decomposition, 8, 890

Tetrazoles
amination, 4, 436
photochemical decomposition
nitrilimines from, 4, 1084

Tetrazoles, α-hydroxyalkyl-
synthesis, 2, 1086

Tetrazolo[1,2,3-depyridine
synthesis
via 1,3-dipolar cycloaddition, 4, 1101

Tetrodoxidogenic
synthesis, 7, 169

Tetrolic acid
hydrobromination, 4, 286

Tetrolic acid, methyl ester
[2 + 2] cycloaddition reactions, 5, 1067
cycloaddition reactions with chromium propynyl
complexes, 5, 1072
reaction with trimethylsilyldiazomethane, 5, 1070

Tetronates
methylation
organometallic compounds, 1, 150
pyrrolidine enamine
monomethylation, 3, 29
synthesis
via ketocarbenoids, 4, 1055

1-Tetralones, 2-oximo-
reduction
chemoselective, 8, 125

1,4-Tetramethylene diradical
alkene dimerizations, 5, 72

N,N,N,N’-Tetramethyl(methylene)diamine
Mannich base, 2, 909

N,N,N,N’-Tetramethyl(methylene)diamine-
N,N-dimethyl(methylene)iminium salt
preparation from, 2, 901

Lactone tetraosyl ceramide
synthesis, 6, 53

Tetrapeptides
phospho analogs
synthesis, 2, 1097

Tetraphenyl
synthesis, 3, 501

1,3,5,7-Tetrathiacyclooctane
tetraanion
methylation, 3, 134

Tetrahidromalonate, diethyl
synthesis
via O,O-diethyl thihiomalonate, 6, 454

Tetrazene, tetramethyl-
zoic chloride complex
reaction with α-methylstyrene, 7, 485

Tetrazenes
synthesis
via oxidation of 1,1-disubstituted hydrazines, 7, 742

via oxidation of secondary amines with Fremy’s
salt, 7, 746

Tetrazine, 3,6-diphenyl-
cycloaddition reactions
fulvenes, 5, 627

Tetrazines
Diels-Alder reactions, 5, 411, 413
1,2,4,5-Tetrazines
Diels-Alder reactions, 5, 491

Tetrazole, 1-(2-bromocyclohexyl)-2-methyl-
synthesis, 7, 501

5-Tetrazole diazonium chloride
thermal decomposition, 8, 890

Tetrazoles
amination, 4, 436
photochemical decomposition
nitrilimines from, 4, 1084

Tetrazoles, α-hydroxyalkyl-
synthesis, 2, 1086

Tetrazolo[1,2,3-depyridine
synthesis
via 1,3-dipolar cycloaddition, 4, 1101

Tetrodoxidogenic
synthesis, 7, 169

Tetrolic acid
hydrobromination, 4, 286

Tetrolic acid, methyl ester
[2 + 2] cycloaddition reactions, 5, 1067
cycloaddition reactions with chromium propynyl
complexes, 5, 1072
reaction with trimethylsilyldiazomethane, 5, 1070

Tetronates
methylation
organometallic compounds, 1, 150
pyrrolidine enamine
monomethylation, 3, 29
synthesis
via ketocarbenoids, 4, 1055

1-Tetralones, 2-oximo-
reduction
chemoselective, 8, 125

1,4-Tetramethylene diradical
alkene dimerizations, 5, 72

N,N,N,N’-Tetramethyl(methylene)diamine
Mannich base, 2, 909

N,N,N,N’-Tetramethyl(methylene)diamine-
N,N-dimethyl(methylene)iminium salt
preparation from, 2, 901

Lactone tetraosyl ceramide
synthesis, 6, 53

Tetrapeptides
phospho analogs
synthesis, 2, 1097

Tetraphenyl
synthesis, 3, 501

1,3,5,7-Tetrathiacyclooctane
tetraanion
methylation, 3, 134

Tetrahidromalonate, diethyl
synthesis
via O,O-diethyl thihiomalonate, 6, 454

Tetrazene, tetramethyl-
zoic chloride complex
reaction with α-methylstyrene, 7, 485

Tetrazenes
synthesis
via oxidation of 1,1-disubstituted hydrazines, 7, 742
<table>
<thead>
<tr>
<th>Thallium salts</th>
<th>Cumulative Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>decarboxylative halogenation, 7, 724</td>
<td>778</td>
</tr>
<tr>
<td>oxidants</td>
<td></td>
</tr>
<tr>
<td>solid-supported, 7, 839</td>
<td></td>
</tr>
<tr>
<td>oxidative rearrangement, 7, 828</td>
<td></td>
</tr>
<tr>
<td>reactions with aromatic compounds, 7, 335</td>
<td></td>
</tr>
<tr>
<td>Thallium salts catalysts</td>
<td></td>
</tr>
<tr>
<td>alkyl halide coupling, 3, 418</td>
<td></td>
</tr>
<tr>
<td>Thallium sulfate</td>
<td></td>
</tr>
<tr>
<td>α-hydroxylation</td>
<td></td>
</tr>
<tr>
<td>ketones, 7, 154</td>
<td></td>
</tr>
<tr>
<td>anti hydroxylation</td>
<td></td>
</tr>
<tr>
<td>alkenes, 7, 447</td>
<td></td>
</tr>
<tr>
<td>Thallium thiolates acylation</td>
<td></td>
</tr>
<tr>
<td>thiol ester synthesis, 6, 440</td>
<td></td>
</tr>
<tr>
<td>Thallium triacetate</td>
<td></td>
</tr>
<tr>
<td>α-acetoxylation</td>
<td></td>
</tr>
<tr>
<td>ketones, 7, 154</td>
<td></td>
</tr>
<tr>
<td>morpholino enamines, 7, 170</td>
<td></td>
</tr>
<tr>
<td>allylic oxidation, 7, 92</td>
<td></td>
</tr>
<tr>
<td>α-hydroxylation</td>
<td></td>
</tr>
<tr>
<td>carboxylic acids, 7, 185</td>
<td></td>
</tr>
<tr>
<td>syn hydroxylation</td>
<td></td>
</tr>
<tr>
<td>alkenes, 7, 445</td>
<td></td>
</tr>
<tr>
<td>reaction with alkenes, 7, 534</td>
<td></td>
</tr>
<tr>
<td>Thallium trifluoroacetate electrophilic oxidation, 7, 868</td>
<td></td>
</tr>
<tr>
<td>quinones</td>
<td></td>
</tr>
<tr>
<td>synthesis, 7, 354</td>
<td></td>
</tr>
<tr>
<td>Thallium trifluoroacetate, aryl-biaryl synthesis, 3, 505</td>
<td></td>
</tr>
<tr>
<td>Thallium trinitrate</td>
<td></td>
</tr>
<tr>
<td>α-acetoxylation</td>
<td></td>
</tr>
<tr>
<td>ketones, 7, 154</td>
<td></td>
</tr>
<tr>
<td>chromanone dehydrogenation, 7, 144</td>
<td></td>
</tr>
<tr>
<td>oxidative rearrangement, 7, 827</td>
<td></td>
</tr>
<tr>
<td>solid support clay, 7, 845</td>
<td></td>
</tr>
<tr>
<td>Thallium tris(trifluoroacetate) dimerization, 3, 499</td>
<td></td>
</tr>
<tr>
<td>Thebaine synthesis</td>
<td></td>
</tr>
<tr>
<td>via oxidation by thallium tris(trifluoroacetate), 3, 680</td>
<td></td>
</tr>
<tr>
<td>Thermochemical measurements</td>
<td></td>
</tr>
<tr>
<td>carbamions, 1, 41</td>
<td></td>
</tr>
<tr>
<td>Thermochemistry</td>
<td></td>
</tr>
<tr>
<td>aldol reaction, 2, 134</td>
<td></td>
</tr>
<tr>
<td>Thermolysin peptide synthesis, 6, 399</td>
<td></td>
</tr>
<tr>
<td>2-Thiaadaman tane synthesis</td>
<td></td>
</tr>
<tr>
<td>via Baeyer-Villiger reaction, 7, 683</td>
<td></td>
</tr>
<tr>
<td>5-Thiabicyclo(2.1.1)hexane, 2-bromo-synthesis</td>
<td></td>
</tr>
<tr>
<td>via bromine addition to alkene, 4, 346</td>
<td></td>
</tr>
<tr>
<td>Thiatbutadienes cationic</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 504-507</td>
<td></td>
</tr>
<tr>
<td>Diels–Alder reactions, 5, 469</td>
<td></td>
</tr>
<tr>
<td>Thiacyclodec-4-ene S-oxide synthesis</td>
<td></td>
</tr>
<tr>
<td>via 1,6-dibromo-3,4-hexanediol, 1, 517</td>
<td></td>
</tr>
<tr>
<td>Thiacyclohexane, 4-t-butyl-metallation, 3, 151</td>
<td></td>
</tr>
<tr>
<td>Thiacyclooctene sigmatropic rearrangement, 5, 896</td>
<td></td>
</tr>
<tr>
<td>1-Thiadealin synthesis via transannular addition</td>
<td></td>
</tr>
<tr>
<td>α-sulfinyl carbamions to nonactivated double bonds, 1, 517</td>
<td></td>
</tr>
<tr>
<td>Thiadealin, β-hydroxy-synthesis</td>
<td></td>
</tr>
<tr>
<td>via ketone enolate addition to sulfones, 4, 102</td>
<td></td>
</tr>
<tr>
<td>1,2,6-Thiadia zine 1,1-diones synthesis, 8, 645</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Thiadia zoles flash-vacuum pyrolysis</td>
<td></td>
</tr>
<tr>
<td>synthesis of thioketenes, 6, 426</td>
<td></td>
</tr>
<tr>
<td>flash vacuum thermolysis</td>
<td></td>
</tr>
<tr>
<td>synthesis of thioketenes, 6, 449</td>
<td></td>
</tr>
<tr>
<td>Wolff rearrangement, 3, 909</td>
<td></td>
</tr>
<tr>
<td>Thiadiazolidines synthesis</td>
<td></td>
</tr>
<tr>
<td>via Diels–Alder reactions, 5, 426</td>
<td></td>
</tr>
<tr>
<td>Δ1,3,4-Thiadiazoline thiocarbonyl ylides from, 4, 1093</td>
<td></td>
</tr>
<tr>
<td>Thiadiazolines synthesis, 7, 486</td>
<td></td>
</tr>
<tr>
<td>Thiamine acyloin formation catalysis, 1, 542</td>
<td></td>
</tr>
<tr>
<td>Thiane chlorination</td>
<td></td>
</tr>
<tr>
<td>formation of 3,4-dihydro-2H-thii n, 7, 206</td>
<td></td>
</tr>
<tr>
<td>Thiane, α-hydroxy-synthesis, 8, 934</td>
<td></td>
</tr>
<tr>
<td>Thiane-1,3-diol, 4-nitro-synthesis</td>
<td></td>
</tr>
<tr>
<td>via Henry reaction, 2, 327</td>
<td></td>
</tr>
<tr>
<td>Thiane S-oxides</td>
<td></td>
</tr>
<tr>
<td>carbanions NMR, 1, 513</td>
<td></td>
</tr>
<tr>
<td>Thianthren e, 2,7-dinitro-synthesis, 4, 443</td>
<td></td>
</tr>
<tr>
<td>Thiaprostacyclins synthesis</td>
<td></td>
</tr>
<tr>
<td>via sulfur heterocyclization, 4, 413</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-Thiat riazoles</td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>via thioacyl azides, 6, 251</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-Thiat riazoles, 5-alkoxy-degradation, 6, 244</td>
<td></td>
</tr>
<tr>
<td>Thiazanes reduction, 8, 231</td>
<td></td>
</tr>
<tr>
<td>1,3-Thiaz ine, 5-acyl-reduction</td>
<td></td>
</tr>
<tr>
<td>sodium cyanoborohydride, 8, 658</td>
<td></td>
</tr>
<tr>
<td>6H-1,3-Thiazine, 2-phenyl- electroreduction</td>
<td></td>
</tr>
<tr>
<td>regioselectivity, 8, 136</td>
<td></td>
</tr>
<tr>
<td>Thiazine 1-imine, 3,6-dihydro-synthesis</td>
<td></td>
</tr>
<tr>
<td>via Diels–Alder reactions, 5, 422</td>
<td></td>
</tr>
<tr>
<td>Thiazine imines, dihydro- Diels–Alder reactions, 5, 426</td>
<td></td>
</tr>
<tr>
<td>Thiazine 1-oxide, 3,6-dihydro-synthesis</td>
<td></td>
</tr>
<tr>
<td>via Diels–Alder reactions, 5, 422, 424</td>
<td></td>
</tr>
<tr>
<td>Thiazine oxides, dihydro- Diels–Alder reactions, 5, 424</td>
<td></td>
</tr>
</tbody>
</table>
Thiazines
 cycloadition reactions
 acid chlorides, 5, 92
 synthesis
 via Ritter reaction, 6, 276
 1,3-Thiazines
 reduction, 8, 658
 1,3-Thiazines, dihydro-
 reduction, 8, 231
 synthesis
 via carboxylic acids, 8, 275
 1,3-Thiazinium salts
 synthesis, 6, 508
 4H-1,3-Thiazinium salts, 5,6-dihydro-
 synthesis
 via Diels–Alder reactions, 5, 504
Thiazole, 2-acylamino-4-methyl-
 Mannich reaction
Thiazole, 2-bromo-
 with formaldehyde and dimethylamine, 2,962
 coupling reactions, 3,511
 Swi reaction, 4,462
 with pinacolone enolates, 4,464
Thiazole, 2-chloro-
 metallation, 1,477
 reduction, 8,656
 amination, 4,436
 Diels–Alder reactions, 5,491
 metallation, 1, 477
 reduction, 8, 656
 1,3-Thiazolidine, N,N'-carbonyldi-2-thione-
 amide synthesis, 6, 389
Thiazolidine, β-hydroxy-
 synthesis
 via metallated 2-methylthiazoline, 2, 494
Thiazolidines
 reduction, 8, 231
 1,3-Thiazolidine-2-thione, 3-acyl-
 reduction
 metal hydrides, 8, 272
Thiazolidinones
 reduction, 8, 231
 2,3-Thiazolidine-2-thione, 3-acyl-
 reduction
 Thiazoline, β-lithioalkylthio-
 alkylation, 3, 88
Thiazoline, 2-methyl-
 metallated
 reactions, 2, 494
Thiazolines
 cycloadition reactions
 acid chlorides, 5, 92
 reduction, 8, 656
 synthesis
 via Ritter reaction, 6, 276
 1,3-Thiazolines
 reactions with organometallic compounds, 1, 364
 stereoselective, 1, 350, 359
 1,3-Thiazolines, 2-methyl-
 metallation, 6, 541
 Thiazoline-2-thiones
 ring opening, 8, 657
 1,3-Thiazolino-5-one, 4-alkylidene-
 reduction
 sodium borohydride, 8, 656
Thiazolium carboxylates
 catalysts
 benzoin condensation, 1, 543
Thiazolium salts
 catalysts
 benzoin condensation, 1, 543
 carbonyl condensation reactions, 1, 542
 1,3-Thiazolones
 intramolecular cycloadditions, 4, 1163
Thiazyne, fluoro-
 reaction with perfluoropropene, 7, 483
Thienamycin
 1β-methyl analog
 synthesis, 2, 1058
 synthesis, 3, 1036, 7, 647, 8, 647
 via aldol reaction, 2, 212
 via Baeyer–Villiger reaction, 7, 680
 via enolate-imine condensations, 2, 925
 via Mannich reaction, 2, 926, 933, 936, 937
 via reactions of enol silanes, 2, 648
 via simple diastereoselection, 2, 201
 synthesis of precursor
 via higher order cuprate, 1, 133
Thienamycin, 1β-methyl-
 synthesis
 via diastereoselective reaction, 2, 653
2-Thieniumbutadienes
 Diels–Alder reactions, 5, 504
Thienium salts
 Diels–Alder reactions, 5, 491
 Thienium salts, aryl-
 Diels–Alder reactions, 5, 504
Thieno[b]azepinones
 synthesis
 via Friedel–Crafts reaction, 2, 765
Thieno[3,4-b]furan
 synthesis
 via retro Diels–Alder reactions, 5, 584
Thienopyridines
 synthesis, 3, 543
 via Vilsmeier–Haack reaction, 2, 787
5H-Thieno[2,3-c]pyrrole
 synthesis
 via Knoevenagel reaction, 2, 378
Thieno[b]suberanone
 synthesis
 via Friedel–Crafts reaction, 2, 765
Thietanes, 2-imino-
 synthesis
 via ketenimines, 5, 114
2-Thietanones
 synthesis
 via ketenes and carbonyls, 5, 89
2H-Thiin, 3,4-dihydro-
 synthesis
 via chlorination of thiene, 7, 206
Thiirane

Thiirane, 2,3-bis(trimethylsilyl)-
synthesis
via thiocyanogen addition to alkene, 4, 349

Thiirane, vinyl-
rearrangement, 5, 909, 931

Thiirane 1,1-dioxide
Ramberg–Bäcklund rearrangement, 3, 866, 867

Thiiranes
nitrile synthesis, 6, 238
synthesis, 1, 819, 834; 7, 515
via alkenes, 4, 331

Thioacetal monoxides
Michael addition, 4, 10

Thioacetals
reaction with allylsilanes, 2, 580
reduction, 8, 229, 935
to ethers, 8, 211–232
O-silyl ketene
synthesis, 2, 605
use in synthesis, 6, 134

Thioacetamides, thioloor-
synthesis
via thiolysis of trichlorovinylamines, 6, 429

Thioacetanilide, o-iodo-
ring closure
via SRN_1 reaction, 4, 477

Thioacetates
conjugate additions
enones, 4, 231

Thioacetonitrile, phenyl-
conjugate addition reactions, 4, 111

Thioacetophenone
pinacol coupling reactions, 3, 582

Thioacrolein
synthesis
via retro Diels–Alder reaction, 5, 575

Thioacrylamide, α-chloro-
synthesis
via α,α-dichlorination of propionimidium salts, 6, 429

Thioacrylamide, α-cyano-
synthesis
via Knoevenagel reaction, 2, 361

Thioacrylamide, N,N-dimethyl-
synthesis
via retro Diels–Alder reaction, 5, 556

Thioacrylamides
synthesis
via retro Diels–Alder reaction, 5, 556

Thioacrylates, S-methyl-
synthesis
via DCC, 6, 437

Thioacyl anhydrides
thioacylation
thiols, 6, 453

Thioacylation
alcohols and phenols
anhydrides, thioketenes, thioesters and thioethers, 6, 449
thioacyl halides, 6, 448
amines, 6, 420
arenes, 6, 453
carbanions, 6, 453
thiols
thioacyl halides, thioacyl anhydrides and thioketenes, 6, 453

Thioacrylates, α-β-unsaturated
rearrangement, 6, 425

Thioacrylate, β-amino-
synthesis
via thioamides, 6, 425

Thioamides, α-chloro-
synthesis
via thioamides, 6, 425

Thioamides, α-cyano-
synthesis
via thiolysis of imidoyl chlorides, 6, 431

Thioamides, N,N-diacyl-
α-β-unsaturated
addition reactions with enolates, 4, 100
addition reactions with organomagnesium compounds, 4, 85

Thioamides, N,N-dimethyl-
synthesis
via dithiocarbamate and nitriles, 6, 431

Thioamides, α-hydroxycarbamate
synthesis
via phosphinodithioic acid, 6, 432

Thioamides, bisthioacetyl-
thioacetylation
thiols, 6, 449
Thio anions
aromatic nucleophilic substitution, 4, 441
Thioanisole
acetylation
Friedel–Crafts reaction, 2, 744
deprotonation
reaction with carbonyl compounds, 1, 826
oxidation
solid support, 7, 844
Thioasparagine
synthesis
Thioates
aldol reactions, 2, 258
Thioates, S(2-pyridyl)-
acetylation, 1, 407
Thiobenzaldehyde
e ne reaction, 2, 555
Thiobenzaldehyde diions
alkylation and allylation
selectivity, 3, 95
Thiobenzamides
synthesis
via thiolysis of imidoyl chlorides, 6, 428
Thiobenzamides, o-(2-oxoalkyl)-
synthesis
via ring opening of thiolactones, 6, 420
Thiobenzamides, 2-(thioaclylamino)-
synthesis
Thiobenzanilide
reduction, 8, 303
Thiobenzanilide, 4-hydroxy-
reduction, 8, 303
Thiobenzanilide, o-iodo-
ring closure
via SN1 reaction, 4, 477
Thiobenzanilide, 4-methoxy-
reduction, 8, 303
Thiobenzanoates, O-deoxyribosyl
synthesis, 6, 450
Thiobenzophenone
hydrate transfer
with 1,4-dihydropyridines, 8, 93
reactions with ketenimines, 5, 114
reduction
dissolving metals, 8, 126
Thiobenzoyl azolides
synthesis
via dithiocarboxylates, 6, 424
via thioacetyl chlorides, 6, 422
Thiobenzoyl compounds
deoxygenation, 8, 818
Thiocarbamates, N,N-dimethyl-
catalytic hydrogenation, 8, 817
Thiocarbamoyl chlorides
nitrile synthesis, 6, 234
synthesis
via thiophosgene, 6, 423
Thiocarbamyl ions
cyclization, 6, 754
heterocyclic synthesis, 6, 753
synthesis, 6, 753
Thiocarbonates
synthesis via allylic xanthates, 6, 842
Thiocarbonyl compounds
Diels–Alder reactions, 5, 435–442
ene reaction, 2, 555
pinacol coupling reactions, 3, 582
stability, 6, 419
O-Thiocarbonyl compounds
reduction
stannanes, 8, 818
Thiocarbonyl groups
carbonyl group regeneration, 7, 846
Thiocarbonyl ylides
cyclizations, 4, 1163–1165
1,3-dipolar cycloadditions, 4, 1074, 1093–1095
Thiocarboxylates, 2-acetoxy-
O-methyl ester
synthesis, 6, 451
Thiocarboxylates, O-alkyl
thioacetylation
amines, 6, 420
Thiocarboxylates, 2-hydroxy-
O-methyl ester
synthesis, 6, 451
Thiocarboxylates, 2-mesoxy-
O-methyl ester
synthesis, 6, 451
Thiocarboxylates, O-methyl
thioacetylation
amine acids, 6, 420
Thiocarboxylic acids
Eschenmoser coupling reaction, 2, 875
esters
NMR, 6, 436
spectroscopy, 6, 436
S-esters
synthesis, 6, 436
thiolysis, 6, 432
4-Thiochromanone
dehydrogenation
use of trityl perchlorate, 7, 144
Thiocinnamates, S-phenyl esters
synthesis, 6, 441
Thio-Claisen rearrangement, 5, 889; 6, 847, 860
Thio compounds
α,β-unsaturated
synthesis via retro Diels–Alder reaction, 5, 556
Thiocoumarins
synthesis
ease of formation, 6, 443
via Lewis acid cyclization, 6, 443
Thiocoumarins, dihydro-
synthesis
ease of formation, 6, 443
Thiocresol
reduction, 8, 568
Thiocyanates
alkyl
synthesis, 7, 608
aromatic nucleophilic substitution, 4, 443
Ritter reaction, 6, 291
thiol carboxylic esters
synthesis, 6, 439
Thiocyanates, alkyl
synthesis of imidothioates, 6, 444
Thiocyanates, allyl
Thiocyanogen rearrangement to allyl isothiocyanates, 6, 846
Thiocyanogen reactions with alkenes, 4, 348
Thiocyanogen chloride reactions with alkenes, 7, 516
Thioenamides tandem vicinal difunctionalization, 4, 249
Thioenamides, N,N-dialkyl-reactions with Grignards reagents, 4, 257
Thioesters acylation, 1, 433
 lithium dialkylcuprates, 1, 428
 amid synthesis, 6, 395
 Claisen condensation, 6, 446
deoxygenation, 8, 818
desulfurization, 8, 838
Dieckmann condensation, 6, 446
Diels–Alder reactions, 5, 438
 enolates
 aldo reactions, stereoselectivity, 2, 214
 Michael donors, 4, 259
 3-hydroxy synthesis, 2, 260, 261
 α'-lithioalkyl alkylation, 3, 88
NMR, 6, 436
2-pyridyl synthesis, 1, 407
 reactions with organocuprates, 1, 116
 reduction, 8, 303
 reductive coupling, 3, 618
 spectroscopy, 6, 436
synthesis, 6, 435–457
 via hydration of alkenes, 4, 300
Thioesters, β-amino synthesis via Mannich reaction, 2, 920, 922
Thioformaldehyde synthesis via retro Diels–Alder reactions, 5, 575
Thioformamides, N,N-dimethyl-adducts phosphorus oxychloride, 6, 489
Thioformamides synthesis via carbon disulfide, 6, 428
 via thioacetylation, 6, 420
Thioformate, O-ethyl synthesis via sulfide of orthoesters, 6, 452
Thioformates, O-t-alkyl synthesis via sulfide of imidates, 6, 451
Thioformates, chloro-S-phenyl ester coupling reactions, 6, 446
thiol carboxylic esters synthesis, 6, 439
Thioformohydrazides synthesis via thioformylation of hydrazines, 6, 420
Thioformohydroxamic acids synthesis via thioformylation of hydroxylamines, 6, 420
Thioglycolic acid, S-thioacyl-
Thiolysis

- **Thiolysis, synthesis**, 6, 437
 - via acylation of arenes and carbanions, 6, 445
 - via hydrolysis of imidithioates, thiothioesters and ketene S,S-acetals, 6, 444
- **Synthesis from thiol salts**
 - via acylation with acyl halides, 6, 440
 - via acylation with anhydrides, ketenes and esters, 6, 443
 - via acylation with carboxylic acids, 6, 437
- **α-Thiol lactones**
 - synthesis via phosphorus pentoxide, 6, 440
- **δ-Thiol lactones**
 - synthesis via phosphorus pentoxide, 6, 440
- **Thiols**
 - acylation
 - acyl halides, 6, 440
 - anhydrides, ketenes and esters, 6, 443
 - carboxylic acids, 6, 437
 - addition to alkenes, 4, 50
 - conjugate additions
 - enantioselectivity, 4, 231
 - dehalogenation
 - α-halo ketones, 8, 989
 - desulfurization
 - tin hydrides, 8, 846
 - dimerization
 - pyridinium chlorochromate, 7, 267
 - oxidation, 7, 758
 - chromium(VI) oxide, 7, 278
 - oxygen, 7, 759
 - oxidative coupling
 - solid support, 7, 846
 - protecting groups, 6, 664
 - radical additions
 - alkenes, 4, 770
 - reactions with 4-acyloxypyridines
 - synthesis of carbothioates, 6, 443
 - reactions with alkenes, 4, 316
 - reactions with nitriles, 6, 511
 - reduction
 - Raney nickel, 8, 964
 - thioacylation
 - thioacyl halides, thioacyl anhydrides and thioketenes, 6, 453
 - transesterification, 6, 454
- **Thiols, arylation**
 - coupling reactions with Grignard reagents, 3, 456
- **Thiols, benzene-hydrogenolysis, 8, 914**
- **Thiols, benzyl desulfurization, 8, 978**
- **Thiols, tertiary**
 - reductive decarboxylation, 7, 720
 - O-acyl thiohydroxamates, 7, 721
- **Thiolsubtilisin**
 - peptide synthesis, 6, 399
- **Thiolysis**
 - amidines, 6, 430
 - imidates, 6, 429
 - imidocarboxylic acids, 6, 428
 - imidoyl chlorides, 6, 428
 - nitriles, 6, 430
 - 1,1,1-trihalides, 6, 432
Thiomalonamides

Cumulative Subject Index

Thiomalonamides

- synthesis
 - via thiols of phosgene immonium chloride, 6, 429

Thiomalonates

- S-alkyl esters
 - synthesis, 6, 437

α-Thionitriles

- acyl anion equivalents, 1, 561

Thionitroso compounds

- Diels–Alder reactions, 5, 422

Thionium ions

- chiral
 - reaction with enol silanes, 2, 649

Thionyl chloride

- acid bromide synthesis, 6, 305

Thionyl fluoride

- synthesis
 - via thionyl chloride, 6, 307

Thionyl halides

- imidoyl halide synthesis, 6, 526

Thioorthoesters

- hydrolysis
 - synthesis of thiol esters, 6, 444

3-Thiophenamine

- synthesis
 - via S_N1 reaction, 4, 473

Thiophene, 2-acetamido-

- synthesis
 - via iodocyclization of γ,8-unsaturated thioamides, 4, 413

Thiophene, 2-acetyl-3-hydroxy-

- synthesis
 - via activated alkynes, 4, 52

Thiophene, 2-acetyl-

- reduction
 - dissolving metals, 8, 609

Thiophene, 2-alkenyl-

- cyclopropanation, 4, 1063

Thiophene, 2-alkyl-

- reduction
 - ionic hydrogenation, 8, 610

Thiophene, 2-benzoyl-

- reduction
 - ionic hydrogenation, 8, 610

Thiophene, 2-bromo-

- halogen–metal exchange
 - with Grignard reagents, 3, 459
 - S_N1 reaction, 4, 462

Thiophene, 3-bromo-

- coupling reactions
 - with Grignard reagents, 3, 459, 513
 - S_N1 reaction, 4, 462

- reaction with acetone enolates, 4, 464

Thiophene, 2-chloro-

- S_N1 reaction, 4, 462

Thiophene, 2-chlorocarbonyl-

- synthesis
 - via thiophene and phosgene, 6, 308

Thiophene, 3-cyanomethyl-

- Vilsmeier–Haack reaction, 2, 780

Thiophene, dihydro-

- synthesis
 - via Knoevenagel reaction, 2, 360

Thiophene, 3,4-dimethoxy-

- Mannich reaction, 2, 963

Thiophene, 2,5-dimethyl-

- reduction
 - ionic hydrogenation, 8, 610

Thiophene, 2,3-dimethylene-

- dimerization
 - via [4 + 4] cycloaddition, 5, 639

Thiophene, 2-iodo-

- S_N1 reaction, 4, 462

Thiophene, 2-iodine-

- reduction
 - ionic hydrogenation, 8, 611

Thiophene, 2-iodine-

- reduction
 - nontransferable ligand, 4, 176

Thiophene, 2-methoxy-

- Mannich reaction
 - with formaldehyde and secondary amines, 2, 963

Thiophene, 3-methoxy-

- Mannich reaction
 - with formaldehyde and secondary amines, 2, 963

Thiophene, nitro-

- aromatic nucleophilic substitution, 4, 432

Thiophene, tetrahydro-

- reductive desulfurization, 8, 836

- synthesis
 - via tandem vicinal difunctionalization, 4, 251

Thiophene, 2,3,5,6-tetra-

- bromo-reduction, 8, 908

Thiophene, vinyl-

- synthesis, 3, 497

2-Thiopheneacetonitrile

- reduction
 - ionic hydrogenation, 8, 611

Thiophene acids

- asymmetric epoxidation
 - kinetic resolution, 7, 423

2-Thiopheneacetyl-

- reduction
 - dissolving metals, 8, 609

3-Thiopheneacetyl-

- Birch reduction, 8, 609

2-Thiopheneacetyl-

- acid, 5-methyl-
 - electrochemical reduction, 8, 611

Thiophene dioxide

- synthesis
 - via tandem vicinal difunctionalization, 4, 251

Thiophenes

- acylation
 - Friedel–Crafts reaction, 2, 737

acyl group coupling reaction

esters, 3, 615
coupling reactions
with sp² organometallics, 3, 459
with primary alkyl Grignard reagents, 3, 447
desulfurization, 8, 837
hydrogenation
homogeneous catalysis, 8, 456
intermolecular dimerization, 3, 509
intramolecular cycloaddition
nitrone, 4, 1119
lithiation, 1, 472
Mannich reaction
with N,N-dimethylmethyleniminium chloride, 2, 963
with formaldehyde and secondary amines, 2, 963
with iminium salts, 2, 962
metallation
addition reactions, 1, 471
photocycloaddition reactions
with benzaldehyde, 5, 176
reactions with ketocarbenoids, 4, 1063
reduction, 8, 603–630
electrochemical, 8, 611
synthesis
via activated alkenes, 4, 52
via [2 + 2 + 2] cycloaddition, 5, 1139
via hydrogen sulfide and polyynes, 4, 317
2,3,5-trisubstituted
synthesis, 2, 847
Vilsmeier–Haack reaction, 2, 780
Thiophenes, 2-oxazolinyl-
lithiation, 1, 472
Thiophencyclopropane
synthesis
via ketocarbenoids and thiophenes, 4, 1063
Thiophenol
electrochemical reduction, 4, 439
synthesis, 4, 441
Thiophene
2,5-bridged
synthesis via acyloin coupling reaction, 3, 630
Thiophenoxides
arylation, 4, 495
reactions with arynes, 4, 492
α-Thiophenilenones
Michael addition
phenol synthesis, 4, 8
Thiophiles
Eschenmoser coupling reaction
effect on rate and yield, 2, 870
Thiophosgene
Diels–Alder reactions, 5, 439
thioacylation
amines, 6, 423
Thiophosphates
phosphoric acid protecting group, 6, 625
Thiopinacols
synthesis, 3, 582
Thiopropionic acid
t-buty! ester, lithium enolate
Woodward erythromycin synthesis, 2, 214
Thiopyran
synthesis
via Knoevenagel reaction, 2, 378
Thiopyran, dihydro-
synthesis
via ketocarbenoids and thiophenes, 4, 1063
Thiopyran, 2,3-dihydro-
ring-opening coupling reaction
with primary alkyl Grignard reagents, 3, 447
2H-Thiopyran, 3,4-dihydro-
synthesis
via Diels–Alder reaction, 5, 469
via Knoevenagel reaction, 2, 361
Thiopyran-2-thiones
synthesis
via [2 + 2 + 2] cycloaddition, 5, 1158
Thiopyridone
synthesis
via Knoevenagel reaction, 2, 378
2-Thiopyridones, N-acetyl-
synthesis
via alkyl radical sources, 6, 442
Thiosorbamide, N,N-dimethyl-
addition reactions
with enolates, 4, 100
with organolithium compounds, 4, 76
Thiophosphindole
synthesis, 5, 1096
Thiosulfinates
synthesis, 7, 726
4-Thiouracil
cleavage
thioamide synthesis, 6, 425
Thioure, tetramethyl-
catalyst
Rosenmund reduction, 8, 286
Thioureas
amidinium salt synthesis, 6, 517
S-dioxide
synthesis via ozonolysis of 3-carene, 7, 548
oxidative cleavage
alkenes, ozone, 7, 544
synthesis
via carbon disulfide, 6, 428
via dithiocarboxylates, 6, 424
via thiophosgene, 6, 423
Thiourethanes, O-alkyl
synthesis
via dithiocarboxylates, 6, 424
via thiophosgene, 6, 423
Thiovaleramide
aldol reaction
stereoselectivity, 2, 215
Thio-Wittig rearrangement, 6, 853
methylene cyclopentane, 6, 895
1,3-Thioxanes
reduction, 8, 230
Thioxanthenone
reduction
boranes, 8, 316
dissolving metals, 8, 115
Thiouracil,
synthesis, 6, 452
Thioxoesters
amidinium salt synthesis, 6, 517
synthesis, 6, 446
via acylation of hydrogen sulfide, 6, 450
via thioacylation of arenes and carbanions, 6, 453
synthesis from alcohols and phenols
via thioacylation with anhydrides, thioketenes,
thioesters and dithioesters, 6, 449
via thioacylation with thioacetyl halides, 6, 448
Thioxolactones

synthesis, 6, 446
via acylation of hydrogen sulfide, 6, 450
via thioacylation of arenes and carbanions, 6, 453
synthesis from alcohols and phenols via thioacylation with anhydrides, thiketenes, thioesters and dithioesters, 6, 449
via thioacylation with thioacetyl halides, 6, 448

Thiyl radicals
addition reactions
alkenes, 7, 519

Thorpe reactions, 2, 848
conditions, 2, 849
in synthesis, 2, 851
mechanism, 2, 848
regioselectivity, 2, 851
scope, 2, 849

Thorpe–Ziegler reactions, 2, 848

Threo compounds
aldol diastereomers
thermodynamics, 2, 153

Threonine
hydroxy groups
protection, 6, 650
Mannich reaction
with formaldehyde and 2,4-dimethylphenol, 2, 968
synthesis, 8, 148
via hydroformylation, 4, 932
L-Threonse, 2,3-O-cyclohexylidine-4-deoxy-chiral imine
β-aminoamides from, 2, 924

Thromboxane A2
analogue
synthesis via intramolecular photocycloaddition, 5, 180
synthesis via [4 + 3] cycloaddition, 5, 605
via Paterno–Büchi reaction, 5, 151

Thromboxane B2
synthesis
stereocontrolled, via Eschenmoser rearrangement, 5, 837

Thrombinxanes
synthesis via [4 + 3] cycloaddition, 5, 612

Thysiferol
synthesis, 7, 633
α-Thujaplicin
synthesis via [4 + 3] cycloaddition, 5, 609
β-Thujaplicin
synthesis via [4 + 3] cycloaddition, 5, 609
via tricarbonyl(tropone)iron complex, 4, 707

Thujaplicins
synthesis via dihalocyclopropyl compounds, 4, 1018

Thujopsene
synthesis, 7, 100
Thymidine, 5'-O-acetyl-oxidation
Collins reagent, 7, 259
Thymidine, 5'-O-trityl-oxidation

Collins reagent, 7, 259
Thymol
hydrogenation, 8, 912
Thymol, methoxy-oxidation
via alkaline ferricyanide, 3, 686
Thymoquine, libocedroxy-synthesis
via alkaline ferricyanide, 3, 686

Tiffeneau–Demjanov rearrangement
2-amino alcohols, 3, 781
diazenium ion rearrangement, 1, 846
pinacol rearrangement
comparison with, 3, 722

Tiglaldehyde
aldimine, anion
regiochemistry, 2, 478
Tiglaine diterpenoids
synthesis via Cope rearrangements, 5, 984

Tiglic acid
allylation, 3, 50
allylic oxidation, 7, 818
hydrogenation, 8, 552
homogeneous catalysis, 8, 461
mercurated
demercuration, 8, 857
Tiglic acid, γ-iiodo-1-butyl ester
alkylation by, 3, 11

Tiglic aldehyde
Lewis acid complexes
NMR, 1, 294

Tin
reduction
enones, 8, 524
Tin, acetonyltributyl-
reaction with aldehydes
aldol reaction, 2, 611
Tin, α-alkoxyallyl-
anions
synthesis, 2, 71
Tin, alkynyl-
coupling reactions, 3, 529
Tin, allenyl-
reactions with isoquinoline, 2, 86
Tin, allyl-
carbonylation
palladium catalysts, 3, 1023
coupling reactions with acyl chlorides, 3, 463
with aromatic halides, 3, 453
Tin, allyltributyl-
[3 + 2] cycloaddition reactions
with acyliron complexes, 5, 277
Tin, aryl-
viny substituents
palladium complexes, 4, 841

Tin, benzyl-
coupling reactions with acyl chlorides, 3, 463
Tin, bis(trimethylsilylpropargyl)diodo-
reaction with carbonyl compounds, 2, 82
Tin, chlorotrimethyl-
triphenylphosphonoxydiacetone complex
crystal structure, 1, 305
Tin, chlorotriphenyl-tetramethylurea complex

crystal structure, 1, 305
transmetalation

conjugate enolates, 4, 260

Tin, crotetyl-

reactions with achiral carbonyl compounds, 2, 18

Tin, cyanomethyldibutyl-
cyanomethylation

aryl bromides, 3, 454

Tin, 1-cyclohexyloxytributyl-

reaction with benzaldehyde

aldol reaction, 2, 611

Tin, (a-deuteriobenzyl)tributyl-
aclation, 1, 444

Tin, diallenyldibromo-
synthesis, 2, 82

Tin, dichlorodimethyl-
salicylaldehyde complex
crystal structure, 1, 305
tetramethylurea complex
crystal structure, 1, 305

Tin, dichlorodiphenyl-
p-dimethylaminobenzaldehyde complex
crystal structure, 1, 305

Tin, dimethylhalo-
oxidation

retention of configuration, 7, 615

Tin, hexabutyldi-

photolysis

radical addition reactions, 4, 754
radical addition reactions
irradiation, 4, 745

Tin, hydriodophenyl-

reaction with a,β-unsaturated carbonyl compounds, 2, 609

Tin, hydroxymethyl-
coupling reactions

with aromatic halides, 3, 453

Tin, methoxymethyl-
coupling reactions

with aromatic halides, 3, 453

Tin, methyl-
coupling reactions

with aromatic halides, 3, 453

Tin, sulfidobis(trimethyl)-

reaction with a-mercured ketones

synthesis of enol stannyl ethers, 2, 609

Tin, tetraphenyl-

reaction with aryl halides, 3, 504

Tin, trialkylamine-

reaction with carbonyl compounds

synthesis of enol stannyl ethers, 2, 609

Tin, tri-n-butylchloro-

organotin(IV) enol ethers from, 2, 608
radical reactions, 4, 738

Tin, tributylmethoxy-

reaction with 2-methyl-1-acetoxy-1-cyclohexene

preparation of organotin(IV) enol ethers, 2, 608

Tin, triethylmethoxy-

reaction with isopropenyl acetate

preparation of organotin(IV) enol ethers, 2, 608

Tin alkoxides, trialkyl-

reactions with polyols, 6, 18

Tin compounds

acylation

Friedel–Crafts reaction, 2, 726
lithium exchange
formation of α-alkoxylithiums, 3, 195
organopalladium catalysts, 3, 231

Tin dichloride
catalyst
hydrocarboxylation, 4, 939
reduction
allylic compounds, 8, 979
imidoyl chlorides, 8, 301
nitro compounds, 8, 365, 371

Tin enolates

aldol reactions, 2, 255
chiral auxiliary, 2, 233
stereoselective, acetyliun, 2, 315
α,β-epoxy ketones

synthesis, 2, 424

synthesis, 2, 116, 610

Tin enol ethers

formation, 2, 608

Tin ester enolates

formation, 2, 610

Tin hydride, tri-n-butyl-

allyl trapping reagent, 6, 641
hydrostannation

carbonyl compounds, 8, 21
radical reactions, 4, 738
reaction with acyl phenyl selenides

reductive decarboxylation, 7, 721

reaction with α,β-unsaturated carbonyl compounds, 2, 609

reduction
acyl halides, 8, 265
aldehydes, 8, 17
carbonyl compounds, 8, 20
thione thiolates, 8, 268
transfer hydrogenation, 8, 553

Tin hydrides

1,4-addition
to α,β-unsaturated carbonyl compounds, 2, 609
deselenations, 8, 849
desulfurization, 8, 844
radical addition reactions
alkenes, 4, 735–740
syringe pump addition, 4, 738
radical cyclizations, 4, 790

quinoen, 4, 790–796

syringe pump addition, 4, 790

reduction
quinones, 8, 19
unsaturated carbonyl compounds, 8, 547

Tin oxide, bis(tri-n-butyl-

oxidation

secondary alcohols, 7, 320
oxygen transfer agent
alkyl halides, 6, 3

Tin oxide, dibutyl-
diol protection, 6, 662

Tin oxyperoxide, dibutyl-

epoxidizing agent, 7, 379

Tin pinacolate

nucleophilic radical addition
oxime ethers, 4, 765
radical addition reactions, 4, 760

Tin tetrachloride

4-t-butylbenzaldehyde complex
Tin triflate

Crystal structure, 1, 303
Catalyst
Allylsilane reaction with acetals, 2, 576
Allylstannane reaction with acetals, 2, 578
Epoxide ring opening, 3, 770
Ethyl cinnamate complex
Crystal structure, 1, 305
Ketone complexes
Crystal structure, 1, 306
Methoxyacetophenone complexes
Crystal structure, 1, 306

Tin triflate
Aldol reaction
α-bromo-β-hydroxy ketone synthesis, 6, 26

Tin triflate, tributyl-
Hydrostannation
Carbonyl compounds, 8, 21
Transfer hydrogenation, 8, 553

Tipson–Cohen reaction
Alkene protection, 6, 687

Tirandamycic acid
Synthesis, 6, 750

Tirandamycin
dioxabicyclononane unit
Synthesis, 1, 564
Synthesis via Diels–Alder reaction, 2, 702

Tirandamycin A
Synthesis, 7, 246

Titschschenko reaction
Aldol reaction, 2, 137
Hydride transfer
Aluminum tri-tert-butoxide, 2, 138

Titanabicycles
generation, 5, 1171

Titanacyclic compounds
Bicyclization, 5, 1169

Titanium, 2-alkenyltriphenoxy-
Reactions with ketones
diastereoselectivity, 2, 23
Titanium, alkyl-
Reactions with carbonyl compounds, 1, 145
Titanium, (alkylthio)allyl-
Reactions with carbonyl compounds, 1, 508
Titanium, allyltiris(dimethylamino)-
Reaction with carbonyl compounds
diastereoselectivity, 1, 149
Titanium, allenyl-
β-Alkynic alcohols from, 2, 92
Configurational stability, 2, 94
Reactions with aldehydes, 2, 91
diastereoselectivity, 2, 35
Reactions with imines, 2, 95

Titanium, allyl-
Heterosubstituted
Reactions with carbonyl compounds, 1, 161
Phosphorus-containing
Reactions with carbonyl compounds, 1, 161
Reaction with carbonyl compounds, 1, 143, 156

Titanium, allyltirispropoxy-
Reaction with allyl-9-borabicyclo[3.3.1]nonane, 2, 32
Reaction with carbonyl compounds, 1, 156

Titanium, ary-
Reactions with carbonyl compounds, 1, 145

Titanium, bis(cyclopentadienyl)chloro-
Enolates
Aldol reaction, anti diastereoselectivity, 2, 309
Titanium, η^3-bis(cyclopentadienyl)crot-
Configurational stability, 2, 6
Titanium, bis(dibenzyltartarate)tertaloxybis-
X-ray crystallography, 7, 421
Titanium, chloromethyl-
Alkyl halide methylation, 3, 421
Titanium, chlorotris(dimethylamino)-
Reaction with aldehydes
diastereoselectivity, 2, 68
Reaction with crotyl carbamate anions
diastereoselectivity, 2, 68

Titanium, crotyl-
Reactions with carbonyl compounds, 1, 158, 340
Synthesis, 2, 5
Titanium, η^1-crotyl-
Reactions with achiral carbonyl compounds, 2, 22
Titanium, η^1-crotyl-
Reactions with aldehydes
diastereoselectivity, 2, 23

Titanium, cyclopentadienylalkoxy-
enolates
Enantioselective aldol reaction, 2, 308
Titanium, dialkox-
Chiral catalysts
Diels–Alder reactions, 5, 376

Titanium, dialkyl-
synthesis, 1, 143
Titanium, dialy-
synthesis, 1, 143
Titanium, dichlorodiisopropoxymethyl-
synthesis, 1, 142
Titanium, dichlorodimethyl-
Reaction with carbonyl compounds
diastereoselectivity, 1, 149
Titanium, dichlorodiphenyl-
Reaction with carbonyl compounds
diastereoselectivity, 1, 149
Titanium, dieny-
Reactions with carbonyl compounds, 1, 162
Titanium, methyl-
Chiral ligands
Reactions with aromatic aldehydes, 1, 165
Titanium, methyl(acilpyrrolidinylmethoxy)diisopropoxy-
Reactions with carbonyl compounds, 1, 166
Titanium, monoa-
synthesis, 1, 142
Titanium, monoary-
synthesis, 1, 142
Titanium, phenyl-
Chiral ligands
Reactions with aromatic aldehydes, 1, 165
Titanium, propargyl-
Reactions with carbonyl compounds, 1, 165
Reaction with aldehydes, 2, 92

Titanium, tetraisopropy-
Additive to lithium borohydride
Reduction, epoxides, 8, 880
catalyst
Glycolaldehyde reactions with allylsilanes, 2, 578
Sodium cyanoborohydride
Reductive amination, 8, 54
Thiol allyl anions
Reaction with aldehydes, 2, 72
Transesterification catalyst, 6, 339
Cumulative Subject Index

Titanium, tetakis(dimethylamino)-amidine synthesis, 6, 546
Titanium, trialkoxy-enolates
 aldon reaction, syn stereoselectivity, 2, 305
Titanium, trichloro-enolates
 stereochemistry of reaction, 2, 630
Titanium, trichloromethyl-properties, 1, 141
 reaction with 2-benzylxy-3-pentanone
 NMR, 1, 295
 reaction with carbonyl compounds
 chemoselectivity, 1, 149
 synthesis, 1, 142
Titanium, tris(isopropoxy)-enolates
 aldon reaction, syn:anti selectivity, 2, 306
Titanium alkynes
 reactions with carbonyl compounds,
 diastereofacial preference, 2, 224
 enantioselectivity, 2, 309
 syn stereoselectivity, 2, 305
 synthesis, 2, 117
Titanium homeonolates
 reactions, 2, 445
Titanium isopropoxide
 asymmetric epoxidation, 7, 395
 epoxide ring opening, 3, 770
 nucleophilic attack
 epoxides, 7, 405
Titanium isopropoxide, phenyl-synthesis, 1, 139
Titanium oxametallacycles
 carbonyl methylenation, 5, 1122
Titanium propionate, 3,3,3-trichloro-synthesis, 5, 1200
Titanium reagents, chirally modified
 enantioselective addition
 carbonyl compounds, 1, 165
Titanium salts
 reduction
 alkenes, 8, 531
 carbonyl compounds, 8, 113
 reductive cleavage
 α-halocarbonyl compounds, 8, 987
 ketols, 8, 992
Titanium tartramidine complexes
 catalyst
 asymmetric epoxidation, 7, 424
Titanium tartrate
 catalyst
 asymmetric epoxidation, 7, 390, 422, 423, 425
 asymmetric epoxidation, mechanism, 7, 420
 asymmetric epoxidation, reaction variables, 7, 393
Titanium tartrate, dichlorodisopropoxy-catalyst
 asymmetric epoxidation, 7, 424
Titanium tetrachloride
 acetic anhydride complex
 crystal structure, 1, 303
 acryloylmethyl lactate complex
 crystal structure, 1, 303
 allenylsilanes
 reactions with carbonyl compounds, 1, 595
 carbonyl compound complexes
 NMR, 1, 294
 catalyst
 allylsilane reactions, 2, 567
 allylsilane reactions with acetals, 2, 576
 allylsilane reactions, diastereoselectivity, 2, 570
 allylstannane reactions with carbonyl compounds, 2, 573
 Diels–Alder reaction, 2, 667
 glycolacetal reactions with allylsilanes, 2, 578
 Knoevenagel reaction, 2, 343
 Diels–Alder reaction catalysts
 diastereofacial selectivity, 2, 679
 diethyl phthalate complex
 crystal structure, 1, 303
 3,3-dimethyl-2,4-pentanediene complex
 crystal structure, 1, 303
 enamine synthesis
 dehydrating agent, 6, 705
 ethyl acetate complex
 crystal structure, 1, 302
Titanium trichloride

Cumulative Subject Index

ethyl anisate complex
crystal structure, 1, 303

lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 483
methylation
carbonyl compounds, 1, 749
reduction
triazolyl ketones, 8, 13
vicinal dibromides, 8, 797

Titanium trichloride
catalyst
Wurtz reaction, 3, 421
doxygenation
epoxides, 8, 889

lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 485
reduction
alkyl halides, 8, 797
carbonyl compounds, 8, 116
nitro compounds, 8, 371
vicinal dibromides, 8, 797

Titanocene
benzyne complex
synthesis, 5, 1174
diphenylacetylene complex
synthesis, 5, 1174
synthesis, 1, 139

Titanocene, crotyl-
reaction with carbonyl compounds, 1, 158
synthesis, 1, 143

Titanocene, dimethyl-
synthesis, 8, 755

Titanocene dichloride
doxygenation
epoxides, 8, 889
hydroalumination, 8, 751
reduction
carbonyl compounds, 8, 323

Titanocyclobutane
Tebbe reaction, 1, 743

α-Tocopherol
oxidative coupling
cycloaddition, 3, 698
synthesis, 3, 644; 7, 347; 8, 560
via cuprate 1,2-addition, 1, 130
via iterative Claisen rearrangement, 5, 892

Tollens’ reaction
formaldehyde, 2, 139

o-Tolualdehyde
synthesis, 8, 301

o-Toluidine, N,N-dimethyl-
Mannich reaction, 2, 928

Toluene
alkylation
Friedel–Crafts reaction, 3, 327
Toluene, dihydro-
reaction with pentacarbonyliron, 4, 668
Toluene, 4-dodecenoyl-
synthesis
via Friedel–Crafts reaction, 2, 736
Toluene, p-fluoro-
catalytic hydrogenation, 8, 903
Toluene, perfluoro-
alcohol protecting group, 4, 439
hydrogenolysis, 8, 901
Toluene, p-trimethylsilyl-
Birch reduction
dissolving metals, 8, 513
Toluene, 2,4,6-trinitro-
Vilsmeier–Haack reaction, 2, 789
p-Toluene sulfinyl chloride
dehydrogenation
thiolactams, 7, 128
p-Toluenesulfonamide, N-sulfinyl-
Diels–Alder reactions, 5, 424
p-Toluenesulfonates
nucleophilic addition to π-allylpalladium complexes
regioselectivity, 4, 640
p-Toluenesulfonic anhydride, acetyl-
Friedel–Crafts reaction
bimolecular aromatic, 2, 739
p-Toluenesulfonylacetanilide
Michael donor, 4, 259–262
1-O-Toluenesulfonation
glycoside synthesis, 6, 49
Toluenesulfonyl azide
diazo transfer reaction, 4, 1033
p-Toluenesulfonyl chloride
activator
DMSO oxidation of alcohols, 7, 299
Beckmann rearrangement, 6, 764
Toluenesulfonyl isocyanates
[3 + 2] cycloaddition reactions
with π^1-allyliron complexes, 5, 275
reaction with dihydropyrans
glycal synthesis, 5, 108
o-Toluidine, N,N-dimethyl-
metal complexes
addition reactions, 4, 535
p-Toluidine, N-ethyl-
Mannich reaction, 2, 961
Tolylenoxycarbonyl group
protecting group
removal, 6, 638
p-Toly isocyanide
isomerization
kinetics, 6, 294
Tolylsulfonyl group
amine protecting group
removal, 6, 644
Tomatidine
reduction, 8, 228
Topological rule
Michael addition
stereochemistry, 4, 21
Torreyal
synthesis
via tandem Claisen–Cope rearrangement, 5, 879
Cumulative Subject Index

Torulopsis apicola
- hydrocarbon oxidation, 7, 56
Torulopsis candida
- β-hydroxylation, 7, 56
Torulopsis gropengiesseri
- hydrocarbon oxidation, 7, 56
Tosamides
- addition reactions
 - alkenes, 4, 559
Tosylates
- alcohols
 - hydroxy group activation, 6, 19
- bromination, 6, 210
- chlorination, 6, 206
- Kornblum oxidation
 - carbonyl compounds, 7, 654
 - reactions with carbonyl compounds
 - organosamarium compounds, 1, 257
 - reduction
 - lithium aluminum hydride, 8, 812
Tosylhydrazones
- hydroxide ion assisted decomposition
 - synthesis of α-αizato ketones, 3, 890
_Totara-8,11,13-triene, 13-methoxy-
Totarol_
- bromination, 7, 331
 - metabolites, 7, 331
 - oxidative coupling
 - alkaline potassium ferricyanide, 3, 665
_Totarol, 12-hydroxy-
synthesis, 7, 331
Trachelanthamidine
- synthesis
 - via Eschenmoser coupling reaction, 2, 881
Trachelanic acid
- synthesis, 1, 568
Trail pheromones
- synthesis
 - via Eschenmoser coupling reaction, 2, 881
Trajectory analysis
- carbonyl compounds
 - reduction, 8, 3
Transacetalization
- carbonyl group protection, 6, 676
Transalkylation
- Friedel-Crafts reaction, 3, 327
Transamination
- hydrogenolytic asymmetric, 8, 146
Transannular alkylation
- 3,3-like rearrangement, 1, 890
- oxy-Cope rearrangement, 1, 883
Transannular cyclizations
- electrophilic, 3, 379–407
- imines, 3, 581
Transbenzyldihydration
- Friedel-Crafts reaction, 3, 328
Transbenzylation
- Friedel-Crafts reaction, 3, 329
Trans-s-butylation
- Friedel-Crafts reaction, 3, 329
Transesterification
- S-alkyl thiocarboxylates, 6, 443
- thiols, 6, 454
- synthesis of esters, 6, 339
Transfer hydrogenation
- alcohols

Transmetallation
- hydrogen donors, 8, 551
- conjugated alkene bonds
 - homogeneous catalysis, 8, 453
- nitroarenes, 8, 367
- Transition metal alkyls
 - hydride transfer, 8, 103
- Transition metal carboxyls
 - desulfurizations, 8, 847
- Transition metal complexes
 - acyl
 - aldol reaction, 2, 314
 - alkylidene
 - alkene metathesis, 5, 1118
 - carbenes
 - cycloaddition reactions, 5, 1065–1113
 - catalysts
 - hydrosilylation, 8, 764
- Claisen rearrangement
 - catalysis, 8, 1750
- η⁴-diene
 - reaction with electrophiles, 4, 697–705
- epoxidation catalysis, 7, 382
- α-hydroxylation
 - esters, 7, 182
 - ketones, 7, 152
 - methyl pyrrolidine
 - alkylation, 5, 1076
 - oxidation
 - sulfoxides, 7, 768
- Transition metal enolates
 - acyl
 - aldol reaction, 2, 301
 - aldol reaction, 2, 301–318
 - structure, 2, 301
- Transition metal halides
 - metal hydrides
 - reduction, mechanism, 8, 483
 - unsaturated hydrocarbon reductions, 8, 483
 - reactions with organolithium compounds
 - complex Lewis acid reagent, 1, 330
- Transition metal hydrides
 - reduction
 - carbonyl compounds, 8, 22
 - unsaturated carbonyl compounds, 8, 548
- Transition metal ions
 - electroreduction
 - carbonyl compounds, 8, 133
- Transition metal nucleophiles
 - reactions with π-allylpalladium complexes, 4, 600
- Transition metals
 - catalysts
 - cycloaddition reactions, 5, 271–312
 - Lewis acids, 1, 307
 - reductions
 - nitro compounds, 8, 371
- Transition states, boat-like
 - Diels–Alder reactions
 - decatrienones, 5, 539–543
- Transketolase
 - organic synthesis
 - carbon–carbon bond formation, 2, 456
 - use in, 2, 464, 465
- Transmetallation
 - acylation
 - organostannanes, 1, 444
 - zirconium compounds, 8, 692
Transposition reactions

Cumulative Subject Index

1,2,4-Triazole, 4-amino-
nitrobenzene amination, 4, 436
4H-1,2,4-Triazole, 4-(4-chlorophenyl)-
quaternary salts of
benzoin condensation, catalysis, 1, 543
Triazole, phosphoryl-
phosphorylation, 6, 614
Trizoles

N-alkyl
lithiation, 1, 477
synthesis
via azide cyclization, 4, 1157
via hydrozoic acid and alkynes, 4, 296
1,2,3-Triazoles
reduction, 8, 661
synthesis
via deamination of 1-aminotriazoles, 7, 744
via 1,3-dipolar cycloadditions, 4, 1099, 1100
Wolff rearrangement, 3, 909
1,2,4-Triazoles
metallation
addition reactions, 1, 471
1,2,3-Triazoles, 1-aryl-5-amino-
oxidation, permanganate
amide synthesis, 6, 402
Triazolide, phosphorobis-
phosphorylating agent, 6, 619
Triazoline, N-vinyl-
deComposition
aziridine synthesis, 7, 475
Triazolinedione
cyloaddition reactions, 5, 206
1,2,4-Triazoline-3,5-dione, 4-phenyl-
Diels–Alder reactions, 5, 428
diene protection, 6, 690
oxidative rearrangement, 7, 833
1,2,4-Triazolene-3,5-diones
Diels–Alder reactions, 5, 429
Trizolines
aziridine synthesis, 7, 475
synthesis
via azide cyclization, 4, 1157
via 1,3-dipolar cycloadditions, 4, 199
thermolysis
photolysis, 7, 476
\Delta^2-Triazolines, 5-substituted
synthesis
via 1,3-dipolar cycloadditions, 4, 199
1,2,4-Triazolin-3-one, 1-aryl-
synthesis
via Curtius reaction, 6, 815
1,2,4-Triazolium chloride, 3-methylthio-1,4-diphenyl-
masked carboxylate equivalent, 8, 662
1,2,4-Triazolium salts
reduction, 8, 662
metal hydrides, 8, 276
4H-[1,2,4]Triazolyl[4,3-a][1,4]benzodiazepine
Mannich reaction
with N,N-dimethyleniminium chloride, 2, 962
Triazolocyclophosphoridene
synthesis
via diazoalkene cyclization, 4, 1159
1,2,4-Triazol-5-ones
reduction
LAH, 8, 662
Tricycloundecanes

Tricyclodecane
dihetero
synthesis via cyclofunctionalization, 4, 373
Tricyclo[5.2.1.0^4,10]decane-2,5,8-trione
via Pauson-Khand reaction, 5, 1062
Tricycloundecanes
exo-methylene-
synthesis via retro Diels–Alder reactions, 5, 562
Tricyclo[5.3.0.0^2,6]dec-4-en-3-ones
synthesis via Pauson–Khand reaction, 5, 1046
Tricyclo[2.2.1.0^2,6]heptan-3-one
oximes reduction, dissolving metals, 8, 124
Tricyclo[3.1.0.0^2,6]hexane, 3,3,6,6-tetramethyl-
synthesis via metal catalyzed cyclodimerization, 5, 1197

Tricyclohexahumuladiol synthesis, 3, 399, 402
Tricyclo[4.3.0.0^2,5]non-3-ene non-3-ene
synthesis via photolysis, 5, 737
Tricyclo[3.2.0.0^2,6]octa-3,7-dienes photoisomerizations, 5, 227
Tricyclo[3.2.0.0^2,6]octane-3,7-diones
via tandem Michael reactions, 4, 121
Tricyclo[3.3.0.0^2,6]octane-3,7-diones
via photosomeration, 5, 200
Tricyclo[3.2.1.0^2,6]octan-4-one
synthesis via Pauson–Khand reaction, 5, 1057
Tricyclo[4.2.0.0^2,6]octa-3,7-dienes
synthesis via cycloaddition of quadricyclane, 5, 1187
syn-Tricyclo[4.2.0.0^2,6]octa-3,7-dienes
via isomerization of cubenes, 5, 1188
Tricyclo[4.2.0.0^2,6]octane synthesis, 3, 901
Tricyclo[3.3.0.0^2,6]octane-4,7-diones
photoisomerizations, 5, 227
Tricyclo[3.2.0.0^2,6]octan-6-one
via Pauson-Khand reaction, 5, 1058
Tricyclo[3.3.0.0^2,6]octan-3-one
via Michael addition, 4, 18
exo-Tricyclo[3.2.1.0^2,6]octa-6-ene
cycloaddition reactions, 5, 1187
Tricyclo[2.1.1.0^2,6]pentane
synthesis, 3, 894
Tricycloundecanoids
via Michael addition, 4, 18
exo-Tricyclo[3.2.1.0^2,6]octa-6-ene
cycloaddition reactions, 5, 1187
Tricyclo[2.1.1.0^2,6]pentane
synthesis, 3, 894
Tricycloundecanoids
angularly-fused
synthesis via photocyclodimerization, 5, 662
Tricyclo[6.4.2.0^2,8]tetradeca-1(8),4,13-triene
isomerization via retro Diels–Alder reactions, 5, 585
Tricyclo[5.4.0.0^2,6]undecane
synthesis via bromomethylation of alkene, 4, 355
Tricyclo[6.3.0.0^1,5]undecane
synthesis via Pauson–Khand reaction, 5, 1057
Tricyclo[5.2.2.0^2,6]undecanones
synthesis via photosomerization, 5, 233
Tricyclo[5.3.0.0^2,6]undecanes
trans-Tricycloundec-2-ene

Cumulative Subject Index

794

hydroxy group activation, 6, 19
bromination, 6, 210
catalysts
Friedel–Crafts reaction, 3, 295
catalytic hydrogenation, 8, 817
chlorination, 6, 206
fluorination, 6, 218
glycoside synthesis, 6, 56
vinyl substitutions
electrocyclic reactions, 5, 721–728
cyclic
synthesis via retro Diels–Alder reactions, 5, 573
cycloaddition reactions
dienes, 5, 632–635
Diels–Alder reactions
boat-like transition states, 5, 539–543
intramolecular asymmetric, 5, 543
hydroboration, 8, 705
hydrogenation to saturated hydrocarbons
homogeneous catalysis, 8, 449
1,2-reduction to alkenes
homogeneous catalysis, 8, 449
saturated connecting chains
Diels–Alder reactions, 5, 533–539
vinylolation
palladium complexes, 4, 855
η-Trienes
transition metal complexes
reactions with electrophiles, 4, 706
tricarbonylmanganese complexes, 4, 712
1,2,7-Trienes
cyclization
via nickel-ene reaction, 5, 57
1,3,5-Trienes
Vilsmeier–Haack reaction, 2, 782
Trienoic acids
synthesis, 3, 882
Trienones
Robinson annulation, 4, 8
Triethylamine
alcohol oxidation
DMSO, 7, 292
α-deprotonation, 1, 476; 3, 65
reaction with arynes, 4, 505
Triethylamine, 2-chloro-1,1,2-trifluoro-
fluorination
alkyl alcohols, 6, 217
Triethylxonium tetrafluoroborate
O-alkylation of enolates
regioselectivity, 2, 597
Triflamide, N-4-acetoxyphenyl-
oxidation
halides, 7, 668
Triflamides
oxidation
alkyl halides, 7, 668
Triflate, trimethylsilyl
promoter
Diels–Alder reactions, 5, 341
synthesis, 7, 650
Triflates
alcohols
isocyanide synthesis, 6, 243
nitrile synthesis, 6, 229
Tris(homoallylic alcohol) synthesis, 2, 1097
Triphénylène, dihydriodation, 5, 729
Triphénylenes
synthesis via electrocyclization, 5, 720
via photolysis, 5, 729
Triphenylmethane carbocation
lithium (12-crown-4) complex
crystal structure, 1, 11
N-Triphenylmethyloxazacycloheptene
amine protection, 6, 644
Triphenylmethyl tetrafluoroborate
oxidation
alcohols, 7, 316
Triphenylphosphonioethoxycarbonyl group
protecting group
amines, 6, 638
Triphosgene
reaction with amides, 6, 495
Triphosphorylène, 0-methyltetrahydro-
synthesis via photochemical oxidation, 3, 677
Triple asymmetric synthesis
aldol reaction, 2, 265
Triprolidine
microbial hydroxylation, 7, 76
Triptycenes
photofragmentation, 5, 209
synthesis via Diels–Alder reaction, 5, 383
Triquinacenes
substituted derivatives
synthesis via tricarbonyl(cyclooctatetraene)iron complexes, 4, 710
synthesis via Pauson–Khand reaction, 5, 1058, 1062
Triquinanes
angularly fused
synthesis via Pauson–Khand reaction, 5, 1047, 1052, 1057, 1061
synthesis via photocycloaddition, 5, 662
cyclization, 5, 759
linearly fused
synthesis via photocycloaddition reactions, 5, 145
synthesis via Pauson–Khand reaction, 5, 1052, 1060
ring opening, 5, 926
synthesis, 3, 384; 5, 951
via cyclopropane ring opening, 4, 1048
via Nazarov cyclization, 5, 763
via photochemical rearrangement, 5, 916
via vinylcyclopropane thermolysis, 4, 1048
Triquinane sesquiterpenes
synthesis via organocopper compounds, 3, 221
Tris(cetylpyridinium) 12-tungstophosphate
glycol cleavage, 7, 708
Tris(diethylamino)sulfonium difluorotrimethylsilicate
reaction with organic halides
palladium catalysis, 3, 233
Tris(3,6-dioxahexyl)amine catalyst
chloropyridine dechlorination, 4, 439
Trishomoallylic alcohol
asymmetric epoxidation, 7, 419
Trishomocubane

Trishomocubane, fluoro-Ritter reaction, 6, 270
Trisporone, deoxy-synthesis, 3, 169

Triterpenes
acyclic
microbial hydroxylation, 7, 62
synthesis
via benzocyclobutene ring opening, 5, 693
via polyalkene cyclization, 3, 364

2,6,7-Trithiabicyclo[2.2.2]octane, 1-thio-4-methyl-alkylation, 3, 145

1,3,5-Trithiane
metallation, 3, 134

Trithiodicarbonic acid
O,O-diethyl ester
alkoxycarbonylation, 2, 840

Trithiobutadiene, O,S-diethyl synthesis via O,O-diethyl dithiomalonate, 6, 454

S-Trityl group
thiol protection, 6, 664

Tryptamine dithiocarboxylates, 6, 423

Tryptophans
enantioselective aldol cyclizations, 2, 169
synthesis, 7, 335
via Mannich reaction, 2, 967
thioacetylation
dithiocarboxylates, 6, 423

Tuberculostearic acid synthesis, 3, 644

Tulipalin A synthesis via retro Diels–Alder reactions, 5, 577

Tungsten metal vapor synthesis reactions with alkanes, 7, 4

Tungsten acid anti-hydroxylation alkenes, 7, 289

Tungstates, hydridopentacarbonyl-reduction acyl chlorides, 8, 289

Tungsten metal vapor synthesis reactions with alkanes, 7, 4
Tungsten catalysts
- alkene metathesis, 5, 1118
- alkylidene formation
- carbonyl compounds, 5, 1122

Tungsten complexes, alkyl carbene coupling reactions
- acyclic products, 5, 1103

Tungsten complexes, alkylidene-carbonyl alkylidene, 5, 1125
Tungsten complexes, peroxy epoxidations, 7, 382
Tungsten complexes, propargyl reaction with Danishefsky's diene, 5, 1072

Tungsten complexes, propargyl-[2 + 2] cycloaddition reactions, 5, 1067
- ethyl vinyl ether, 5, 1073

Tungsten complexes, vinyl-cycloaddition reactions, 5, 1072
Tungsten enolates
- aldol reaction, 2, 312
- synthesis and reaction, 2, 127

Tungsten halides
- deoxygenation
- epoxides, 8, 888

Tungsten hexachloride
- catalyst
- alkene metathesis, 5, 1116
- deoxygenation
- epoxides, 8, 889

Tungsten hexafluoroantiminate, tricarbonyl-nitroso(trimethylphosphine)-
crystal structure, 1, 309

Tungsten oxide
- anti hydroxylation
- alkenes, 7, 446

Tungsten salts
- reduction
- alkenes, 8, 531

Tunicaminy luracil
- synthesis
 via Diels-Alder reaction, 2, 697

Tyrosine O-methyl ether
- via retro Diels-Alder reaction, 5, 553

Tumerone
- synthesis, 2, 804; 3, 28, 126; 6, 455
- via conjugate addition to oxazolines, 4, 206

Turneforcidine
- synthesis
 via cyclooxasulfenylation of alkenes, 4, 333

Tutin
- synthesis, 7, 243

Twistane
- synthesis
 via cyclofunctionalization of cycloalkenes, 4, 373

Twist asynchronicity
- Diels-Alder reactions, 5, 516

Twistbrendane
- synthesis, 3, 854
- exo-Twistbrendan-2-ol brosylate acetolysis, 3, 709

Tylophorine
- synthesis
 via conjugate addition, 4, 231

Tylonomide
- synthesis, 2, 257; 7, 246
 via macrolactonization, 6, 370

Tylophorine
- synthesis
 via Friedel-Crafts reaction, 2, 740
 via thallium trifluoroacetate, 3, 670
 via vanadium oxytrifluoride, 3, 670

Tylosin
- aglycones
 synthesis, 1, 436
 synthesis
 via cycloheptadienyliron complexes, 4, 686

L-Tyrosine
- microbial hydroxylation, 7, 78
- synthesis, 3, 816

Tyrosine, 4-picolyl-cleavage, 8, 974

Tyrosine O-methyl ether
- enantioselective aldol cyclizations, 2, 167
Ugi reaction, 2, 1083–1106
amide synthesis, 6, 405
conditions, 2, 1089
general features, 2, 1087
limitations, 2, 1087
mechanism, 2, 1090
preparative advantages, 2, 1089
scope, 2, 1087
side reactions, 2, 1092
stereochemistry, 2, 1090
syntheses, 2, 1094
Ullmann reaction
biaryl synthesis, 3, 482, 499
organocopper compounds, 3, 209, 219
Ultrasonic irradiation
C—P bond cleavage, 8, 858
hydroisilylation
unsaturated hydrocarbons, 8, 764
nitrene generation, 7, 477
reduction
dissolving metals, 8, 109
Reformatsky reaction, 2, 279, 296
Reimer–Tiemann reaction, 2, 772
Ultraviolet irradiation
hydroisilylation
unsaturated hydrocarbons, 8, 764
Umbelliferone
synthesis
via Vilsmeier–Haack reaction, 2, 790
Umbellone
photochemistry, 5, 730
Umpolung
β-acyl anions
homoenolates, 2, 442
Undecan-2,5-Diyrl-1-ol
synthesis, 3, 273
2-Undecanone
reduction
ionic hydrogenation, 8, 318
Undecanone, dibromo-
rearrangement, 3, 851
2,7,9-Undeca-triene, 2-methyl-
Diels–Alder reactions
intramolecular, 5, 522
10-Undecenal
synthesis, 8, 297
Undecenoic acid
oxidation
Wacker process, 7, 450
1-Undecen-3-ol
oxidation
Wacker process, 7, 453
Undivided cells
electrosynthesis, 8, 130
unsaturated compounds
anodic oxidation, 7, 794
α,β-Unsaturated esters
Dieckmann reaction, 2, 817
Untriaceotane, 3-methyl-
synthesis, 3, 414
Upial
Uracil
fluorination, 7, 535
Uracil, (azidofuranosyl)-
cyclization, 4, 1158
Uracil, N-Benzyl-
reduction
L-selectride, 8, 642
Uracil, 5-bromo-
reduction, 8, 908
Uracil, dihydro-
dehydrogenation
copper(II) bromide, 7, 144
use of enzymes, 7, 146
Uranium complexes
carbonyl methylation, 5, 1126
Urazole
synthesis
via cycloaddition, 5, 206
Urea
Vilsmeier–Haack reaction, 2, 791
Urea, N-nitroso-
carbene precursors, 4, 961
Urea, tetramethyl-
aluimium trichloride complex
crystal structure, 1, 301
chlorotiphenyltin complex
crystal structure, 1, 305
dichloromethylin complex
crystal structure, 1, 305
lithium halide sensitizer
epoxide ring opening, 3, 763
Urea nitrate
nitrilation with, 6, 110
Urethane, N,N-dichloro-
reactions with alkenes, 7, 498
Urethanes
Diels–Alder reactions
intramolecular, 5, 527
lithiation
addition reactions, 1, 469
protecting groups
peptide synthesis, 6, 635
vinyllogous
synthesis via Eschenmoser coupling reaction,
2, 865, 867
synthesis via Knoevenagel reaction, 2, 368
Urethanes, α-cyano-
synthesis, 1, 559
Uridine, alkyliddeoxy-
synthesis, 8, 694
Uridine, allyl-
synthesis
via allylation of mercury intermediates,
3, 476
β-Uridine, 3'-O-benzyl-2'-deoxy-5-trifluoromethyl-
synthesis
via reductive desulfurization, 6, 447
Uridine, 2-deoxy-
quionone derivatives
synthesis, 7, 350
Uronic acid, amino-
synthesis, 7, 817
synthesis
via bromolactamization of silyl imidate, 4, 399
Uroporphyrins

synthesis
via Knoevenagel reaction, 2, 376
Ursolic acid
ring A contraction, 3, 834
Valeraldehyde
synthesis
via hydroformylation, 4, 922

Valerene
synthesis, 3, 20

Valeric acid, β-bromo-
reactions with samarium diiodide
lactone synthesis, 1, 259

Valeric acid, 5-(2,3-dimethoxyphenyl)-Friedel–Crafts reaction, 2, 764

Valeric acid, 5-(4-isopropylphenyl)-Friedel–Crafts reaction, 2, 764

γ-Valerolactone
acylation, 1, 418
benzene alkylation by
Friedel–Crafts reaction, 3, 317
hydrogenation, 8, 246

Valerolactone, 5-ethyl-
synthesis, 3, 245

Valerolactone, β-hydroxy-
synthesis
via SmI2-promoted reductive cyclizations, 1, 267

Valeryl chloride, 5-(2-acetoxy-3-methoxyphenyl)-
Friedel–Crafts reaction, 2, 764

Valine
N-acyl-2-oxazolidone from, 2, 251
bislactim ethers from, 3, 53
borane modifier
asymmetric reduction, 8, 170
r-butyl ester
imine anion alkylation, 6, 726
r-butyl ester, enamines
alkylation, 3, 36
enantioreselective aldol cyclizations, 2, 169

Valinol
imines
reactions with organometallic compounds, 1, 363

Valinol, O-r-butyl-
imines
reactions with organolithium reagents, 1, 383

Vallerene
synthesis
via Nazarov cyclization, 5, 780

Vallesiacotamine
synthesis
via Knoevenagel reaction, 2, 384

Vanadates, tricarbonylcyclopentadienylhydrido-
reduction
acyl chlorides, 8, 289

Vanadium compounds
glycol cleavage, 7, 707
use in intermolecular pinacol coupling reactions, 3, 565

Vanadium dichloride
reduction
carbonyl compounds, 8, 116
Vanadium salts
reduction
alkenes, 8, 531

Vanadium sulfate
reductions
nitro compounds, 8, 371

Vanadium trichloride
catalyst
Wurtz reaction, 3, 421
lithium aluminum hydride
unsaturated hydrocarbon reduction, 8, 485
reduction
vicinal dibromides, 8, 797
Vanadyl acetylacetonate
allylic oxidation, 7, 95
Vanadyl bisacetylacetonate
glycol cleavage, 7, 707
oxidation
secondary alcohols, 7, 321

Vancosamine
amino sugars, 2, 323

Vapor-phase irradiation
di-π-methane rearrangement, 5, 195

Vaska’s complex
hydrogenation
alkenes, 8, 446
methyl acrylate, 8, 453

Velleral
synthesis
via cyclobutene ring expansion, 5, 687

Venustatriol
synthesis, 7, 633
via cerium reagent, 1, 237

Veraguensin
synthesis, 3, 693

Veratrole
electrolytic oxidation, 3, 668
Friedel–Crafts acylation, 2, 737
Veratrole, 4-methyl-
oxidative coupling, 3, 669
Veratronitrile
intramolecular Ritter reaction, 6, 272

Verbenene
synthesis
via methyllithium reaction, 1, 377

Verbenol
allylic oxidation, 7, 99
asymmetric epoxidation, 7, 414
synthesis, 3, 126

Verbenone
allylic oxidation, 7, 99
tosylhydrazone
reaction with methyllithium, 1, 377

Vermiculin antibiotics
synthesis, 3, 126

Vermiculine
synthesis, 1, 568; 8, 647
via macroclactonization, 6, 371

Vernolepin
synthesis, 3, 280; 7, 105
via cyclopropane ring opening, 5, 924
via Diels–Alder reactions, 5, 330, 345
via Knoevenagel reaction, 2, 381
via Mannich reaction, 2, 911

Vermomenin
synthesis
via cyclopropane ring opening, 5, 924

Verrucarin
Cumulative Subject Index

Vinyl ethers

Vinyl acetoacetate
synthesis
via retro Diels–Alder reactions, 5, 558

Vinyl alcohols
oxidation
solid support, 7, 841
synthesis
via retro Diels–Alder reactions, 5, 557

Vinyl aluminolate
alkylation
copper-catalyzed, 3, 215

Vinylamines
synthesis, 6, 67

Vinylation
1-alkynes, 3, 521
alkynic iodides
palladium-catalyzed, 3, 544
metal enolates
regioselectivity, 3, 12
organomercury compounds
palladium complexes, 4, 839

Vinyl bromides
hydrobromination, 4, 280
hydrogenolysis, 8, 899
reaction with aldehydes, 1, 193

Vinyl carbanions
alkylation, 3, 241–266
heteroatom substituted
alkylation, 3, 252

Vinyl cations
nitrile-trapped
isoquinoline synthesis, 6, 401

Vinyl chlorides
cleavage
metal–ammonia, 8, 530
hydrobromination, 4, 280
hydrogenolysis, 8, 897
reaction with N-acyliminium ions, 2, 1064
synthesis, 4, 277

Vinyl compounds
hydrogenation
heterogeneous catalysis, 8, 439
S$_{N}$1 reaction, 4, 462

Vinyl cyanide
hydroxylation, 7, 172

Vinylene carbonate
photocycloaddition reactions
with anisole, 5, 653

Vinyl epoxides
radical cyclization
carbon-centered radicals, 4, 789
reaction with arylstannanes
organopalladium catalysis, 3, 232
transition metal catalyzed reactions, 6, 847

Vinyl esters
reduction, 8, 930
synthesis
via retro Diels–Alder reactions, 5, 557

Vinyl ethers
hydroisilylation, 8, 775
reduction, 8, 934
diimide, 8, 476
synthesis
via Horner reaction, 1, 774
via palladium(II) catalysis, 4, 553
via retro Diels–Alder reactions, 5, 557

Vicarious nucleophilic substitution
arenes, 4, 424

Vicinal dialkylation
tandem
definition, 4, 238

Vicinal difunctionalization
tandem, 4, 238
definition, 4, 238
electrophiles, 4, 259
nucleophiles, 4, 253–259
stereochemistry, 4, 240–242
α,β-unsaturated substrates, 4, 242–253

Vigneron–Jacquet complex
reduction
unsaturated carbonyl compounds, 8, 545

Vilsmeier–Haack reaction, 2, 777–792
solvents, 2, 779

Vilsmeier synthesis, 2, 748

Vincamine
synthesis, 6, 746
via Diels–Alder reaction, 5, 409
via Mannich reaction, 2, 1015

Vindoline
synthesis
via Michael addition, 4, 25

Vindorosine
synthesis
via Michael addition, 4, 25

Vineomycinone B$_2$
synthesis
via Diels–Alder reaction, 2, 698

Vinyl acetal
hydroformylation, 4, 924

Vinyl acetate
hydroformylation, 4, 924, 932
intermolecular meta cycloaddition
to indane, 5, 667
photocycloaddition reactions
to benzene, 5, 667
reaction with chlorosulfonyl isocyanate, 5, 105
reduction, 8, 934
synthesis
via palladium(II) catalysis, 4, 553

Verrucarine E
synthesis
via retro Diels–Alder reactions, 5, 581

Verrucaric acid
synthesis, 7, 240

Verrucarol
synthesis, 6, 143
via cyclohexadienyl complexes, 4, 680
via ene reaction, 2, 547

Verticillene
synthesis, 3, 591

Vetricadinol
synthesis
via intramolecular ene reaction, 5, 17
via Knoevenagel reaction, 2, 373

α-Vetispirene
synthesis, 3, 586
via Wacker oxidation, 7, 455

β-Vetivone
synthesis, 3, 20, 22
via conjugate addition, 4, 211

Vicarious nucleophilic substitution
arenes, 4, 424

Vicinal dialkylation
tandem
definition, 4, 238

Vicinal difunctionalization
tandem, 4, 238
definition, 4, 238
electrophiles, 4, 259
nucleophiles, 4, 253–259
stereochemistry, 4, 240–242
α,β-unsaturated substrates, 4, 242–253

Vigneron–Jacquet complex
reduction
unsaturated carbonyl compounds, 8, 545

Vilsmeier–Haack reaction, 2, 777–792
solvents, 2, 779

Vilsmeier synthesis, 2, 748

Vincamine
synthesis, 6, 746
via Diels–Alder reaction, 5, 409
via Mannich reaction, 2, 1015

Vindoline
synthesis
via Michael addition, 4, 25

Vindorosine
synthesis
via Michael addition, 4, 25

Vineomycinone B$_2$
synthesis
via Diels–Alder reaction, 2, 698

Vinyl acetal
hydroformylation, 4, 924

Vinyl acetate
hydroformylation, 4, 924, 932
intermolecular meta cycloaddition
to indane, 5, 667
photocycloaddition reactions
to benzene, 5, 667
reaction with chlorosulfonyl isocyanate, 5, 105
reduction, 8, 934
synthesis
via palladium(II) catalysis, 4, 553
Vinyl fluorides

Vinyl halides
 - formation of esters, 3, 1028
 - cross-coupling reactions
 - organometallic reagents, 3, 522
 - cyclocarbonylation
 - formation of α-methylene lactones, 3, 1032
 - hydrogenolysis, 8, 895
 - hydroxylolation, 8, 775
 - nitrile synthesis, 6, 231
 - oxidative rearrangement, 7, 816
 - reduction, 8, 895–920, 937
 - α-substituted
 - arene alkylation, 3, 322
 - synthesis, 3, 788
 - vinyl substitutions
 - palladium complexes, 4, 842–856
Vinylidene complexes
 - cycloaddition reactions
 - imines, 5, 1068
Vinyl iodides
 - carbonylation
 - formation of ketones, 3, 1023
 - hydrogenolysis, 8, 900
 - reactions with benzaldehyde
 - chromium(II) chloride, 1, 193
 - reactions with organotin compounds
 - organopalladium catalysis, 3, 232
Vinyl lactones
 - transition metal catalyzed reactions, 6, 847
Vinyl magnesiumcuprates
 - synthesis
 - via alkylmagnesium halide reactions with alkynes, 3, 243
Vinyl metals, α-seleno-
 - synthesis, 1, 644, 665
Vinyl phosphates
 - phosphorylation, 6, 611
 - reduction, 8, 930
Vinyl pivalate
 - hydroformylation, 4, 924
Vinyl radicals
 - addition reactions
 - tin hydride catalysis, 4, 739
 - cyclizations, 4, 796–798
 - structure, 4, 719
Vinyl selenides
 - reduction, 8, 934
Vinyl substitutions
 - intermolecular
 - palladium complexes, 4, 845
 - intramolecular
 - palladium complexes, 4, 846
 - organopalladium compounds, 4, 833–861

Vinyl sulfides
 - desulfurization, 8, 837
 - hydrogenolysis, 8, 913
 - hydroxylation, 7, 173
 - oxidative rearrangement, 7, 816
 - reduction, 8, 934
 - synthesis
 - via Horner reaction, 1, 774
Vinyl sulfones
 - hydrogenolysis, 8, 913
Vinyl sulfoxides
 - hydrogenolysis, 8, 913
 - reduction, 8, 934
 - synthesis
 - diastereoselectivity, 2, 75
Vinyl triflates
 - carbonylation
 - formation of aldehydes, 3, 1021
 - formation of ketones, 3, 1023
 - cross-coupling reactions, 3, 529
 - intermediate in dolastane synthesis, 3, 488
 - reaction with tin compounds
 - organopalladium catalysts, 3, 232
 - reduction, 8, 933
 - synthesis
 - via organocopper compounds, 3, 218
Virantmycin
 - synthesis, 7, 406
Viurenol A
 - homo-Favorskii rearrangement, 3, 857
Virginiamycin M₂
 - synthesis
 - via aldol reaction, 2, 189
(+)-Viridifloric acid
 - synthesis
 - via aldol reaction, 2, 206
Virolin
 - synthesis
 - via silver oxide, 3, 691
Vitamin A
 - acetate
 - synthesis via enol ethers, 2, 616
 - epoxide ring opening, 3, 757
 - synthesis, 2, 410; 3, 169, 170
 - via carboalumination, 4, 893
 - via hydroformylation, 4, 924
 - via Julia coupling, 1, 803
 - via organocopper compounds, 3, 223
 - via Reformatsky reaction, 2, 287
 - via sulfones, 6, 157
 - aldehyde
 - synthesis
 - via hydroformylation, 4, 924
Vitamin B₁
 - catalyst
 - benzoin condensation, 1, 543
Vitamin B₆
 - synthesis, 7, 338
Vitamin B₁₂
 - catalyst
 - radical cyclizations, nonchain methods, 4, 807
 - reductive radical addition, 4, 765
 - synthesis
 - via Eschenmoser coupling reaction, 2, 866
Vitamin D
interconversions, 5, 700
synthesis, 3, 109, 545
via Claisen–Claisen rearrangement, 5, 888
via Claisen rearrangement, 5, 859
via Horner reaction, 1, 780
via Horner–Wittig process, 1, 779
via organocopper compounds, 3, 223
via organopalladium catalysts, 3, 232
via photolysis, 5, 737
Vitamin D₃
epoxidation, 7, 362, 376
hydrozirconation, 8, 689
precursor
synthesis via Diels–Alder reaction, 5, 349
synthesis, 3, 168, 173
Vitamin D₃, 1α,25-dihydroxy-
precursor synthesis
via Johnson rearrangement, 5, 839
synthesis, 3, 984
Vitamin D₂, 22,23-epoxy-
synthesis via retro Diels–Alder reaction, 5, 569
Vitamin E
asymmetric synthesis, 6, 152
sidechain
synthesis via aldol reaction, 2, 195
synthesis, 5, 1095, 1098
via dihalocyclopropanes, 4, 1011
via iterative Claisen rearrangement, 5, 892
Vitamin K
synthesis, 5, 1095
Volume of activation
[2 + 2] cycloaddition reactions, 5, 77
von Braun amide degradation
alkyl bromide synthesis
from tertiary amines, 6, 212
Ritter reaction, 6, 291
von Richter rearrangement
aromatic nitro halides, 6, 240
Vorbrüggen–Eschenmoser reaction
ester synthesis, 6, 334
Wacker oxidation
addition reactions
- C—O bond formation, 7, 449–466
- palladium(II) catalysis, 4, 552
- reaction conditions, 7, 450
- reoxidants, 7, 451
- scope, 7, 450
- solvents, 7, 450
Wagner—Meerwein rearrangements, 3, 705–717
- bicyclic systems, 3, 706
- definition, 3, 706
- Ritter reaction, 6, 291
- stereoelectronic features, 3, 709
- use in synthesis, 3, 710
Walburganal
synthesis
via transketalization, 6, 677
Wallemia C
synthesis
via Claisen condensation, 2, 821
Walsh model
cyclopropane
- bonding, 5, 900
Warburganal
synthesis, 7, 87
Water
cocatalyst
- Friedel–Crafts reaction, 2, 735
- reaction with formaldehyde
- Lewis acids, 1, 314
- solvent for reduction
dissolving metals, 8, 111
Waxes
esters, 6, 324
Wenker synthesis
aziridines, 7, 472
Wharton rearrangement
allylic alcohols
- oxygen–oxygen transposition, 6, 837
- definition, 6, 1042
- α,β-epoxy ketones
- fragmentation, 8, 341
- reduction of ketones, 8, 927
Wheland intermediate
Friedel–Crafts reaction
- arene alkylation, 3, 298
Widdrol
synthesis, 7, 100
Wieland–Miescher diketones
synthesis, 2, 167
Wilkinson catalyst — see Rhodium, chlorotris(triphenylphosphine)
Willardin
synthesis
via Ugi reaction, 2, 1096
Willgerodt reaction
amide synthesis, 6, 404
- Kindler modification
- alternative, 7, 829
- thioamide synthesis, 6, 405
Wilsonine, N-trifluoroacetyl-
synthesis via diphenyl selenoxide, 3, 666
via vanadium oxytrifluoride, 3, 670
Withafenin A
synthesis, 7, 366
Wittig–Horner reactions
- selectivity
- Knoevenagel reaction, 2, 353
2,3-Wittig–oxy-Cope rearrangement tandem
- γ,δ-unsaturated carbonyl compounds, 6, 852
- Peterson methylenation compared with, 1, 731
Wittig rearrangement, 3, 975–1012; 6, 873
- absolute configuration, 6, 884
- alkene synthesis, 1, 755
- asymmetric induction
 - simple diastereoselectivity, 6, 889
 - aziridine synthesis, 7, 474
- ethers
 - chelation, 6, 887
 - chirality transfer, 6, 884
 - chirality transfer out of cycle, 6, 887
 - diastereoselectivity, 6, 880
- 1,2-rearrangement
electron transfer mechanism, 3, 824
mechanism, 3, 979
2,3-sigmatropic rearrangement, 3, 981; 6, 834
- α-(allyloxy)carbanions, 6, 850
- anionic, asymmetric induction, 6, 852
- aza version, 6, 853
- 3,3-Claisen rearrangement, competition, 5, 851
diallyl ethers, 5, 888
thio version, 6, 853, 895
transfer of chirality, 6, 852
stereochemistry, 3, 943
stereocore
- allylic C—O bond, 6, 889
- ethers, 6, 889
sulfones
- chain elongation, 6, 890
tandem and sequential rearrangements, 3, 994
Wittig-type alkenation
- allyl vinyl ethers, 5, 830
Wolff–Kishner reduction
- Barton modification, 8, 330
carbonyl compounds, 8, 307
- hydrazones and arylsulfonylhydrazones, 8, 327–359
chemoselectivity, 8, 338
- Cram modification, 8, 335
- Henbest modification, 8, 336
- Huang–Minlon modification, 8, 329
- isomerization of double bonds, 8, 340
- limitations, 8, 338
- mechanism, 8, 328
- modified procedures, 8, 329
- Nagata and Inzuki modification, 8, 332
- scope, 8, 338
- side reactions, 8, 342
- steric effects, 8, 340
Wolff rearrangement, 3, 887–909
- chemistry, 3, 897
- competing reactions, 3, 893
804
diazocompounds, 4, 1032; 6, 127
α-diazo ketones, 1, 844
initiation, 3, 891
photolysis, 3, 891
thermolysis, 3, 891
transition metal catalysts, 3, 891
mechanism, 3, 891
stereochemistry, 3, 891
vinyllogous, 3, 906
Woodward–Hoffmann rules
alkene dimerization, 5, 64
Claisen rearrangement, 5, 857
1,3-sigmatropic rearrangements
stereochemistry, 5, 1009
Working electrodes
electrosynthesis, 8, 130
Wurtz reaction
classical, 3, 414
coupling reactions, 3, 413
intramolecular, 3, 422
variants, 3, 414
Wuweizisu-C
synthesis
via vanadium oxytrifluoride, 3, 676
X-206
synthesis, 1, 409; 2, 263
X-14547A
synthesis
final step, 1, 409
introduction of 2-ketopyrrole, 1, 409
via Julia coupling, 1, 800
X-14881
synthesis, 1, 567
Xanthates, allylic
synthesis
via rearrangement, 6, 842
9H-Xanthene, 4,6-dioxo-2,2,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-
analysis of aldehydes
Knoevenagel reaction, 2, 354
Xanthen-9-one, 3,6-diehydroxy-
reduction
boranes, 8, 316
Xanthenones
photochemical ring opening, 5, 712
Xanthobacter Py2
epoxides
resolution, 7, 429
Xanthocillin
synthesis, 2, 1084
Xanthon, 2,6-dihydroxy-
synthesis
via ferricyanide, 3, 688
Xanthones
reduction
boranes, 8, 316
dissolving metals, 8, 115
synthesis
via electrocyclization, 5, 719
via Friedel–Crafts reaction, 2, 758
Xenon difluorde
decarboxylative fluorination, 7, 723
Xonolite
catalyst
Knoevenagel reaction, 2, 345, 359
X-ray crystallography
carbonyl compounds
Lewis acid complexes, 1, 299
m-Xylene
irradiation
with cyclopentene, 5, 651
radical cations
oxidation, 7, 870
p-Xylene
formylation
Gattermann–Koch reaction, 2, 749
Friedel–Crafts acetylation, 2, 738
hydrogenation
homogeneous catalysis, 8, 454
radical cations
oxidation, 7, 870
Xylenes
Beckmann rearrangement
solvent, 6, 763
isomerization
Friedel–Crafts reaction, 3, 327
reduction
photochemical method, 8, 517
Xylenols
transalkylation
Friedel–Crafts reaction, 3, 329
Xylitol
synthesis, 7, 645
(-)-Xylopolin
synthesis
via ene reaction, 2, 537
Xylopinine
synthesis
via arynes, 4, 501
via electron transfer induced photocyclization, 2, 1040
via Mannich reaction, 2, 1035
d-Xylose
selective monoacetylation
enzymatic, 6, 340
Xylose, amino-
synthesis
via Diels–Alder reaction, 5, 428
d-Xylose, 2,3,4-tri-O-benzyl-
glycoside synthesis, 6, 57
m-Xylylene
synthesis, 6, 778
o-Xylylenes
cycloaddition reactions
tropones, 5, 622
Diels–Alder reactions, 5, 385
dimerization, 5, 638
synthesis
via electrocyclic ring opening, 5, 1151
via retro Diels–Alder reaction, 5, 588
Yamamoto’s reagent
 reactions with ketones, 1, 117
 reactions with nitriles, 1, 124
Yangonin
 synthesis, 7, 109
Yeast
 benzaldehyde reaction with acetaldehyde, 1, 543
 lipase
 acylation
 enzymatic, 6, 340
Yangonin
 synthesis, 3, 20
Ylangocamphor
 reduction
 dissolving metals, 8, 121
Ylides
 alkaline hydrolysis, 8, 863
 ammonium
 rearrangements, 6, 854, 855
 ring expansion, 6, 897
 cyclic
 ring contraction, 6, 897
 cyclopropane synthesis, 4, 986
 direct formation, 3, 919
 electrocyclic closures
 in oxirane rearrangement, 5, 929
 nonstabilized
 Wittig reaction, 1, 757
 phosphonium
 synthesis, 6, 171–198
 semistabilized
 Wittig reaction, 1, 758
 stabilized
 Wittig reaction, 1, 759
 sulfonium
 rearrangements, 6, 854, 855, 873
 ring expansion, 6, 897
 synthesis, 6, 893
 synthesis
 via diazo compounds, 6, 128
Ylidylic rearrangements
 definition, 3, 916
Ynamines
 acid anhydride synthesis, 6, 315
 amidine synthesis, 6, 550
 cycloaddition reactions
 keteniminines, 5, 113
 reactions with carbonyl compounds, 5, 116
 reactions with hydrogen halides, 6, 497
 reactions with ketenes
 cyclobutenone synthesis, 5, 689
 retrograde Diels–Alder reactions, 5, 557
Ynamines, silyl-
 reactions with arynes, 4, 510
Ynediols
 divinyl ketones from
 cyclization, 5, 768
Ynolates
 synthesis, 2, 109
Ynones
 photoaddition reactions
 with alkenes, 5, 164
 α,β-Ynones, α'-amino-
 synthesis
 via acyliosoxazolidides as leaving groups, 1, 405
Yohimbane
 derivatives
 synthesis via Knoevenagel reaction, 2, 382
Yohimbine
 oxidation
 DMSO, 7, 295
 synthesis
 via arynes, 4, 501
 via Thorpe reaction, 2, 851
Yohimbine hydrochloride
 electrochemical reduction
 enones, 8, 532
Yohimbone
 asymmetric synthesis, 3, 81
 synthesis, 3, 72
 Mannich reaction, 2, 1034
Yohimbiene alcohol
 synthesis
 via 3,2-rearrangement, 3, 933
Ytterbium
 dissolving metal reductions
 unsaturated hydrocarbons, 8, 481
 oxidation state
 stability, 1, 252
 reduction
 ammonia, 8, 113
 use in pinacol coupling reactions, 3, 567
Ytterbium, dialkynyl-
 synthesis, 1, 276
Ytterbium, diaryl-
 polyfluorinated
 synthesis, 1, 276
Ytterbium, phenylido-
 reaction with \(\text{N,N-dimethylbenzamide}\)
 synthesis of benzophenone, 1, 278
Ytterbium chloride
 toxicity, 1, 252
Ytterbium dibromide
 solubility, 1, 278
Ytterbium diiodide
 Barbier-type reactions, 1, 278
 reduction
 carbonyl compounds, 8, 115
 solubility, 1, 278
Ytterbium reagents, 1, 251–280
Ytterbium salts
 redox potentials, 1, 278
Ytterbium compounds
 reaction with epoxides
 regioselectivity, 6, 9
Zearalenone derivative synthesis, 6, 440
microbial hydroxylation, 7, 59
synthesis, 1, 568, 3, 49, 6, 136 via cyclization, 1, 553 via macrocyclization, 6, 369, 370 via palladium-catalyzed carbonylation, 3, 1033 via Wacker oxidation, 7, 454
Zeatin, β-d-ribofuranoside synthesis, 7, 88
Zeolites asymmetric epoxidation, 7, 396 catalysis Friedel–Crafts reaction, 2, 736 modified catalysts Friedel–Crafts reaction, 3, 296 polyfunctional catalysts acidity, Friedel–Crafts reaction, 3, 305 shape selective catalysts Friedel–Crafts reaction, 3, 296 solid supports oxidants, 7, 840
Zerumbone 8,9-epoxide transannular cyclization, 3, 406
Ziegler catalysts hydrogenation alkenes, 8, 447
Ziegler–Natta catalysts metal alkyls, 3, 296
Zimmerman–Traxler model aldol reaction, 2, 6, 261 stereoselectivity, 2, 155, 197 steric interactions, 2, 200 Ivanov reaction, 2, 210
Zinc activation Reformatsky reaction, 2, 282 ammonium chloride nitro compound reduction, 8, 366 Clemmensen reduction, 8, 309 desulfurization ammonium chloride, 8, 843 dissolving metal reductions unsaturated hydrocarbons, 8, 480 reduction alkyl halides, 8, 795 benzylic compounds, 8, 972 α-bromo ketones, 8, 986 enones, 8, 524 epoxides, 8, 881 nitrones, 8, 299 nitro compounds, 8, 364 potassium hydroxide/dimethyl sulfoxide, 8, 113 vicinal dibromides, 8, 797 reductive cleavage α-alkylthio ketone, 8, 993 ketol acetates, 8, 991 reductive dimerization unsaturated carbonyl compounds, 8, 532
Zinc, alkenyl-coupling reactions with aryl iodides, 3, 495 Zinc, alkyl-addition reactions, 1, 216 Zinc, alkylido-synthesis, 1, 212 Zinc alkynylbromo-carbozincation, 4, 883 Zinc, alkynylchloro-reaction with alkenyl halides palladium-catalyzed, 3, 524 Zinc, allenylbromo-addition reactions, 1, 220 synthesis, 2, 81 Zinc, allyl-addition reactions, 1, 218 reaction with aldehydes, 2, 23, 29, 91 Zinc, allylbromo-carbozincation, 4, 880 reaction with aldoxime ethers, 2, 995 reaction with N-methyl-4-tert-butylcyclohexylamine dependence of product ratio on solvent, 2, 983 reaction with phenylmethyl-N-methoxyminoacetate, 2, 995 Zinc, allylchloro-reaction with aldehydes, 2, 31 Zinc, aryl-addition reactions, 1, 216 alkylation, 3, 260 Zinc, arylchloro-coupling reactions with alkenyl bromides, 3, 495

808
<table>
<thead>
<tr>
<th>Compound</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc, cinnamyl-</td>
<td>reactions with aldehydes, 2, 23</td>
</tr>
<tr>
<td>Zinc, cinnamylbromo-</td>
<td>synthesis, 1, 214</td>
</tr>
<tr>
<td>Zinc, crotyl-</td>
<td>reaction with aldehydes, 2, 23 reaction with imines</td>
</tr>
<tr>
<td></td>
<td>regioselectivity, 2, 988 syn-anti selectivity, 2, 989 reaction with iminium salts, 2, 1000</td>
</tr>
<tr>
<td>Zinc, dialkyl-</td>
<td>hydride donor reduction of carbonyls, 8, 99 reaction with alkynes, 4, 883</td>
</tr>
<tr>
<td></td>
<td>reduction ary10ol chlorides, 8, 291 synthesis, 1, 212, 215</td>
</tr>
<tr>
<td>Zinc, diallyl-</td>
<td>reactions with aldehydes, 2, 23 reactions with oximes</td>
</tr>
<tr>
<td></td>
<td>diastereoselective, 2, 32 reactions with sulfenimine, 2, 998</td>
</tr>
<tr>
<td>Zinc, dibenzyl-</td>
<td>synthesis, 1, 215</td>
</tr>
<tr>
<td>Zinc, dibutyl-</td>
<td>reaction with benzaldehyde, 1, 216</td>
</tr>
<tr>
<td>Zinc, di-tert-butyl-</td>
<td>synthesis via transmetallation, 1, 214</td>
</tr>
<tr>
<td>Zinc, dicrotyl-</td>
<td>metallo-ene reactions, 5, 31 reactions with aldehydes</td>
</tr>
<tr>
<td></td>
<td>stereoselectivity, 1, 220</td>
</tr>
<tr>
<td>Zinc, diethyl-</td>
<td>carbozincation, 4, 884 enantioselective addition reactions, 1, 223 reaction with benzaldehyde, 1, 223 reaction with 1,2-diketones, 1, 217</td>
</tr>
<tr>
<td>Zinc, dimethyl-</td>
<td>TEBBE reaction, 1, 746</td>
</tr>
<tr>
<td>Zinc, divinyl-</td>
<td>enantioselective addition reactions, 1, 223 synthesis via transmetallation, 1, 214</td>
</tr>
<tr>
<td>Zinc, ethyl-</td>
<td>enolate synthesis, 2, 123</td>
</tr>
<tr>
<td>Zinc, homoolyl-</td>
<td>coupling reactions with aromatic halides, 3, 453</td>
</tr>
<tr>
<td>Zinc, homopropargyl-</td>
<td>coupling reactions with aromatic halides, 3, 453</td>
</tr>
<tr>
<td>Zinc, methyl-</td>
<td>addition reactions chiral aldehydes, 1, 221</td>
</tr>
<tr>
<td>Zinc, methylenedi-</td>
<td>TEBBE reaction, 1, 746</td>
</tr>
<tr>
<td>Zinc, 2-pentenylbromo-</td>
<td>reaction with diisobutyl ketone, 1, 219</td>
</tr>
<tr>
<td>Zinc, phenylethyl-</td>
<td>coupling reactions with aromatic halides, 3, 453</td>
</tr>
<tr>
<td>Zinc, propargyl-</td>
<td>addition reactions, 1, 218</td>
</tr>
</tbody>
</table>

Zinc homoenolates

- reactions with aldimines, 2, 992
- Zinc, silylmethyl-coupling reactions with aromatic halides, 3, 453
- Zinc acetate catalyst
 - Knoevenagel reaction, 2, 345
- Zinc amalgam reduction enones, 8, 525
- Zincate, triorganolithium salt reaction with α,β-unsaturated carbonyl compounds, 2, 124
- Zinc borohydride ketone reduction, 8, 11 diastereoselectivity, 8, 7 reduction acetals, 8, 215
- Zinc chloride catalyst
 - Diels-Alder reaction, 2, 664, 665, 679
 - Friedel-Crafts reaction, 2, 709
 - vinyl Grignard coupling, 3, 485 enolates stereoselection, 2, 204 transfer hydrogenation, 8, 553
- Zinc compounds
 - 3-iodo-2-[(trimethylsilyl)methyl]propene trimethylenefane synthetic equivalent, 5, 246
- Zinc-copper couple deoxygenation epoxides, 8, 888
- Zinc cyanoborohydride reductive amination imines, 8, 53
- Zinc dialkylamide ketone deprotonation synthesis of zinc ester enolates, 2, 280
- Zinc dichromate oxidation ethers, 7, 236
- Zinc-ene reactions, 5, 31-33 intramolecular, 5, 37-46
- Zinc enolates aldol reaction thermodynamic control, 2, 289
 - Blaise reaction, 2, 297 isolation
 - Reformatsky reaction, 2, 278 Reformatsky reaction, 2, 277-298 stability
 - Reformatsky reaction, 2, 278 structure, 2, 280 synthesis, 2, 122
- Zinc ester dieneolates reaction with carbonyl compounds, 2, 286
 - reaction with conjugated enones, 2, 287
- Zinc ester enolates reaction with conjugated enones, 2, 285
- Zinc halides epoxide ring opening, 3, 771
- Zinc halides, allyl-reactions with silylated alkynes, 5, 32
- Zinc homoenolates acylation, 2, 449
Cyclopropane synthesis, 2, 443
reactions, 2, 447, 448
substitution reactions
allylation, 2, 449
Zinc iodide
reduction
benzylic compounds, 8, 969
sodium cyanoborohydride reduction
carboxyl compounds, 8, 315
Zinc ketone enolates
crystallography
Reformatsky reagent, 2, 280
structure, 2, 125
synthesis, 2, 280
Zincophorin
synthesis, 7, 246
via chiral reaction, 2, 652
via Diels–Alder reaction, 2, 704
Zinc oxide
catalyst
Knoevenagel reaction, 2, 345
Zinc permanganate
oxidation
ethers, 7, 236, 237
solid support, 7, 844
Zinc reagents
organopalladium catalysis, 3, 230
Zingerenol
synthesis
via Diels–Alder reactions, 5, 324
Zirconacyclobicycles
reactions, 5, 1165–1170
synthesis, 5, 1171, 1173
Zirconacycles
diastereoselectivity, 2, 24
five-membered
synthesis, 5, 1173–1182
diastereofacial preferences, 2, 198, 208
three-membered
synthesis, 5, 1173–1182
Zirconacyclonapetadienes
synthesis, 5, 1165, 1178–1182
Zirconacyclonapetanes
synthesis, 5, 1178–1182
Zirconacyclonpetenones
synthesis, 5, 1178–1182
1-Zircono-3-cyclopentenes
synthesis, 5, 1172
Zirconacyclopropenes
reactions with alkenes, 5, 1180
methylation
synthesis, 5, 1173–1177
Zirconacyclpropenes
synthesis, 5, 1173–1177
Zirconium, alkenyl-
coupling reactions
with aryl iodides, 3, 495
reactions, 8, 690
nickel catalysis, 3, 230
Zirconium, alkyl-
reactions, 8, 690
reactions with carbonyl compounds, 1, 145
Zirconium, alkyltribut oxy-
reaction with carbonyl compounds
chemoselectivity, 1, 149
Zirconium, alkyne-
hydrozirconation, 8, 682
Zirconium, allyl-
reactions with carbonyl compounds, 1, 145
Cumulative Subject Index

Zygosporin

- catalysts
 - carbonylation, 3, 1027
- Zirconium hydride, bis(cyclopentadienyl)-
 - oxidation
 - primary alcohols, 7, 309
- Zirconium reagents
 - organopalladium catalysis, 3, 230
- Zirconium reagents, allylic
 - reaction with carbonyl compounds, 1, 156
- Zirconium tetrahalides
 - lithium aluminum hydride
 - unsaturated hydrocarbon reduction, 8, 483
- Zirconocene
 - alkyne complex
 - synthesis, 5, 1175
 - benzylne complex
 - reaction with stilbene, 5, 1178
 - synthesis, 5, 1174
 - 1-butene complex
 - reaction with stilbene, 5, 1180
 - synthesis, 5, 1175, 1178
 - cycloalkyne complex
 - synthesis, 5, 1175
 - stilbene complex
 - synthesis, 5, 1174, 1177, 1180
- Zirconocene, crotyl-
 - reaction with carbonyl compounds, 1, 158
 - synthesis, 1, 143
- Zirconocene, diene-
 - reactions with carbonyl compounds, 1, 162
- Zirconocene, isoprene-
 - reactions with carbonyl compounds, 1, 163
- Zirconocene dichloride
 - synthesis, 1, 143
- ZSM-5 zeolite
 - catalyst
 - Friedel–Crafts reaction, 3, 305
- Zygosporin
 - 3,2-sigmatropic rearrangement
 - synthesis, stereocontrol, 3, 960